RESEARCH CENTRE

2020
Grenoble - Rhone-Alpes ACTIVITY REPORT

IN PARTNERSHIP WITH:
CNRS, Ecole normale supérieure de Lyon, P]_‘Oj e Ct_ Te am

Université Claude Bernard (Lyon 1)
CASH

Compilation and Analyses for Software
and Hardware

IN COLLABORATION WITH: Laboratoire de 'Informatique du
Parallélisme (LIP)

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Architecture, Languages and Compilation

Contents

Project-Team CASH

1

2

7

Team members, visitors, external collaborators

Overall objectives
2.1 OverallObjectives o o i i e e e e e e e e e e e e e

Research program

3.1 Definition of dataflow representations of parallel programs
3.1.1 ExpectedImpact i e e e e e e e
3.1.2 ScientificProgram e e

3.2 Expressivity and Scalability of Static Analyses
3.2.1 Expectedimpact e e e e e e e
3.2.2 ScientificProgram e e

3.3 Compiling and Scheduling Dataflow Programs
3.3.1 Expectedimpact i e e e e e
3.3.2 ScientificProgram e e

3.4 HLS-specific Dataflow Optimizations,
3.4.1 ExpectedImpact e e e e e
3.4.2 ScientificProgram e e

3.5 SimulationofHardware e
3.5.1 ExpectedImpact e e e e e
3.5.2 ScientificProgram e

Application domains

Social and environmental responsibility
5.1 Footprint of research activities e
5.2 Impactofresearchresults e

New software and platforms

6.1 Newsoftware
6.1.1 DCC. . . . e
6.1.2 PoCo e e
6.1.3 MPPcodegen e e e e e
6.1.4 Encore with dataflow explicitfutures
6.1.5 0doC e
6.1.6 calv e
6.1.7 mppcheck e
6.1.8 fkee . . . L
6.1.9 Vellvim

New results

7.1 Direction 1: Definition of Dataflow Representations of Parallel Programs
7.1.1 Dataflow-explicitfutures i e
7.1.2 Promise Plus: Flexible Synchronization for Parallel Computations on Arrays
7.1.3 Distributedfutures L
7.1.4 Locally abstract globally concrete semantics
7.1.5 PNets: Parametrized networks ofautomata
7.1.6 ASurvey on Verified Reconfiguration
7.1.7 ASurvey on Parallelism and Determinacy

7.2 Direction 2: Expressivity and Scalability of StaticAnalyses
7.2.1 Decision results for solving Horn Clauses witharrays
7.2.2 Pass Neutralizationin LLVM e
7.2.3 Anincremental type-checker for OCamlmodules

12

13
13
13

14
14
14
14
15
15
15
15
16
16
17

7.2.4 A formal, compositional, modular and executable semantics for LLVM IR

7.2.5 An equational proof of correctness for the HELIX backend

7.3 Direction 3: Compiling and Scheduling Dataflow Programs

7.3.1 FKcC:theFarkasCalculator.

7.3.2 On the Verification of Polyhedral Program Transformations

7.3.3 SchedulingTrees i i e e e

7.3.4 Formalisation of the Polyhedral Model

7.4 Direction 4: HLS-specific Dataflow Optimizationso v v v v v v v

7.4.1 Data-aware Process Networks o ..

7.5 Direction 5: Simulationof Hardware
7.5.1 Standard-compliant Parallel SystemC simulation of Loosely-Timed Transaction Level

Models e e e e e

7.5.2 Simulation of the Portals 4 protocol, and case study on the BXI interconnect
7.5.3 Response time analysis of dataflow applications on a many-core processor with

shared-memory and network-on-chip

Bilateral contracts and grants with industry

Partnerships and cooperations

9.1 Internationalinitiatives
9.1.1 Participation in other international programs
9.1.2 ANR . . e

10 Dissemination

10.1 Promoting scientificactivities L L L e
10.1.1 Scientific events: organisation o
10.1.2 Scientificevents: selection L L e
10.1.3 Invited talks L e e e e e e
10.1.4 Leadership within the scientific community
10.1.5 Scientific eXpertise v v v i i i e e e e e e e e e

10.2 Teaching - Supervision - Juries e
10.2.1 Teaching o i e e e e e e e e
10.2.2 SUPETVISION v o i e e e
1023 JUIIES . . o v o e e e e e e e e e e e e e e

10.3 Popularization v it i e
10.3.1 Education e e

11 Scientific production

11.1 Publicationsof theyear e e
11.2 Other e
11.3 Cited publications i it i e e e e e e e e e e

24

24
24
24
25

25
25
25
25
25
25
25
25
25
26
26
27
27

Project CASH

Project-Team CASH

Creation of the Team: 2018 April 01, updated into Project-Team: 2019 June 01

Keywords

Computer sciences and digital sciences

Al.1.1. - Multicore, Manycore

Al.1.2. — Hardware accelerators (GPGPU, FPGA, etc.)
Al.1.4. - High performance computing
A1.1.10. — Reconfigurable architectures
Al.1.12. - Non-conventional architectures
A2.1. - Programming Languages

A2.1.1. - Semantics of programming languages
A2.1.2. —Imperative programming

A2.1.4. - Functional programming

A2.1.6. — Concurrent programming

A2.1.7. - Distributed programming

A2.1.10. - Domain-specific languages
A2.1.11. - Proof languages

A2.2. — Compilation

A2.2.1. - Static analysis

A2.2.2. - Memory models

A2.2.3. - Memory management

A2.2.4. — Parallel architectures

A2.2.6. - GPGPU, FPGA...

