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2. Overall Objectives

2.1. Introduction
An embedded architecture is an artifact of heterogeneous constituents and at the crossing of several design
viewpoints: software, embedded in hardware, interfaced with the physical world. Time takes different forms
when observed from each of these viewpoints: continuous or discrete, event-based or time-triggered: modeling
and programming formalisms that represent software, hardware and physics significantly alter this perception
of time. Therefore, time reasoning in system design is usually isolated to a specific design problem: simulation,
profiling, performance, scheduling, parallelization, simulation. The aim of project-team TEA is to define
conceptually unified frameworks for reasoning on composition and integration in cyber-physical system
design, and to put this reasoning to practice by revisiting analysis and synthesis issues in real-time system
design with soundness and compositionality gained from formalization.

2.2. Context
In the construction of complex systems, information technology (IT) has become a central force of revolution-
ary changes, driven by the exponential increase of computational power. In the field of telecommunication,
IT provides the necessary basis for systems of networked distributed applications. In the field of control engi-
neering, IT provides the necessary basis for embedded control applications. The combination of telecommu-
nication and embedded systems into networked embedded systems opens up a new range of systems, capable
of providing more intelligent functionalities, thanks to information and communication (ICT). Networked em-
bedded systems have revolutionized several application domains: energy networks, industrial automation and
transport systems.

20th-century science and technology brought us effective methods and tools for designing both computational
and physical systems, such as for instance Simulink and Matlab. But the design of cyber-physical systems
(CPS) is much more than the union of those two fields. Traditionally, information scientists only have a hazy
notion of requirements imposed by the physical environment of computers. Similarly, mechanical, civil, and
chemical engineers view computers strictly as devices executing algorithms. CPS design is, to date, mostly
executed in this ad-hoc manner, without sound, mathematically grounded, integrative methodology. A new
science of CPS design will allow to create machines with complex dynamics and high control reliability, and
apply to new industries and applications, such as IoT or edge devices, in a reliable and economically efficient
way. Progress requires nothing less than the construction of a new science and technology foundation for CPS
that is simultaneously physical and computational.
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2.3. Motivations
Beyond the buzzword, a CPS is an ubiquitous object of our everyday life. CPSs have evolved from individual
independent units (e.g an ABS brake) to more and more integrated networks of units, which may be aggregated
into larger components or sub-systems. For example, a transportation monitoring network aggregates moni-
tored stations and trains through a large scale distributed system with relatively high latency. Each individual
train is being controlled by a train control network, each car in the train has its own real-time bus to control
embedded devices. More and more, CPSs are mixing real-time low latency technology with higher latency
distributed computing technology.

In the past 15 years, CPS development has moved towards Model Driven Engineering (MDE). With MDE
methodology, first all requirements are gathered together with use cases, then a model of the system is built
(sometimes several models) that satisfy the requirements. There are several modeling formalisms that have
appeared in the past ten years with more or less success. The most successful are the executable models 1 2 3,
i.e., models that can be simulated, exercised, tested and validated. This approach can be used for both software
and hardware.

A common feature found in CPSs is the ever presence of concurrency and parallelism in models. Large
systems are increasingly mixing both types of concurrency. They are structured hierarchically and comprise
multiple synchronous devices connected by buses or networks that communicate asynchronously. This led to
the advent of so-called GALS (Globally Asynchronous, Locally Synchronous) models, or PALS (Physically
Asynchronous, Logically Synchronous) systems, where reactive synchronous objects are communicating
asynchronously. Still, these infrastructures, together with their programming models, share some fundamental
concerns: parallelism and concurrency synchronization, determinism and functional correctness, scheduling
optimality and calculation time predictability.

Additionally, CPSs monitor and control real-world processes, the dynamics of which are usually governed
by physical laws. These laws are expressed by physicists as mathematical equations and formulas. Discrete
CPS models cannot ignore these dynamics, but whereas the equations express the continuous behavior usually
using real numbers (irrational) variables, the models usually have to work with discrete time and approximate
floating point variables.

2.4. Challenges
A cyber-physical, or reactive, or embedded system is the integration of heterogeneous components originating
from several design viewpoints: reactive software, some of which is embedded in hardware, interfaced with the
physical environment through mechanical parts. Time takes different forms when observed from each of these
viewpoints: it is discrete and event-based in software, discrete and time-triggered in hardware, continuous in
mechanics or physics. Design of CPS often benefits from concepts of multiform and logical time(s) for their
natural description. High-level formalisms used to model software, hardware and physics additionally alter
this perception of time quite significantly.

In model-based system design, time is usually abstracted to serve the purpose of one of many design tasks:
verification, simulation, profiling, performance analysis, scheduling analysis, parallelization, distribution, or
virtual prototyping. For example in non-real-time commodity software, timing abstraction such as number of
instructions and algorithmic complexity is sufficient: software will run the same on different machines, except
slower or faster. Alternatively, in cyber-physical systems, multiple recurring instances of meaningful events
may create as many dedicated logical clocks, on which to ground modeling and design practices.

Time abstraction increases efficiency in event-driven simulation or execution (i.e SystemC simulation models
try to abstract time, from cycle-accurate to approximate-time, and to loosely-time), while attempting to retain
functionality, but without any actual guarantee of valid accuracy (responsibility is left to the model designer).
Functional determinism (a.k.a. conflict-freeness in Petri Nets, monotonicity in Kahn PNs, confluence in

1Matlab/Simulink, https://fr.mathworks.com/products/simulink.html
2Ptolemy, http://ptolemy.eecs.berkeley.edu
3SysML, http://www.uml-sysml.org

https://fr.mathworks.com/products/simulink.html
http://ptolemy.eecs.berkeley.edu
http://www.uml-sysml.org
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Milner’s CCS, latency-insensitivity and elasticity in circuit design) allows for reducing to some amount the
problem to that of many schedules of a single self-timed behavior, and time in many systems studies is
partitioned into models of computation and communication (MoCCs). Multiple, multiform time(s) raises the
question of combination, abstraction or refinement between distinct time bases. The question of combining
continuous time with discrete logical time calls for proper discretization in simulation and implementation.
While timed reasoning takes multiple forms, there is no unified foundation to reasoning about multi-form time
in system design.