A2.2.8. - Code generation

A2.3.1. - Embedded systems

A2.4.1. — Analysis

A2.4.3. —Proofs

A2.5.3. — Empirical Software Engineering
A2.5.4. — Software Maintenance & Evolution

A7.2.3. —Interactive Theorem Proving
Other research topics and application domains

B9.5.1. — Computer science

https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2020

1 Team members, visitors, external collaborators

Research Scientists

¢ Christophe Alias [Inria, Researcher, HDR]
¢ Ludovic Henrio [CNRS, Researcher, HDR]
¢ Gabriel Radanne [Inria, from Dec 2020, Starting Faculty Position]

¢ Yannick Zakowski [Inria, Researcher, from Oct 2020]

Faculty Members

e Matthieu Moy [Team leader, Univ Claude Bernard, Associate Professor, HDR]

¢ Laure Gonnord [Univ Claude Bernard, Associate Professor, HDR]

PhD Students

* Julien Braine [Ecole Normale Supérieure de Lyon]
¢ Julien Emmanuel [Bull, CIFRE]
e Paul Iannetta [Ecole Normale Supérieure de Lyon]

» Amaury Maille [Ecole Normale Supérieure de Lyon]

Interns and Apprentices

* Baptiste Allorant [Ecole Normale Supérieure de Lyon, from Apr 2020 until Jul 2020]

¢ Mickael Boichot [Ecole Normale Supérieure de Lyon, from Jun 2020 until Aug 2020]

* Nicolas Chappe [Ecole Normale Supérieure de Lyon, until Jun 2020]

* Avril De Goér De Herve [Ecole Normale Supérieure de Lyon, from Apr 2020 until Jul 2020]

¢ Paul Geneau De Lamarliere [Ecole Normale Supérieure de Lyon, from Apr 2020 until Jul 2020]
» Remy Neveu [Ecole Normale Supérieure de Lyon, until Jun 2020]

 Hadrien Renaud [Ecole polytechnique, from Apr 2020 until Jul 2020]

Administrative Assistants

¢ Solene Audoux [Inria, from Dec 2020]

¢ Sophie Gerard [Inria, until Nov 2020]

2 Overall objectives

Until 2006, the typical power-consumption of a chip remained constant for a given silicon area as
the transistor size decreased (this evolution is referred to as Dennard scaling). In other words, energy
efficiency was following an exponential law similar to Moore’s law. This is no longer true, hence radical
changes are needed to further improve power efficiency, which is the limiting factor for large-scale
computing. Improving the performance under a limited energy budget must be done by rethinking
computing systems at all levels: hardware, software, compilers, and runtimes.

Project CASH 3

On the hardware side, new architectures such as multi-core processors, Graphics Processing Units
(GPUs), many-core and FPGA accelerators are introduced, resulting into complex heterogeneous plat-
forms. In particular, FPGAs are now a credible solution for energy-efficient HPC. An FPGA chip can deliver
the same computing power as a GPU for an energy budget 10 times smaller.

A consequence of this diversity and heterogeneity is that a given computation can be implemented
in many different ways, with different performance characteristics. An obvious example is changing
the degree of parallelism: this allows trading execution time for number of cores used. However, many
choices are less obvious: for example, augmenting the degree of parallelism of a memory-bounded
application will not improve performance. Most architectures involve a complex memory hierarchy,
hence memory access patterns have a considerable impact on performance too. The design-space to be
explored to find the best performance is much wider than it used to be with older architectures, and new
tools are needed to help the programmer explore it. The problem is even stronger for FPGA accelerators,
where programmers are expected to design a circuit for their application! Traditional synthesis tools
take as input low-level languages like VHDL and Verilog. As opposed to this, high-level languages and
hardware compilers (HLS, High-Level Synthesis, that takes as input a C or C-like language and produces
a circuit description) are required.

One of the bottlenecks of performance and energy efficiency is data movement. The operational in-
tensity (ratio computation/communication) must be optimized to avoid memory-bounded performance.
Compiler analyses are strongly required to explore the trade-offs (operational intensity vs. local memory
size, operational intensity vs. peak performance for reconfigurable circuits).

These issues are considered as one of the main challenges in the Hipeac roadmap [40] which, among
others, cites the two major issues:

* Applications are moving towards global-scale services, accessible across the world and on all
devices. Low power processors, systems, and communications are key to computing at this scale.
(Strategic Area 2, Data Center Computing).

¢ Today data movement uses more power than computation. [...] To adapt to this change, we need
to expose data movement in applications and optimize them at runtime and compile time and to
investigate communication-optimized algorithms (cross-cutting challenge 1, energy efficiency).

2.1 Overall Objectives

The overall objective of the CASH team is to take advantage of the characteristics of the specific hardware
(generic hardware, hardware accelerators, or reconfigurable chips) to compile energy efficient software
and hardware. More precisely, the CASH team works on:

1. Definition of dataflow representations of parallel programs that can capture the parallelism at all
levels: fine-grain vs. coarse-grain, data & task parallelism, programming language, and intermediate
representation (Section 3.1).

2. Scalable and expressive static program analyses. CASH works on improving the scalability of
analyses to allow a global analysis of large-scale programs, and on the expressiveness of analysis to
find better program invariants. Analysis is performed both on the representation defined above
and on general programs (Section 3.2).

3. Transformations from and to the dataflow representation, combining traditional tools dedicated to
dataflow and specific methods like the polyhedral model (Section 3.3).

4. A high-level synthesis (HLS) tool, built on the above item (instantiated with the particularities
of FPGAs) and a code generation tool (Section 3.4). This HLS tool focuses on early stages of
compilation and rely on an external tool for the back-end.

5. A parallel and scalable simulation of hardware systems, which, combined with the preceding
activity, will result in an end-to-end workflow for circuit design (Section 3.5).

To ensure the coherency and the correctness of our approach these different tasks will rely on a
precise definition of the manipulated languages and their semantics. The formalization of the different

4 Inria Annual Report 2020

representations of the programs and of the analyses will allow us to show that these different tasks will be
performed with the same understanding of the program semantics.

Note that these directions are strongly tied together. We use 5 research directions for the sake of the
presentation, but their complementarity enables each member of the team to share common research
goals while having their own research directions. Most of our results contribute to several directions.

3 Research program

3.1 Definition of dataflow representations of parallel programs

In the last decades, several frameworks have emerged to design efficient compiler algorithms. The
efficiency of all the optimizations performed in compilers strongly relies on effective static analyses and
intermediate representations. Dataflow models are a natural intermediate representation for hardware
compilers (HLS) and more generally for parallelizing compilers. Indeed, dataflow models capture task-
level parallelism and can be mapped naturally to parallel architectures. In a way, a dataflow model is
a partition of the computation into processes and a partition of the flow dependences into channels.
This partitioning prepares resource allocation (which processor/hardware to use) and medium-grain
communications.

The main goal of the CASH team is to provide efficient analyses and the optimizing compilation
frameworks for dataflow programming models. The results of the team relies on programming languages
and representation of programs in which parallelism and dataflow play a crucial role. This first research
direction aims at defining these dataflow languages and intermediate representations, both from a
practical perspective (syntax or structure), and from a theoretical point of view (semantics). This first
research direction thus defines the models on which the other directions will rely. It is important to
note that we do not restrict ourselves to a strict definition of dataflow languages: more generally, we are
interested in the parallel languages in which dataflow synchronization plays a significant role.

Intermediate dataflow model. The intermediate dataflow model is a representation of the program
that is adapted for optimization and scheduling. It will be obtained from the analysis of a (parallel
or sequential) program and should at some point be used for compilation. The dataflow model must
specify precisely its semantics and parallelism granularity. It must also be analyzable with polyhedral
techniques, where powerful concepts exist to design compiler analysis, e.g., scheduling or resource
allocation. Polyhedral Process Networks [63] extended with a module system could be a good starting
point. But then, how to fit non-polyhedral parts of the program? A solution is to hide non-polyhedral
parts into processes with a proper polyhedral abstraction. This organization between polyhedral and
non-polyhedral processes will be a key aspect of our medium-grain dataflow model. The design of our
intermediate dataflow model and the precise definition of its semantics will constitute a reliable basis to
formally define and ensure the correctness of algorithms proposed by CASH: compilation, optimizations
and analyses.

Dataflow programming languages. Dataflow paradigm has also been explored quite intensively in
programming languages. Indeed, there exists a large panel of dataflow languages, whose characteristics
differ notably, the major point of variability being the scheduling of agents and their communications.
There is indeed a continuum from the synchronous dataflow languages like Lustre [38] or Streamit [59],
where the scheduling is fully static, and general communicating networks like KPNs [43] or RVC-Cal [21]
where a dedicated runtime is responsible for scheduling tasks dynamically, when they can be executed.
These languages share some similarities with actor languages that go even further in the decoupling of
processes by considering them as independent reactive entities. Another objective of the CASH team is
to study dataflow programming languages, their semantics, their expressiveness, and their compilation.
The specificity of the CASH team is that these languages will be designed taking into consideration the
compilation using polyhedral techniques. In particular, we will explore which dataflow constructs are
better adapted for our static analysis, compilation, and scheduling techniques. In practice we want to
propose high-level primitives to express data dependency, this way the programmer can express paral-
lelism in a dataflow way instead of the classical communication-oriented dependencies. The higher-level
more declarative point of view makes programming easier but also give more optimization opportunities.
These primitives will be inspired by the existing works in the polyhedral model framework, as well as

Project CASH 5

dataflow languages, but also in the actors and active object languages [28] that nowadays introduce
more and more dataflow primitives to enable data-driven interactions between agents, particularly with
futures [16, 32].

3.1.1 Expected Impact

Consequently, the impact of this research direction is both the usability of our representation for static
analyses and optimizations performed in Sections 3.2 and 3.3, and the usability of its semantics to prove
the correctness of these analyses.

3.1.2 Scientific Program

Short-term and ongoing activities. We obtained preliminary experimental [19, 18, 34] and theoreti-
cal [39] results, exploring several aspects of dataflow models. The next step is to define accurately the
intermediate dataflow model and to study existing programming and execution models:

¢ Define our medium-grain dataflow model. So far, a modular Polyhedral Process Networks appears
as a natural candidate but it may need to be extended to be adapted to a wider range of applications.
Precise semantics will have to be defined for this model to ensure the articulation with the activities
discussed in Section 3.3.

» Study precisely existing dataflow languages, their semantics, their programmability, and their
limitations.

Medium-term activities. Inasecond step, we will extend the existing results to widen the expressiveness
of our intermediate representation and design new parallelism constructs. We will also work on the
semantics of dataflow languages:

¢ Propose new stream programming models and a clean semantics where all kinds of parallelisms
are expressed explicitly, and where all activities from code design to compilation and scheduling
can be clearly expressed.

¢ Identify a core language that is rich enough to be representative of the dataflow languages we are
interested in, but abstract and small enough to enable formal reasoning and proofs of correctness
for our analyses and optimizations.

Long-term activities. In alonger-term vision, the work on semantics, while remaining driven by the
applications, would lead to to more mature results, for instance:

¢ Design more expressive dataflow languages and intermediate representations which would at
the same time be expressive enough to capture all the features we want for aggressive HPC opti-
mizations, and sufficiently restrictive to be (at least partially) statically analyzable at a reasonable
cost.

¢ Define a module system for our medium-grain dataflow language. A program will then be divided
into modules that can follow different compilation schemes and execution models but still commu-
nicate together. This will allow us to encapsulate a program that does not fit the polyhedral model
into a polyhedral one and vice versa. Also, this will allow a compositional analysis and compilation,
as opposed to global analysis which is limited in scalability.

3.2 Expressivity and Scalability of Static Analyses

The design and implementation of efficient compilers becomes more difficult each day, as they need
to bridge the gap between complex languages and complex architectures. Application developers use
languages that bring them close to the problem that they need to solve which explains the importance of
high-level programming languages. However, high-level programming languages tend to become more
distant from the hardware which they are meant to command.