The objective of project-team TEA is henceforth to define formal models for timed quantitative reasoning,
composition, and integration in embedded system design. Formal time models and calculi should allow us
to revisit common domain problems in real-time system design, such as time predictability and determinism,
memory resources predictability, real-time scheduling, mixed-criticality and power management; yet from the
perspective gained from inter-domain timed and quantitative abstraction or refinement relations. A regained
focus on fundamentals will allow to deliver better tooled methodologies for virtual prototyping and integration
of embedded architectures.

3. Research Program

3.1. Previous Works
The challenges of team TEA support the claim that sound Cyber-Physical System design (including embedded,
reactive, and concurrent systems altogether) should consider multi-form time models as a central aspect. In
this aim, architectural specifications found in software engineering are a natural focal point to start from.
Architecture descriptions organize a system model into manageable components, establish clear interfaces
between them, collect domain-specific constraints and properties to help correct integration of components
during system design. The definition of a formal design methodology to support heterogeneous or multi-form
models of time in architecture descriptions demands the elaboration of sound mathematical foundations and
the development of formal calculi and methods to instrument them.

System design based on the “synchronous paradigm” has focused the attention of many academic and
industrial actors on abstracting non-functional implementation details from system design. This elegant design
abstraction focuses on the logic of interaction in reactive programs rather than their timed behavior, allowing
to secure functional correctness while remaining an intuitive programming model for embedded systems. Yet,
it corresponds to embedded technologies of single cores and synchronous buses from the 90s, and may hardly
cover the semantic diversity of distribution, parallelism, heterogeneity, of cyber-physical systems found in 21st
century Internet-connected, true-timeTM -synchronized clouds, of tomorrow’s grids.

By contrast with a synchronous hypothesis, yet from the same era, the polychronous MoCC is inherently
capable of describing multi-clock abstractions of GALS systems. Polychrony is implemented in the data-flow
specification language Signal, available in the Eclipse project POP 4 and in the CCSL standard 5 available from
the TimeSquare project. Both provide tooled infrastructures to refine high-level specifications into real-time
streaming applications or locally synchronous and globally asynchronous systems, through a series of model
analysis, verification, and synthesis services. These tool-supported refinement and transformation techniques
can assist the system engineer from the earliest design stages of requirement specification to the latest stages
of synthesis, scheduling and deployment. These characteristics make polychrony much closer to the required
semantic for compositional, refinement-based, architecture-driven, system design.

While polychrony was a step ahead of the traditional synchronous hypothesis, CCSL is a leap forward from
synchrony and polychrony. The essence of CCSL is “multi-form time” toward addressing all of the domain-
specific physical, electronic and logical aspects of cyber-physical system design.

4Polychrony on Polarsys, https://www.polarsys.org/projects/polarsys.pop
5Clock Constraints in UML/MARTE CCSL. C. André, F. Mallet. RR-6540. Inria, 2008. http://hal.inria.fr/inria-00280941

https://www.polarsys.org/projects/polarsys.pop
http://hal.inria.fr/inria-00280941
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3.2. Timed Modeling
To formalize timed semantics for system design, we shall rely on algebraic representations of time as clocks
found in previous works and introduce a paradigm of "time system" (types that represent time) in a way
reminiscent to CCSL. Just as a type system abstracts data carried along operations in a program, a time system
abstracts the causal interaction of that program module or hardware element with its environment, its pre
and post conditions, its assumptions and guarantees, either logical or numerical, discrete or continuous. Some
fundamental concepts of the time systems we envision are present in the clock calculi found in data-flow
synchronous languages like Signal or Lustre, yet bound to a particular model of timed concurrency.

In particular, the principle of refinement type systems 6, is to associate information (data-types) inferred from
programs and models with properties pertaining, for instance, to the algebraic domain on their value, or any
algebraic property related to its computation: effect, memory usage, pre-post condition, value-range, cost,
speed, time, temporal logic 7. Being grounded on type and domain theories, a time system should naturally
be equipped with program analysis techniques based on type inference (for data-type inference) or abstract
interpretation (for program properties inference) to help establish formal relations between heterogeneous
component “types”. Just as a time calculus may formally abstract timed concurrent behaviors of system
components, timed relations (abstraction and refinement) represent interaction among components.

Scalability requires the use of assume-guarantee reasoning to allow modularity and to facilitate composition
by behavioral sub-typing, in the spirit of the (static) contract-based formalism proposed by Passerone et al. 8.
Verification problems encompassing heterogeneously timed specifications are common and of great variety:
checking correctness between abstract (e.g. the synchronous hypothesis) and concrete time models (e.g. real-
time architectures) relates to desynchronisation (from synchrony to asynchrony) and scheduling analysis
(from synchronous data-flow to hardware). More generally, they can be perceived from heterogeneous timing
viewpoints (e.g. mapping a synchronous-time software on a real-time middle-ware or hardware).

This perspective demands capabilities to use abstraction and refinement mechanisms for time models (using
simulation, refinement, bi-simulation, equivalence relations) but also to prove more specific properties (syn-
chronization, determinism, endochrony). All this formalization effort will allow to effectively perform the
tooled validation of common cross-domain properties (e.g. cost v.s. power v.s. performance v.s. software map-
ping) and tackle problems such as these integrating constraints of battery capacity, on-board CPU performance,
available memory resources, software schedulability, to logical software correctness and plant controllability.

3.3. Modeling Architectures
To address the formalization of such cross-domain case studies, modeling the architecture formally plays an
essential role. An architectural model represents components in a distributed system as boxes with well-defined
interfaces, connections between ports on component interfaces, and specifies component properties that can be
used in analytical reasoning about the model. Several architectural modeling languages for embedded systems
have emerged in recent years, including the SAE AADL 9, SysML 10, UML MARTE 11.

In system design, an architectural specification serves several important purposes. First, it breaks down a
system model into components of manageable size and complexity, to establish clear interfaces between
components. In this way, complexity becomes manageable by hiding details that are not relevant at a given
level of abstraction. Clear, formally defined, component interfaces allow us to avoid integration problems at
the implementation phase. Connections between components, which specify how components interact with
each other, help propagate the effects of a change in one component to the linked components.