6 Inria Annual Report 2020

In this research direction, we propose to design expressive and scalable static analyses for compilers.
This topic is closely linked to Sections 3.1 and 3.3 since the design of an efficient intermediate repre-
sentation is made while regarding the analyses it enables. The intermediate representation should be
expressive enough to embed maximal information; however if the representation is too complex the
design of scalable analyses will be harder.

The analyses we plan to design in this activity will of course be mainly driven by the HPC dataflow
optimizations we mentioned in the preceding sections; however we will also target other kinds of analyses
applicable to more general purpose programs. We will thus consider two main directions:

* Extend the applicability of the polyhedral model, in order to deal with HPC applications that do
not fit totally in this category. More specifically, we plan to work on more complex control and also
on complex data structures, like sparse matrices, which are heavily used in HPC.

¢ Design of specialized static analyses for memory diagnostic and optimization inside general pur-
pose compilers.

For both activities, we plan to cross fertilize ideas coming from the abstract interpretation community
as well as language design, dataflow semantics, and WCET estimation techniques.

Correct by construction analyses. The design of well-defined semantics for the chosen programming
language and intermediate representation will allow us to show the correctness of our analyses. The
precise study of the semantics of Section 3.1 will allow us to adapt the analysis to the characteristics of
the language, and prove that such an adaptation is well founded. This approach will be applicable both
on the source language and on the intermediate representation.

Such wellfoundedness criteria relatively to the language semantics will first be used to design our
analyses, and then to study which extensions of the languages can be envisioned and analyzed safely, and
which extensions (if any) are difficult to analyze and should be avoided. Here the correct identification of
a core language for our formal studies (see Section 3.1) will play a crucial role as the core language should
feature all the characteristics that might make the analysis difficult or incorrect.

Scalable abstract domains. We already have experience in designing low-cost semi relational abstract
domains for pointers [50, 45], as well as tailoring static analyses for specialized applications in compila-
tion [31, 57], Synchronous Dataflow scheduling [56], and extending the polyhedral model to irregular
applications [17]. We also have experience in the design of various static verification techniques adapted
to different programming paradigms.

3.2.1 Expected impact

The impact of this work is the significantly widened applicability of various tools/compilers related to
parallelization: allow optimizations for a larger class of programs, and allow low-cost analysis that scale
to very large programs.

We target both analysis for optimization and analysis to detect, or prove the absence of bugs.

3.2.2 Scientific Program

Short-term and ongoing activities. Together with Paul Iannetta and Lionel Morel (INSA/CEA LETI), we
are currently working on the semantic rephrasing of the polyhedral model [35]. The objective is to clearly
redefine the key notions of the polyhedral model on general flowchart programs operating on arrays,
lists and trees. We reformulate the algorithms that are performed to compute dependencies in a more
semantic fashion, i.e. considering the program semantics instead of syntactical criteria. The next step is
to express classical scheduling and code generation activities in this framework, in order to overcome the
classical syntactic restrictions of the polyhedral model.

Medium-term activities. In medium term, we want to extend the polyhedral model for more general
data-structures like lists and sparse matrices. For that purpose, we need to find polyhedral (or other
shapes) abstractions for non-array data-structures; the main difficulty is to deal with non-linearity
and/or partial information (namely, over-approximations of the data layout, or over-approximation of the
program behavior). This activity will rely on a formalization of the optimization activities (dependency

Project CASH 7

computation, scheduling, compilation) in a more general Abstract-Interpretation based framework in
order to make the approximations explicit.

At the same time, we plan to continue to work on scaling static analyses for general purpose programs,
in the spirit of Maroua Maalej’s PhD [46], whose contribution is a sequence of memory analyses inside
production compilers. We already began a collaboration with Sylvain Collange (PACAP team of IRISA
Laboratory) on the design of static analyses to optimize copies from the global memory of a GPU to the
block kernels (to increase locality). In particular, we have the objective to design specialized analyses
but with an explicit notion of cost/precision compromise, in the spirit of the paper [37] that tries to
formalize the cost/precision compromise of interprocedural analyses with respect to a “context sensitivity
parameter”.

Long-term activities. In a longer-term vision, the work on scalable static analyses, whether or not
directed from the dataflow activities, will be pursued in the direction of large general-purpose programs.

An ambitious challenge is to find a generic way of adapting existing (relational) abstract domains
within the Single Static Information [22] framework so as to improve their scalability. With this framework,
we would be able to design static analyses, in the spirit of the seminal paper [27] which gave a theoretical
scheme for classical abstract interpretation analyses.

We also plan to work on the interface between the analyses and their optimization clients inside
production compilers.

3.3 Compiling and Scheduling Dataflow Programs

In this part, we propose to design the compiler analyses and optimizations for the medium-grain dataflow
model defined in section 3.1. We also propose to exploit these techniques to improve the compilation of
dataflow languages based on actors. Hence our activity is split into the following parts:

¢ Translating a sequential program into a medium-grain dataflow model. The programmer cannot
be expected to rewrite the legacy HPC code, which is usually relatively large. Hence, compiler
techniques must be invented to do the translation.

¢ Transforming and scheduling our medium-grain dataflow model to meet some classic optimization
criteria, such as throughput, local memory requirements, or I/0O traffic.

¢ Combining agents and polyhedral kernels in dataflow languages. We propose to apply the tech-
niques above to optimize the processes in actor-based dataflow languages and combine them with
the parallelism existing in the languages.

We plan to rely extensively on the polyhedral model to define our compiler analysis. The polyhedral
model was originally designed to analyze imperative programs. Analysis (such as scheduling or buffer
allocation) must be redefined in light of dataflow semantics.

Translating a sequential program into a medium-grain dataflow model. The programs considered are
compute-intensive parts from HPC applications, typically big HPC kernels of several hundreds of lines of
C code. In particular, we expect to analyze the process code (actors) from the dataflow programs. On
short ACL (Affine Control Loop) programs, direct solutions exist [61] and rely directly on array dataflow
analysis [29]. On bigger ACL programs, this analysis no longer scales. We plan to address this issue by
modularizing array dataflow analysis. Indeed, by splitting the program into processes, the complexity
is mechanically reduced. This is a general observation, which was exploited in the past to compute
schedules [30]. When the program is no longer ACL, a clear distinction must be made between polyhedral
parts and non polyhedral parts. Hence, our medium-grain dataflow language must distinguish between
polyhedral process networks, and non-polyhedral code fragments. This structure raises new challenges:
How to abstract away non-polyhedral parts while keeping the polyhedrality of the dataflow program?
Which trade-off(s) between precision and scalability are effective?

Medium-grain data transfers minimization. When the system consists of a single computing unit
connected to a slow memory, the roofline model [64] defines the optimal ratio of computation per
data transfer (operational intensity). The operational intensity is then translated to a partition of the
computation (loop tiling) into reuse units: inside a reuse unit, data are transfered locally; between reuse

8 Inria Annual Report 2020

units, data are transfered through the slow memory. On a fine-grain dataflow model, reuse units are
exposed with loop tiling; this is the case for example in Data-aware Process Network (DPN) [18]. The
following questions are however still open: How does that translate on medium-grain dataflow models?
And fundamentally what does it mean to file a dataflow model?

Combining agents and polyhedral kernels in dataflow languages. In addition to the approach devel-
oped above, we propose to explore the compilation of dataflow programming languages. In fact, among
the applications targeted by the project, some of them are already thought or specified as dataflow actors
(video compression, machine-learning algorithms,...).

So far, parallelization techniques for such applications have focused on taking advantage of the
decomposition into agents, potentially duplicating some agents to have several instances that work
on different data items in parallel [36]. In the presence of big agents, the programmer is left with the
splitting (or merging) of these agents by-hand if she wants to further parallelize her program (or at least
give this opportunity to the runtime, which in general only sees agents as non-malleable entities). In
the presence of arrays and loop-nests, or, more generally, some kind of regularity in the agent’s code,
however, we believe that the programmer would benefit from automatic parallelization techniques such
as those proposed in the previous paragraphs. To achieve the goal of a totally integrated approach where
programmers write the applications they have in mind (application flow in agents where the agents’ code
express potential parallelism), and then it is up to the system (compiler, runtime) to propose adequate
optimizations, we propose to build on solid formal definition of the language semantics (thus the formal
specification of parallelism occurring at the agent level) to provide hierarchical solutions to the problem
of compilation and scheduling of such applications.

3.3.1 Expected impact

In general, splitting a program into simpler processes simplifies the problem. This observation leads to
the following points:

* By abstracting away irregular parts in processes, we expect to structure the long-term problem of
handling irregular applications in the polyhedral model. The long-term impact is to widen the
applicability of the polyhedral model to irregular kernels.

» Splitting a program into processes reduces the problem size. Hence, it becomes possible to scale
traditionally expensive polyhedral analysis such as scheduling or tiling to quote a few.

As for the third research direction, the short term impact is the possibility to combine efficiently
classical dataflow programming with compiler polyhedral-based optimizations. We will first propose
ad-hoc solutions coming from our HPC application expertise, but supported by strong theoretical results
that prove their correctness and their applicability in practice. In the longer term, our work will allow
specifying, designing, analyzing, and compiling HPC dataflow applications in a unified way. We target
semi-automatic approaches where pertinent feedback is given to the developer during the development
process.

3.3.2 Scientific Program

Short-term and ongoing activities. We are currently working on the RTM (Reverse-Time Migration)
kernel for oil and gas applications (= 500 lines of C code). This kernel is long enough to be a good starting
point, and small enough to be handled by a polyhedral splitting algorithm. We figured out the possible
splittings so the polyhedral analysis can scale and irregular parts can be hidden. In a first step, we plan to
define splitting metrics and algorithms to optimize the usual criteria: communication volume, latency
and throughput.

Together with Lionel Morel (INSA/CEA LETI), we currently work on the evaluation of the practical
advantage of combining the dataflow paradigm with the polyhedral optimization framework. We em-
pirically build a proof-of-concept tooling approach, using existing tools on existing languages [34]. We
combine dataflow programming with polyhedral compilation in order to enhance program parallelization
by leveraging both inter-agent parallelism and intra-agent parallelism (i.e., regarding loop nests inside
agents). We evaluate the approach practically, on benchmarks coming from image transformation or
neural networks, and the first results demonstrate that there is indeed a room for further improvement.

Project CASH 9

Medium-term activities. The results of the preceding paragraph are partial and have been obtained
with a simple experimental approach only using off-the-shelf tools. We are thus encouraged to pursue
research on combining expertise from dataflow programming languages and polyhedral compilation.
Our long term objective is to go towards a formal framework to express, compile, and run dataflow
applications with intrinsic instruction or pipeline parallelism.

We plan to investigate in the following directions:

¢ Investigate how polyhedral analysis extends on modular dataflow programs. For instance, how to
modularize polyhedral scheduling analysis on our dataflow programs?

¢ Develop a proof of concept and validate it on linear algebra kernels (SVD, Gram-Schmidt, etc.).

» Explore various areas of applications from classical dataflow examples, like radio and video process-
ing, to more recent applications in deep learning algorithmic. This will enable us to identify some
potential (intra and extra) agent optimization patterns that could be leveraged into new language
idioms.

Long-term activities. Current work focus on purely polyhedral applications. Irregular parts are not
handled. Also, a notion of tiling is required so the communications of the dataflow program with the
outside world can be tuned with respect to the local memory size. Hence, we plan to investigate the
following points:

¢ Assess simple polyhedral/non polyhedral partitioning: How non-polyhedral parts can be hidden in
processes/channels? How to abstract the dataflow dependencies between processes? What would
be the impact on analyses? We target programs with irregular control (e.g., while loop, early exits)
and regular data (arrays with affine accesses).