6Abstract Refinement Types. N. Vazou, P. Rondon, and R. Jhala. European Symposium on Programming. Springer, 2013.
7LTL types FRP. A. Jeffrey. Programming Languages meets Program Verification.
8A contract-based formalism for the specification of heterogeneous systems. L. Benvenistu, et al. FDL, 2008
9Architecture Analysis and Design Language, AS-5506. SAE, 2004. http://standards.sae.org/as5506b
10System modeling Language. OMG, 2007. http://www.omg.org/spec/SysML
11UML Profile for MARTE. OMG, 2009. http://www.omg.org/spec/MARTE

http://standards.sae.org/as5506b
http://www.omg.org/spec/SysML
http://www.omg.org/spec/MARTE
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Most importantly, an architectural model is a repository to share knowledge about the system being designed.
This knowledge can be represented as requirements, design artifacts, component implementations, held
together by a structural backbone. Such a repository enables automatic generation of analytical models for
different aspects of the system, such as timing, reliability, security, performance, energy, etc. Since all the
models are generated from the same source, the consistency of assumptions w.r.t. guarantees, of abstractions
w.r.t. refinements, used for different analyses becomes easier, and can be properly ensured in a design
methodology based on formal verification and synthesis methods.

Related works in this aim, and closer in spirit to our approach (to focus on modeling time) are domain-
specific languages such as Prelude 12 to model the real-time characteristics of embedded software architectures.
Conversely, standard architecture description languages could be based on algebraic modeling tools, such as
interface theories with the ECDAR tool 13.

In project TEA, it takes form by the normalization of the AADL standard’s formal semantics and the proposal
of a time specification annex in the form of related standards, such as CCSL, to model concurrency, time and
physical properties, and PSL, to model timed traces.

3.4. Scheduling Theory
Based on sound formalization of time and CPS architectures, real-time scheduling theory provides tools
for predicting the timing behavior of a CPS which consists of many interacting software and hardware
components. Expressing parallelism among software components is a crucial aspect of the design process
of a CPS. It allows for efficient partition and exploitation of available resources.

The literature about real-time scheduling 14 provides very mature schedulability tests regarding many schedul-
ing strategies, preemptive or non-preemptive scheduling, uniprocessor or multiprocessor scheduling, etc.
Scheduling of data-flow graphs has also been extensively studied in the past decades.

A milestone in this prospect is the development of abstract affine scheduling techniques 15. It consists, first,
of approximating task communication patterns (e.g. between Safety-Critical Java threads) using cyclo-static
data-flow graphs and affine functions. Then, it uses state of the art ILP techniques to find optimal schedules
and to concretize them as real-time schedules in the program implementations 16 17.

Abstract scheduling, or the use of abstraction and refinement techniques in scheduling borrowed to the
theory of abstract interpretation 18 is a promising development toward tooled methodologies to orchestrate
thousands of heterogeneous hardware/software blocks on modern CPS architectures (just consider modern
cars or aircrafts). It is an issue that simply defies the state of the art and known bounds of complexity theory
in the field, and consequently requires a particular focus.

To develop the underlying theory of this promising research topic, we first need to deepen the theoretical
foundation to establish links between scheduling analysis and abstract interpretation. A theory of time systems
would offer the ideal framework to pursue this development. It amounts to representing scheduling constraints,
inferred from programs, as types or contract properties. It allows to formalize the target time model of the
scheduler (the architecture, its middle-ware, its real-time system) and defines the basic concepts to verify
assumptions made in one with promises offered by the other: contract verification or, in this case, synthesis.

3.5. Verified programming for system design
The IoT is a network of devices that sense, actuate and change our immediate environment. Against this
fundamental role of sensing and actuation, design of edge devices often considers actions and event timings to

12The Prelude language. LIFL and ONERA, 2012. http://www.lifl.fr/~forget/prelude.html
13PyECDAR, timed games for timed specifications. Inria, 2013. https://project.inria.fr/pyecdar
14A survey of hard real-time scheduling for multiprocessor systems. R. I. Davis and A. Burns. ACM Computing Survey 43(4), 2011.
15Buffer minimization in EDF scheduling of data-flow graphs. A. Bouakaz and J.-P. Talpin. LCTES, ACM, 2013.
16ADFG for the synthesis of hard real-time applications. A. Bouakaz, J.-P. Talpin, J. Vitek. ACSD, IEEE, June 2012.
17Design of SCJ Level 1 Applications Using Affine Abstract Clocks. A. Bouakaz and J.-P. Talpin. SCOPES, ACM, 2013.
18La vérification de programmes par interprétation abstraite. P. Cousot. Séminaire au Collège de France, 2008.

http://www.lifl.fr/~forget/prelude.html
https://project.inria.fr/pyecdar
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be primarily software implementation issues: programming models for IoT abstract even the most rudimentary
information regarding timing, sensing and the effects of actuation. As a result, applications programming
interfaces (API) for IoT allow wiring systems fast without any meaningful assertions about correctness,
reliability or resilience.

We make the case that the "API glue" must give way to a logical interface expressed using contracts or
refinement types. Interfaces can be governed by a calculus – a refinement type calculus – to enable reasoning
on time, sensing and actuation, in a way that provides both deep specification refinement, for mechanized
verification of requirements, and multi-layered abstraction, to support compositionality and scalability, from
one end of the system to the other.

Our project seeks to elevate the “function as type” paradigm to that of “system as type”: to define a refinement
type calculus based on concepts of contracts for reasoning on networked devices and integrate them as cyber-
physical systems 19. An invited paper 20 outlines our progress with respect to this aim and plans towards
building a verified programming environment for networked IoT devices: we propose a type-driven approach
to verifying and building safe and secure IoT applications.

Accounting for such constrains in a more principled fashion demands reasoning about the composition of
all the software and hardware components of the application. Our proposed framework takes a step in this
direction by (1) using refinement types to make make physical constraints explicit and (2) imposing an event-
driven programming discipline to simplify the reasoning of system-wide properties to that of an event queue. In
taking this approach, our approach would make it possible for a developer to build a verified IoT application by
ensuring that a well-typed program cannot violate the physical constraints of its architecture and environment.