¢ Design tiling schemes for modular dataflow programs: What does it mean to tile a dataflow pro-
gram? Which compiler algorithms to use?

¢ Implement a mature compiler infrastructure from the front-end to code generation for a reasonable
subset of the representation.

3.4 HLS-specific Dataflow Optimizations

The compiler analyses proposed in section 3.3 do not target a specific platform. In this part, we propose
to leverage these analysis to develop source-level optimizations for high-level synthesis (HLS).

High-level synthesis consists in compiling a kernel written in a high-level language (typically in
C) into a circuit. As for any compiler, an HLS tool consists in a front-end which translates the input
kernel into an intermediate representation. This intermediate representation captures the control/flow
dependences between computation units, generally in a hierarchical fashion. Then, the back-end maps
this intermediate representation to a circuit (e.g. FPGA configuration). We believe that HLS tools must
be thought as fine-grain automatic parallelizers. In classic HLS tools, the parallelism is expressed and
exploited at the back-end level during the scheduling and the resource allocation of arithmetic operations.
We believe that it would be far more profitable to derive the parallelism at the front-end level.

Hence, CASH will focus on the front-end pass and the intermediate representation. Low-level back-end
techniques are not in the scope of CASH. Specifically, CASH will leverage the dataflow representation
developed in Section 3.1 and the compilation techniques developed in Section 3.3 to develop a relevant
intermediate representation for HLS and the corresponding front-end compilation algorithms.

Our results will be evaluated by using existing HLS tools (e.g., Intel HLS compiler, Xilinx Vivado HLS).
We will implement our compiler as a source-to-source transformation in front of HLS tools. With this
approach, HLS tools are considered as a “back-end black box”. The CASH scheme is thus: (i) front-
end: produce the CASH dataflow representation from the input C kernel. Then, (ii) turn this dataflow
representation to a C program with pragmas for an HLS tool. This step must convey the characteristics
of the dataflow representation found by step (i) (e.g. dataflow execution, fifo synchronisation, channel
size). This source-to-source approach will allow us to get a full source-to-FPGA flow demonstrating the
benefits of our tools while relying on existing tools for low-level optimizations. Step (i) will start from the

10 Inria Annual Report 2020

Dcc tool developed by Christophe Alias, which already produces a dataflow intermediate representation:
the Data-aware Process Networks (DPN) [18]. Hence, the very first step is then to chose an HLS tool and
to investiguate which input should be fed to the HLS tool so it “respects” the parallelism and the resource
allocation suggested by the DPN. From this basis, we plan to investiguate the points described thereafter.

Roofline model and dataflow-level resource evaluation. Operational intensity must be tuned according
to the roofline model. The roofline model [64] must be redefined in light of FPGA constraints. Indeed,
the peak performance is no longer constant: it depends on the operational intensity itself. The more
operational intensity we need, the more local memory we use, the less parallelization we get (since FPGA
resources are limited), and finally the less performance we get! Hence, multiple iterations may be needed
before reaching an efficient implementation. To accelerate the design process, we propose to iterate at
the dataflow program level, which implies a fast resource evaluation at the dataflow level.

Reducing FPGA resources. Each parallel unit must use as little resources as possible to maximize
parallel duplication, hence the final performance. This requires to factorize the control and the channels.
Both can be achieved with source-to-source optimizations at dataflow level. The main issue with outputs
from polyhedral optimization is large piecewise affine functions that require a wide silicon surface on
the FPGA to be computed. Actually we do not need to compute a closed form (expression that can be
evaluated in bounded time on the FPGA) statically. We believe that the circuit can be compacted if we
allow control parts to be evaluated dynamically. Finally, though dataflow architectures are a natural
candidate, adjustments are required to fit FPGA constraints (2D circuit, few memory blocks). Ideas from
systolic arrays [54] can be borrowed to re-use the same piece of data multiple times, despite the limitation
to regular kernels and the lack of I/0 flexibility. A trade-off must be found between pure dataflow and
systolic communications.

Improving circuit throughput. Since we target streaming applications, the throughput must be
optimized. To achieve such an optimization, we need to address the following questions. How to
derive an optimal upper bound on the throughput for polyhedral process network? Which dataflow
transformations should be performed to reach it? The limiting factors are well known: I/0 (decoding of
burst data), communications through addressable channels, and latencies of the arithmetic operators.
Finally, it is also necessary to find the right methodology to measure the throughput statically and/or
dynamically.

3.4.1 Expected Impact

So far, the HLS front-end applies basic loop optimizations (unrolling, flattening, pipelining, etc.) and use a
Hierarchical Control Flow Graph-like representation with data dependencies annotations (HCDFG). With
this approach, we intend to demonstrate that polyhedral analysis combined with dataflow representations
is an effective solution for HLS tools.

3.4.2 Scientific Program

Short-term and ongoing activities. The HLS compiler designed in the CASH team currently extracts a
fine-grain parallel intermediate representation (DPN [18, 19]) from a sequential program. We will not
write a back-end that produces code for FPGA but we need to provide C programs that can be fed into
existing C-to-FPGA compilers. However we obviously need an end-to-end compiler for our experiments.
One of the first task of our HLS activity is to develop a DPN-to-C code generator suitable as input to an
existing HLS tool like Vivado HLS. The generated code should exhibit the parallelism extracted by our
compiler, and allow generating a final circuit more efficient than the one that would be generated by our
target HLS tool if ran directly on the input program. Source-to-source approaches have already been
experimented successfully, e.g. in Alexandru Plesco’s PhD [51].

Medium-term activities. Our DPN-to-C code generation will need to be improved in many directions.
The first point is the elimination of redundancies induced by the DPN model itself: buffers are duplicated
to allow parallel reads, processes are produced from statements in the same loop, hence with the same
control automaton. Also, multiplexing uses affine constraints which can be factorized [20]. We plan
to study how these constructs can be factorized at C-level and to design the appropriate DPN-to-C
translation algorithms.

Project CASH 11

Also, we plan to explore how on-the-fly evaluation can reduce the complexity of the control. A good
starting point is the control required for the load process (which fetch data from the distant memory).
If we want to avoid multiple load of the same data, the FSM (Finite State Machine) that describes it is
usually very complex. We believe that dynamic construction of the load set (set of data to load from the
main memory) will use less silicon than an FSM with large piecewise affine functions computed statically.

Long-term activities. The DPN-to-C compiler opens new research perspectives. We will explore the
roofline model accuracy for different applications by playing on DPN parameters (tile size). Unlike the
classical roofline model, the peak performance is no longer assumed to be constant, but decreasing with
operational intensity [58]. Hence, we expect a unique optimal set of parameters. Thus, we need to build a
DPN-level cost model to derive an interval containing the optimal parameters.

Also, we want to develop DPN-level analysis and transformation to quantify the optimal reachable
throughput and to reach it. We expect the parallelism to increase the throughput, but in turn it may
require an operational intensity beyond the optimal point discussed in the first paragraph. We will assess
the trade-offs, build the cost-models, and the relevant dataflow transformations.

3.5 Simulation of Hardware

Complex systems such as systems-on-a-chip or HPC computer with FPGA accelerator comprise both
hardware and software parts, tightly coupled together. In particular, the software cannot be executed
without the hardware, or at least a simulator of the hardware.

Because of the increasing complexity of both software and hardware, traditional simulation tech-
niques (Register Transfer Level, RTL) are too slow to allow full system simulation in reasonable time.
New techniques such as Transaction Level Modeling (TLM) [49] in SystemC [42] have been introduced
and widely adopted in the industry. Internally, SystemC uses discrete-event simulation, with efficient
context-switch using cooperative scheduling. TLM abstracts away communication details, and allows
modules to communicate using function calls. We are particularly interested in the loosely timed coding
style where the timing of the platform is not modeled precisely, and which allows the fastest simulations.
This allowed gaining several orders of magnitude of simulation speed. However, SystemC/TLM is also
reaching its limits in terms of performance, in particular due to its lack of parallelism.

Work on SystemC/TLM parallel execution is both an application of other work on parallelism in the
team and a tool complementary to HLS presented in Sections 3.1 (dataflow models and programs) and 3.4
(application to FPGA). Indeed, some of the parallelization techniques we develop in CASH could apply
to SystemC/TLM programs. Conversely, a complete design-flow based on HLS needs fast system-level
simulation: the full-system usually contains both hardware parts designed using HLS, handwritten
hardware components, and software.

We also work on simulation of the DPN intermediate representation. Simulation is a very important
tool to help validate and debug a complete compiler chain. Without simulation, validating the front-end
of the compiler requires running the full back-end and checking the generated circuit. Simulation can
avoid the execution time of the backend and provide better debugging tools.

Automatic parallelization has shown to be hard, if at all possible, on loosely timed models [25]. We
focus on semi-automatic approaches where the programmer only needs to make minor modifications of
programs to get significant speedups.

3.5.1 Expected Impact

The short term impact is the possibility to improve simulation speed with a reasonable additional
programming effort. The amount of additional programming effort will thus be evaluated in the short
term.

In the longer term, our work will allow scaling up simulations both in terms of models and execution
platforms. Models are needed not only for individual Systems on a Chip, but also for sets of systems
communicating together (e.g., the full model for a car which comprises several systems communicating
together), and/or heterogeneous models. In terms of execution platform, we are studying both parallel
and distributed simulations.

12 Inria Annual Report 2020

3.5.2 Scientific Program

Short-term and ongoing activities. We started the joint PhD (with Tanguy Sassolas) of Gabriel Busnot
with CEA-LIST. The research targets parallelizing SystemC heterogeneous simulations. CEA-LIST already
developed SCale [62], which is very efficient to simulate parallel homogeneous platforms such as multi-
core chips. However, SCale cannot currently load-balance properly the computations when the platform
contains different components modeled at various levels of abstraction. Also, SCale requires manual
annotations to identify accesses to shared variables. These annotations are given as address ranges in
the case of a shared memory. This annotation scheme does not work when the software does non-trivial
memory management (virtual memory using a memory management unit, dynamic allocation), since
the address ranges cannot be known statically. We started working on the “heterogeneous” aspect of
simulations with an approach allowing changing the level of details in a simulation at runtime, and started
tackling the virtual and dynamic memory management problem by porting Linux on our simulation
platform.

We also started working on an improved support for simulation and debugging of the DPN internal
representation of our parallelizing compiler (see Section 3.3). A previous quick experiment with simula-
tion was to generate C code that simulates parallelism with POSIX-threads. While this simulator greatly
helped debug the compiler, this is limited in several ways: simulations are not deterministic, and the
simulator does not scale up since it would create a very large number of threads for a non-trivial design.

We are working in two directions. The first is to provide user-friendly tools to allow graphical inspec-
tion of traces. For example, we started working on the visualization of the sequence of steps leading to a
deadlock when the situation occurs, and will give hints on how to fix the problem in the compiler. The
second is to use an efficient simulator to speed up the simulation. We plan to generate SystemC/TLM
code from the DPN representation to benefit from the ability of SystemC to simulate a large number of
processes.

Medium-term activities. Several research teams have proposed different approaches to deal with
parallelism and heterogeneity. Each approach targets a specific abstraction level and coding style. While
we do not hope for a universal solution, we believe that a better coordination of different actors of the
domain could lead to a better integration of solutions. We could imagine, for example, a platform with
one subsystem accelerated with SCale [62] from CEA-LIST, some compute-intensive parts delegated to
sc-during [48] from Matthieu Moy, and a co-simulation with external physical solvers using SystemC-
MDVP [23] from LIP6. We plan to work on the convergence of approaches, ideally both through point-to-
point collaborations and with a collaborative project.