4. Application Domains

4.1. Automotive and Avionics
From our continuous collaboration with major academic and industrial partners through projects TOPCASED,
OPENEMBEDD, SPACIFY, CESAR, OPEES, P and CORAIL, our experience has primarily focused on the
aerospace domain. The topics of time and architecture of team TEA extend to both avionics and automotive.
Yet, the research focuses on time in team TEA is central in any aspect of, cyber-physical, embedded system
design in factory automation, automotive, music synthesis, signal processing, software radio, circuit and
system on a chip design; many application domains which, should more collaborators join the team, would
definitely be worth investigating.

Multi-scale, multi-aspect time modeling, analysis and software synthesis will greatly contribute to architecture
modeling in these domains, with applications to optimized (distributed, parallel, multi-core) code generation
for avionics (project Corail with Thales avionics, section 8) as well as modeling standards, real-time simulation
and virtual integration in automotive (project with Toyota ITC, section 8).

Together with the importance of open-source software, one of these projects, the FUI Project P (section 8),
demonstrated that a centralized model for system design could not just be a domain-specific programming
language, such as discrete Simulink data-flows or a synchronous language. Synchronous languages implement
a fixed model of time using logical clocks that are abstraction of time as sensed by software. They correspond
to a fixed viewpoint in system design, and in a fixed hardware location in the system, which is not adequate to
our purpose and must be extended.

19Refinement types for system design. Jean-Pierre Talpin. FDL’18 keynote.
20Steps toward verified programming of embedded computing systems. Jean-Pierre Talpin, Jean-Joseph Marty, Deian Stefan, Shravan

Nagarayan, Rajesh Gupta, DATE’18.
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In project P, we first tried to define a centralized model for importing discrete-continuous models onto a
simplified implementation of SIMULINK: P models. Certified code generators would then be developed from
that format. Because this does not encompass all aspects being translated to P, the P meta-model is now being
extended to architecture description concepts (of the AADL) in order to become better suited for the purpose
of system design. Another example is the development of System modeler on top of SCADE, which uses the
more model-engineering flavored formalism SysML to try to unambiguously represent architectures around
SCADE modules.

An abstract specification formalism, capable of representing time, timing relations, with which heterogeneous
models can be abstracted, from which programs can be synthesized, naturally appears better suited for the
purpose of virtual prototyping. RT-Builder, based on the data-flow language Signal and developed by TNI,
was industrially proven and deployed for that purpose at Peugeot. It served to develop the virtual platform
simulating all on-board electronics of PSA cars. This ‘hardware in the loop” simulator was used to test
equipments supplied by other manufacturers for virtual prototyping of cars. In the advent of the related
automotive standard, RT-Builder then became AUTOSAR-Builder.

4.2. Factory Automation
In collaboration with Mitsubishi R&D, we explore another application domain where time and domain het-
erogeneity are prime concerns: factory automation. In factory automation alone, a system is conventionally
built from generic computing modules: PLCs (Programmable Logic Controllers), connected to the environ-
ment with actuators and detectors, and linked to a distributed network. Each individual, physically distributed,
PLC module must be timely programmed to perform individually coherent actions and fulfill the global phys-
ical, chemical, safety, power efficiency, performance and latency requirements of the whole production chain.
Factory chains are subject to global and heterogeneous (physical, electronic, functional) requirements whose
enforcement must be orchestrated for all individual components.

Model-based analysis in factory automation emerges from different scientific domains and focus on different
CPS abstractions that interact in subtle ways: logic of PLC programs, real-time electro-mechanical processing,
physical and chemical environments. This yields domain communication problems that render individual
domain analysis useless. For instance, if one domain analysis (e.g. software) modifies a system model in a way
that violates assumptions made by another domain (e.g. chemistry) then the detection of its violation may well
be impossible to explain to either the software or chemistry experts. As a consequence, cross-domain analysis
issues are discovered very late during system integration and lead to costly fixes. This is particularly prevalent
in multi-tier industries, such as avionic, automotive, factories, where systems are prominently integrated from
independently-developed parts.

5. Highlights of the Year

5.1. Highlights of the Year
Loïc Besnard was promoted to the rank of Senior Engineer Exceptional Class by CNRS, acknowledging his
remarkable career of research engineer as principal developer of Signal and Polychrony, as project manager
and integrator with project teams EPATR (Signal), ESPRESSO (Polychrony), TEA (ADFG) and PACAP
(Heptane).

6. New Software and Platforms

6.1. ADFG
Affine data-flow graphs schedule synthesizer
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KEYWORDS: Code generation - Scheduling - Static program analysis

FUNCTIONAL DESCRIPTION: ADFG is a synthesis tool of real-time system scheduling parameters: ADFG
computes task periods and buffer sizes of systems resulting in a trade-off between throughput maximiza-
tion and buffer size minimization. ADFG synthesizes systems modeled by ultimately cyclo-static dataflow
(UCSDF) graphs, an extension of the standard CSDF model.

Knowing the WCET (Worst Case Execute Time) of the actors and their exchanges on the channels, ADFG
tries to synthezise the scheduler of the application. ADFG offers several scheduling policies and can detect
unschedulable systems. It ensures that the real scheduling does not cause overflows or underflows and tries to
maximize the throughput (the processors utilization) while minimizing the storage space needed between the
actors (i.e. the buffer sizes).

Abstract affine scheduling is first applied on the dataflow graph, that consists only of periodic actors, to com-
pute timeless scheduling constraints (e.g. relation between the speeds of two actors) and buffering parameters.
Then, symbolic schedulability policies analysis (i.e., synthesis of timing and scheduling parameters of actors)
is applied to produce the scheduller for the actors.

ADFG, initially defined to synthesize real-time schedulers for SCJ/L1 applications, may be used for scheduling
analysis of AADL programs.
• Authors: Thierry Gautier, Jean-Pierre Talpin, Adnan Bouakaz, Alexandre Honorat and Loïc Besnard
• Contact: Loïc Besnard

6.2. POLYCHRONY
KEYWORDS: Code generation - AADL - Proof - Optimization - Multi-clock - GALS - Architecture -
Cosimulation - Real time - Synchronous Language

FUNCTIONAL DESCRIPTION: Polychrony is an Open Source development environment for critical/embedded
systems. It is based on Signal, a real-time polychronous data-flow language. It provides a unified model-
driven environment to perform design exploration by using top-down and bottom-up design methodologies
formally supported by design model transformations from specification to implementation and from synchrony
to asynchrony. It can be included in heterogeneous design systems with various input formalisms and output
languages. The Polychrony tool-set provides a formal framework to: validate a design at different levels, by the
way of formal verification and/or simulation, refine descriptions in a top-down approach, abstract properties
needed for black-box composition, compose heterogeneous components (bottom-up with COTS), generate
executable code for various architectures. The Polychrony tool-set contains three main components and an
experimental interface to GNU Compiler Collection (GCC):

* The Signal toolbox, a batch compiler for the Signal language, and a structured API that provides a set of
program transformations. Itcan be installed without other components and is distributed under GPL V2 license.

* The Signal GUI, a Graphical User Interface to the Signal toolbox (editor + interactive access to compiling
functionalities). It can be used either as a specific tool or as a graphical view under Eclipse. It has been
transformed and restructured, in order to get a more up-to-date interface allowing multi-window manipulation
of programs. It is distributed under GPL V2 license.

* The POP Eclipse platform, a front-end to the Signal toolbox in the Eclipse environment. It is distributed
under EPL license.
• Participants: Loïc Besnard, Paul Le Guernic and Thierry Gautier
• Partners: CNRS - Inria
• Contact: Loïc Besnard
• URL: https://www.polarsys.org/projects/polarsys.pop

6.3. Polychrony AADL2SIGNAL
KEYWORDS: Real-time application - Polychrone - Synchronous model - Polarsys - Polychrony - Signal -
AADL - Eclipse - Meta model

https://www.polarsys.org/projects/polarsys.pop
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FUNCTIONAL DESCRIPTION: This polychronous MoC has been used previously as semantic model for
systems described in the core AADL standard. The core AADL is extended with annexes, such as the
Behavior Annex, which allows to specify more precisely architectural behaviors. The translation from AADL
specifications into the polychronous model should take into account these behavior specifications, which are
based on description of automata.

For that purpose, the AADL state transition systems are translated as Signal automata (a slight extension of
the Signal language has been defined to support the model of polychronous automata).

Once the AADL model of a system transformed into a Signal program, one can analyze the program using the
Polychrony framework in order to check if timing, scheduling and logical requirements over the whole system
are met.

We have implemented the translation and experimented it using a concrete case study, which is the AADL
modeling of an Adaptive Cruise Control (ACC) system, a highly safety-critical system embedded in recent
cars.
• Participants: Huafeng Yu, Loïc Besnard, Paul Le Guernic, Thierry Gautier and Yue Ma
• Partner: CNRS
• Contact: Loïc Besnard
• URL: http://www.inria.fr/equipes/tea

6.4. POP
Polychrony on Polarsys

KEYWORDS: Synchronous model - Model-driven engineering

FUNCTIONAL DESCRIPTION: The Eclipse project POP is a model-driven engineering front-end to our open-
source toolset Polychrony. a major achievement of the ESPRESSO (and now TEA) project-team. The Eclipse
project POP is a model-driven engineering front-end to our open-source toolset Polychrony. It was finalised in
the frame of project OPEES, as a case study: by passing the POLARSYS qualification kit as a computer aided
simulation and verification tool. This qualification was implemented by CS Toulouse in conformance with
relevant generic (platform independent) qualification documents. Polychrony is now distributed by the Eclipse
project POP on the platform of the POLARSYS industrial working group. Team TEA aims at continuing its
dissemination to academic partners, as to its principles and features, and industrial partners, as to the services
it can offer.

Project POP is composed of the Polychrony tool set, under GPL license, and its Eclipse framework, under EPL
license. SSME (Syntactic Signal-Meta under Eclipse), is the meta-model of the Signal language implemented
with Eclipse/Ecore. It describes all syntactic elements specified in Signal Reference Manual21: all Signal
operators (e.g. arithmetic, clock synchronization), model (e.g. process frame, module), and construction (e.g.
iteration, type declaration). The meta-model primarily aims at making the language and services of the
Polychrony environment available to inter-operation and composition with other components (e.g. AADL,
Simulink, GeneAuto, P) within an Eclipse-based development tool-chain. Polychrony now comprises the
capability to directly import and export Ecore models instead of textual Signal programs, in order to facilitate
interaction between components within such a tool-chain. The download site for project POP has opened in
2015 at https://www.polarsys.org/projects/polarsys.pop. It should be noted that the Eclipse Foundation does
not host code under GPL license. So, the Signal toolbox useful to compile Signal code from Eclipse is hosted
on our web server.
• Participants: Jean-Pierre Talpin, Loïc Besnard, Paul Le Guernic and Thierry Gautier
• Contact: Loïc Besnard
• URL: https://www.polarsys.org/projects/polarsys.pop

21

SIGNAL V4-Inria version: Reference Manual. Besnard, L., Gautier, T. and Le Guernic, P.
http://www.irisa.fr/espresso/Polychrony, 2010

http://www.inria.fr/equipes/tea
https://www.polarsys.org/projects/polarsys.pop
http://www.irisa.fr/espresso/Polychrony
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6.5. Sigali
FUNCTIONAL DESCRIPTION: Sigali is a model-checking tool that operates on ILTS (Implicit Labeled
Transition Systems, an equational representation of an automaton), an intermediate model for discrete event
systems. It offers functionalities for verification of reactive systems and discrete controller synthesis. The
techniques used consist in manipulating the system of equations instead of the set of solutions, which avoids
the enumeration of the state space. Each set of states is uniquely characterized by a predicate and the operations
on sets can be equivalently performed on the associated predicates. Therefore, a wide spectrum of properties,
such as liveness, invariance, reachability and attractivity, can be checked. Algorithms for the computation of
predicates on states are also available. Sigali is connected with the Polychrony environment (Tea project-team)
as well as the Matou environment (VERIMAG), thus allowing the modeling of reactive systems by means of
Signal Specification or Mode Automata and the visualization of the synthesized controller by an interactive
simulation of the controlled system.

• Contact: Hervé Marchand

7. New Results

7.1. ADFG: Affine data-flow graphs scheduler synthesis
Participants: Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin, Shuvra Bhattacharyya, Alexandre Honorat,
Hai Nam Tran.

ADFG (Affine DataFlow Graph) synthesizes scheduling parameters for real-time systems modeled as syn-
chronous data flow (SDF), cyclo-static dataflow (CSDF), and ultimately cyclo-static dataflow (UCSDF)
graphs. It aims at mitigating the trade-off between throughput maximization and total buffer size minimiza-
tion. The synthesizer inputs are a graph which describes tasks by their Worst Case Execution Time (WCET),
and directed buffers connecting tasks by their data production and consumption rates; the number of pro-
cessors in the target system and the real-time scheduling synthesis algorithm to be used. The outputs are
synthesized scheduling parameters such as tasks periods, offsets, processor bindings, priorities, buffer initial
markings and buffer sizes. ADFG was originally implemented by Adnan Bouakaz 22. It is now being collabora-
tively developed with team Tea, Hai Nam Tran (UBO) Alexandre Honorat (INSA) and Shuvra Bhattacharyya
(UMD/INSA/Inria).

ADFG is extended to support automated code generation of the computed buffer sizes and scheduling
parameters for dataflow applications that are implemented in the Lightweight Dataflow Environment (LIDE)
23. LIDE is a flexible, lightweight design environment that allows designers to experiment with dataflow-based
implementations directly. LIDE actors and buffers (FIFOs) can be initialized with parameters, including buffer
sizes. The usage of LIDE allows a systematic way to instantiate dataflow graphs with the buffer size parameters
computed by ADFG.

Actor models and scheduling algorithms in ADFG have been extended to investigate the contention-aware
scheduling problem on multi/many-core architectures. The problem we tackled is that the scheduler synthesis
for these platforms must account for the non-negligible delay due to shared memory accesses. We exploited
the deterministic communications exposed in SDF graphs to account for the contention and further optimize
the synthesized schedule. Two solutions are proposed and implemented in ADFG: contention-aware and
contention-free scheduling synthesis. In other words, we either take into account the contention and synthesize
a contention-aware schedule or find a one that results in no contention.

22Real-Time Scheduling of Dataflow Graphs. A. Bouakaz. Ph.D. Thesis, University of Rennes 1, 2013.
23S. Lin, Y. Liu, K. Lee, L. Li, W. Plishker, and S. S. Bhattacharyya. 2017. The DSPCAD framework for modeling and synthesis of

signal processing systems. Handbook of Hardware/Software Codesign (2017), 1185–1219.
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ADFG is extended to apply a transformation known as partial expansion graphs (PEG). This transformation
can be applied as a pre-processing stage to improve the exploitation of data parallelism in SDF graphs
on parallel platforms. In contrast to the classical approaches of transforming SDF graphs into equivalent
homogeneous forms, which could lead to an exponential increase in the number of actors and excessive
communication overhead, PEG-based approaches allow the designer to control the degree to which each
actor is expanded. A PEG algorithm that employs cyclo-static data flow techniques is developed in ADFG.
Compared to existing PEG-based approach, our solution requires neither buffer managers nor split-join actors
to coordinate data production and consumption rates. This allows us to reduce the number of added actors and
communication overhead in the expanded graphs.

7.2. Parallel Composition and Modular Verification of Computer Controlled
Systems in Differential Dynamic Logic
Participants: Jean-Pierre Talpin, Benoit Boyer, David Mentre, Simon Lunel, Stefan Mitsch.

The primary goal of our project, in collaboration with Mitsubishi Electronics Research Centre Europe
(MERCE), is to ensure correctness-by-design in realistic cyber-physical systems, i.e., systems that mix
software and hardware in a physical environment, e.g., Mitsubishi factory automation lines or water-plant
factory. To achieve that, we develop a verification methodology based on the decomposition of systems into
components enhanced with compositional contract reasoning.

The work of A. Platzer on Differential Dynamic Logic (dL) held our attention 24. This formalism is built
upon the Dynamic Logic of V. Pratt and augmented with the possibility of expressing Ordinary Differential
Equations (ODEs). Combined with the ability of Dynamic Logic to specify and verify hybrid programs,
dL is particularly adapted to model cyber-physical systems. The proof system associated with the logic is
implemented into the theorem prover KeYmaera X. Aimed toward automation, it is a promising tool to spread
formal methods in industry.

Computer-Controlled Systems (CCS) are a subclass of hybrid systems where the periodic relation of control
components to time is of paramount importance. Since they additionally are at the heart of many safety-critical
devices, it is of primary importance to correctly model such systems and to ensure they function correctly
according to safety requirements. Differential dynamic logic dL is a powerful logic to model hybrid systems
and to prove their correctness. We contributed a compositional modeling and reasoning framework to dL that
separates models into components with timing guarantees, such as reactivity of controllers and controllability
of continuous dynamics. Components operate in parallel, with coarse-grained interleaving, periodic execution
and communication. We present techniques to automate system safety proofs from isolated, modular, and
possibly mechanized proofs of component properties parameterized with timing characteristics.

7.3. Multithreaded code generation for process networks
Participants: Loïc Besnard, Thierry Gautier.

As part of an in-depth comparison of process models, we have recently revisited the relation between the model
of asynchronous dataflow represented by Kahn Process Networks (KPNs) and that of synchronous dataflow
represented by the polychronous model of computation. In particular, we have precisely described in which
conditions polychronous programs can be seen as KPNs. In this context, we have considered different cases
of process networks, including so-called “polyendochronous processes”. Under some conditions expressed by
clock equation systems, (networks of) processes exhibiting polyhierarchies of clocks are polyendochronous
and, as compositions of endochronous processes, may be seen as KPNs.

Based on this characterization, we have developed in the open-source Polychrony toolset a new strategy of
code generation for such (polyendochronous) process networks. Typically, after the clock calculus, a program
P is organized as a composition of processes, P = (| P1 | P2 | ... | Pn |), each one structured around a
clock tree. When P is characterized as polyendochronous, it contains generally clock constraints such as
Clk1 = Clk2, with Clk1 being a clock in the subtree corresponding to P1 and Clk2 a clock in the subtree
corresponding to P2.

24Differential Dynamic Logic for Hybrid Systems, André Platzer, http://symbolaris.com/logic/dL.html

http://symbolaris.com/logic/dL.html
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Such a constraint induces a synchronization between two parts (P1, P2) of the program when Clk1 or
Clk2 occurs. The principle of the code generation for polyendochronous processes is based on the existing
distributed code generation, but with the additional resynchronization of parts of the application induced by
the constraints on clocks (Clk1, Clk2) not placed in the same clock trees. For distributed code generation, it
is considered that each (clock) hierarchy will run on a specific processor. In this case, the purpose is mainly to
partition the application, and the processors will be virtual ones.

The code generation of each partition consists in the definition of several tasks: one task per cluster (a cluster
being a subpart that may be executed as soon as its inputs are available, without any communication with the
external world); one task per input/output of the partition; one task for the cluster of state variables; one task
that manages the steps. Synchronization between these tasks is obtained by semaphores (one semaphore per
task). This code generation technique for the class of networks called “polyendochronous processes” has been
added in the Polychrony toolset (http://polychrony.inria.fr) and a paper describing the comparison of process
models is currently in submission.

7.4. Type theory for modular static analysis of system programs
Participants: Lucas Franceschino, Jean-Pierre Talpin, David Pichardie.

This Ph.D. project is about formal verification, with system programming applications in mind. Formal
methods are essential for safety-critical software (i.e. transport and aeronautic industry). In the same time,
more and more programming languages with a strong type system arise (such as Haskell, Rust, ML, Coq, F*,
Idris...).

Formal methods come in different flavors: type theory, abstract interpretation, refinement types. Each of these
"flavors" are both theoretical fields and are also being implemented concretely: Astrée ou Verasco for abstract
interpretation, Coq, Agda, F* or Idris dependent types, and Liquid Haskell for refinement types.

Our approach consists in positioning ourselves between type theory and abstract interpretation, and to
leverage the power of both. The main intuition behind this idea is that abstract interpretation, suffering
from expressiveness, would bring invariant inference power, while strong type systems, requiring manual
annotations and proofs, would bring expressivity.

We formalized how one can enrich a weakest precondition calculus (WP) with an abstract interpreter. This
work takes the shape of a WP calculus transformer: given a WP calculus, we generically construct a brand
new WP calculus that produces easier (but sound, still) weakest preconditions, thanks to abstract interpretation.

Concretely, our work is being implemented as an F* effect transformer that leverage Verasco capabilities, for
a low-level subset of F*, namely Low*.

7.5. Verified information flow of embedded programs
Participants: Jean-Joseph Marty, Lucas Franceschino, Niki Vazou, Jean-Pierre Talpin.

This PhD project is about applying refinement types theory to verified programming of applications and
modules of library operating systems, such as unikernels, for embedded devices of the Internet of Things
(IoT): TinyOS, Riot, etc. Our topic has focused on developing a model of information flow control using
labeled input-outputs (LIO) implemented using FI: project LioI.

As part of the development of LioI, we implemented a library that, thanks to static verification, ensures the
containment of information in relation to a parameterized policy for information flow control. In collaboration
with Niki Vazou (IMDEA) and Lucas Franceschino we have formalized and developed an automatic method
to prove non-interference in MetaI. Using the Kremlin code generator, programs using LioI can be compiled
into C code and run natively on embedded low-resource-constrained devices, without the need for additional
runtime system.

In parallel we continued our collaboration with the ProgSys team on a second, now discontinued, project:
GlucoI. The goal of this project was to evaluate the capabilities to use the F* programming language to
program an entire system by taking into account its software, hardware and physical constraints using type
refinements 25.

http://polychrony.inria.fr
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8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
8.1.1. Inria – Mitsubishi Electric framework program (2018+)

Title: Inria – Mitsubishi Electric framework program
Inria principal investigator: Jean-Pierre Talpin
International Partner: Mitsubishi Electric R&D Europe (MERCE)
Duration: 2018+
Abstract: Following up the fruitful collaboration of TEA with the formal methods group at MERCE,
Inria and Mitsubishi Electric signed a center-wide collaboration agreement, which currently hosts
projects with project-teams Sumo and Tea, as well as Tocata.

8.1.2. Mitsubishi Electric R&D Europe (2019-2022)
Title: A logical framework to verify requirements of hybrid system models
Inria principal investigator: Jean-Pierre Talpin, Stéphane Kastenbaum
International Partner: Mitsubishi Electric R&D Europe
Duration: 2015 - 2018
Abstract: The goal of this doctoral project is to verify and build cyber-physical systems (CPSs)
with a correct-by-construction approach in order to validate system requirements against the two
facets of the cyber and physical aspects of such designs. Our approach is based on components
augmented with formal contracts that can be composed, abstracted or refined. It fosters the proof
of system-level requirements by composing individual properties proved at component level. While
semantically grounded, the tooling of this methodology should be usable by regular engineers (i.e.
not proof theory specialists).

8.1.3. Mitsubishi Electric R&D Europe (2015-2019)
Title: Parallelism and modular proof in differential dynamic logic [1]
Inria principal investigator: Jean-Pierre Talpin, Simon Lunel
International Partner: Mitsubishi Electric R&D Europe
Duration: 2015 - 2018
Abstract: The primary goal of this Ph.D. project is to ensure correctness-by-design in cyber-physical
systems, i.e., systems that mix software and hardware in a physical environment, e.g., Mitsubishi
factory automation lines. We develop a component-based approach in Differential Dynamic Logic
allowing to reason about a wide variety of heterogeneous cyber-physical systems. Our work provides
tools and methodology to design and prove a system modularly.

9. Partnerships and Cooperations

9.1. International Initiatives
9.1.1. Inria International Labs

Sino-European Laboratory in Computer Science, Automation and Applied Mathematics
Associate Team involved in the International Lab:

25Towards verified programming of embedded devices. J.-P. Talpin, J.-J. Marty, S. Narayan, D. Stefan, R. Gupta. Design, Automation
and Test in Europe (DATE’19). IEEE, 2019.
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9.1.1.1. CONVEX
Title: Compositional Verification of Cyber-Physical Systems
International Partner (Institution - Laboratory - Researcher):

CAS (China) - State Key Laboratory of Computer Science - Naijun Zhan
Start year: 2018
See also: http://convex.irisa.fr
Formal modeling and verification methods have successfully improved software safety and security
in vast application domains in transportation, production and energy. However, formal methods are
labor-intensive and require highly trained software developers. Challenges facing formal methods
stem from rapid evolution of hardware platforms, the increasing amount and cost of software
infrastructures, and from the interaction between software, hardware and physics in networked
cyber-physical systems.

Automation and expressivity of formal verification tools must be improved not only to scale
functional verification to very large software stacks, but also verify non-functional properties
from models of hardware (time, energy) and physics (domain). Abstraction, compositionality and
refinement are essential properties to provide the necessary scalability to tackle the complexity of
system design with methods able to scale heterogeneous, concurrent, networked, timed, discrete and
continuous models of cyber-physical systems.

Project CONVEX wants to define a CPS architecture design methodology that takes advantage
of existing time and concurrency modeling standards (MARTE, AADL, Ptolemy, Matlab), yet
focuses on interfacing heterogeneous and exogenous models using simple, mathematically-defined
structures, to achieve the single goal of verified integration of CPS components.

Inria@SiliconValley
Associate Team involved in the International Lab:

9.1.1.2. Composite
Title: Compositional System Integration
International Partners (Institution - Laboratory - Researcher):

University of California, San Diego (United States) - Microelectronic Embedded Systems
Laboratory - Rajesh Gupta

Start year: 2017
See also: http://www.irisa.fr/prive/talpin/composite
Most applications that run somewhere on the internet are not optimized to do so. They execute on
general purpose operating systems or on containers (virtual machines) that are built with the most
conservative assumptions about their environment. While an application is specific, a large part of
the system it runs on is unused, which is both a cost (to store and execute) and a security risk (many
entry points).

A unikernel, on the contrary, is a system program object that only contains the necessary the
operating system services it needs for execution. A unikernel is build from the composition of a
program, developed using high-level programming language, with modules of a library operating
system (libOS), to execute directly on an hypervisor. A unikernel can boot in milliseconds to serve a
request and shut down, demanding minimal energy and resources, offering stealthiest exposure time
and surface to attacks, making them the ideal platforms to deploy on sensor networks, networks of
embedded devices, smart grids and clouds.

The goal of COMPOSITE is to develop the mathematical foundations for sound and efficient
composition in system programming: analysis, verification and optimization technique for modular
and compositional hardware-system-software integration of unikernels. We intend to further this
development with the prospect of an end-to-end co-design methodology to synthesize lean and
stealth networked embedded devices.

http://convex.irisa.fr
http://www.irisa.fr/prive/talpin/composite
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9.1.1.3. Inria International Chairs
IIC GUPTA Rajesh
Title: End-to-end system co-design
International Partner (Institution - Laboratory - Researcher):

University of California, San Diego (United States) - Rajesh Gupta
Duration: 2017 - 2021
Start year: 2017

9.1.1.4. Insa-Inria International Chair
Shuvra Bhattacharyya
Title: System design methodologies for real-time signal and information processing
International Partner (Institution - Laboratory - Researcher):

University of Maryland (United States) - Shuvra Bhattacharyya
Duration: 2018 - 2021
Start year: 2017

9.2. International Research Visitors
9.2.1. Visits of International Scientists

• Shuvra Bhattacharyya (UMD) visited project-team TEA and IETR in the context of his Insa-Inria
Chair in May, July and December. He gave numerous talks and organized a workshop for the
preparation of a European project proposal.

• Rajesh Gupta (UCSD) visited project-team TEA in the context of his Inria Chair in July and gave a
seminar entitled: programming human spaces.

• Niki Vazou (IMDEA) visited project-team TEA in May and gave a presentation on her POPL’20
paper: “Liquidate your assets: reasoning about resource usage in Liquid Haskell”.

• Yamine Ait Ameur (IRIT) visited project-team TEA in January on the occasion of Simon Lunel’s
Thesis defense.

• Naijun Zhan (ISCAS) visited project-team TEA in July, in the context of associate-project CON-
VEX.

• Delegates of the Sheng Yuan Honors College (BUAA) visited Inria-Irisa and Ecole Normale
Supérieur de Rennes for the prospect of initiating an exchange program for graduate students, which
will start in 2020.

• Zhang Bojun and Wang Zikai (BUAA) visited project-team TEA in July for an internship on verified
modeling of blockchain protocols in Coq.

• Shenghao Yuan (NUAA) visited project-team TEA in July, in the context of associate-team CON-
VEX, and gave a presentation of the verified mini-Signal code generator developed at Nanhang
University.

9.2.2. Visits to International Teams
Jean-Pierre Talpin visited UC San Diego in March, in the context of the associate-team Composite, and visited
ISCAS, Beijing, in May and October, in the context of the associate-team CONVEX.

10. Dissemination
10.1. Promoting Scientific Activities
10.1.1. Scientific Events Selection

Jean-Pierre Talpin served in the program committee of the ACM LCTES’19, ACM SAC’19 and SCOPES’19
conferences.
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Thierry Gautier reviewed articles for Journal of Systems Architecture (Elsevier).

10.1.2. Journal
Jean-Pierre Talpin is Associate Editor with the ACM Transactions for Embedded Computing Systems (TECS).

Thierry Gautier reviewed articles for IEEE Access and Science of Computer Programming.

10.1.3. Invited Talks
Jean-Pierre Talpin gave an invited presentation entitled “Towards verified programming of embedded devices”
at DATE’19, Florence.

10.2. Teaching - Supervision - Juries
Jean-Pierre Talpin gave a one week graduate-level course at the Sheng Yuan Honors College, BUAA, entitled:
“introduction to program verification”.

Jean-Pierre Talpin co-supervises the PhD Theses of Stéphane Kastenbaum, Simon Lunel, Liangcong Zhang,
Jean-Joseph Marty and Lucas Franceschino

Thierry Gautier served as external assessor for professor position application at Nankai University (China).
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