A common issue with heterogeneous simulation is the level of abstraction. Physical models only
simulate one scenario and require concrete input values, while TLM models are usually abstract and
not aware of precise physical values. One option we would like to investigate is a way to deal with loose
information, e.g. manipulate intervals of possible values instead of individual, concrete values. This
would allow a simulation to be symbolic with respect to the physical values.

Obviously, works on parallel execution of simulations would benefit to simulation of data-aware
process networks (DPN). Since DPN are generated, we can even tweak the generator to guarantee some
properties on the generated code, which gives us more freedom on the parallelization and partitioning
techniques.

Long-term activities. In the long term, our vision is a simulation framework that will allow combining
several simulators (not necessarily all SystemC-based), and allow running them in a parallel way. The
Functional Mockup Interface (FMI) standard is a good basis to build upon, but the standard does not
allow expressing timing and functional constraints needed for a full co-simulation to run properly.

4 Application domains

The CASH team targets HPC programs, at different levels. Small computation kernels (tens of lines of
code) that can be analyzed and optimized aggressively, medium-size kernels (hundreds of lines of code)

Project CASH 13

that require modular analysis, and assembly of compute kernels (either as classical imperative programs
or written directly in a dataflow language).

The work on various application domains and categories of programs is driven by the same idea:
exploring various topics is a way to converge on unifying representations and algorithms even for
specific applications. All these applications share the same research challenge: find a way to integrate
computations, data, mapping, and scheduling in a common analysis and compilation framework.

Typical HPC kernels include linear solvers, stencils, matrix factorizations, BLAS kernels, etc. Many
kernels can be found in the Polybench/C benchmark suite [52]. The irregular versions can be found in
[53]. Numerical kernels used in quantitative finance [65] are also good candidates, e.g., finite difference
and Monte-Carlo simulation.

The medium-size applications we target are streaming algorithms [21], scientific workflows [60], and
also the now very rich domain of deep learning applications [44]. We explore the possibilities of writing
(see Section 3.1) and compiling (see Section 3.3) applications using a dataflow language. As a first step,
we will target dataflow programs written in SigmaC [24] for which the fine grain parallelism is not taken
into account. In parallel, we will also study the problem of deriving relevant (with respect to safety or
optimization) properties on dataflow programs with array iterators.

The approach of CASH is based on compilation, and our objective is to allow developers to design
their own kernels, and benefit from good performance in terms of speed and energy efficiency without
having to deal with fine-grained optimizations by hand. Consequently, our objective is first to improve
the performance and energy consumption for HPC applications, while providing programming tools that
can be used by developers and are at a convenient level of abstraction.

Obviously, large applications are not limited to assembly of compute kernels. Our languages and
formalism definitions and analyses must also be able to deal with general programs. Our targets also
include generalist programs with complex behaviors such as recursive programs operating on arrays, lists
and trees; worklist algorithms (lists are not handled within the polyhedral domain). Analysis on these
programs should be able to detect non licit memory accesses, memory consumption, hotspots, ..., and
to prove functional properties.

The simulation activities are both applied internally in CASH, to simulate intermediate representa-
tions, and for embedded systems. We are interested in Transaction-Level Models (TLM) of Systems-on-a-
Chip (SoCs) including processors and hardware accelerators. TLM provides an abstract but executable
model of the chip, with enough details to run the embedded software. We are particularly interested in
models written in a loosely timed coding style. We plan to extend these to heterogeneous simulations
including a SystemC/TLM part to model the numerical part of the chip, and other simulators to model
physical parts of the system.

5 Social and environmental responsibility

5.1 Footprint of research activities

Although we do not have a precise measure of our carbon (and other environmental) footprint, the two
main sources of impact of computer-science research activities are usually transport (plane) and digital
equipment (lifecycle of computers and other electronic devices).

Obviously, 2020 was a very particular year as we currently cannot do international travel. Many
members of the CASH team are already in an approach of reducing their international travel, and
hopefully the new solutions we had to set up to continue our activities during the COVID crisis will
allow us to continue our research with a sustainable amount of travel, and using other forms of remote
collaborations when possible.

As far as digital equipment is concerned, we try to extend the lifetime of our machines as much as
possible.

5.2 Impact of research results

Many aspects of our research are meant to provide tools to make programs more efficient, in particular
more power-efficient. It is very hard, however, to asses the actual impact of such research. In many

14 Inria Annual Report 2020

cases, improvements in power-efficiency lead to a rebound effect which may weaken the benefit of the
improvement, or even lead to an increase in total consumption (backfire).

CASH provides tools for developers, but does not develop end-user applications. We believe the social
impact of our research depends more on the way developpers will use our tools than on the way we
conduct our research. We do have a responsibility on the application domains we promote, though.

6 New software and platforms

6.1 New software
6.1.1 DCC

Name: DPN C Compiler

Keywords: Polyhedral compilation, Automatic parallelization, High-level synthesis

Functional Description: Dcc (Data-aware process network C Compiler) compiles a regular C kernel to a
data-aware process network (DPN), a dataflow intermediate representation suitable for high-level
synthesis in the context of high-performance computing. Dcc has been registered at the APP
("Agence de protection des programmes") and transferred to the XtremLogic start-up under an
Inria license.

News of the Year: This year, Christophe implemented significant features in Dcc. First, channel systoliza-
tion, a feature to reduce the overall size of the buffers. Second, a meta-compilation technique to

speed-up the DPN parallelization. Finally, a dynamic deadlock detection feature to the thread
model used for the debugging process.

Publication: hal-03143777
Authors: Christophe Alias, Alexandru Plesco
Contact: Christophe Alias

Participants: Christophe Alias, Alexandru Plesco

6.1.2 PoCo

Name: Polyhedral Compilation Library

Keywords: Polyhedral compilation, Automatic parallelization

Functional Description: PoCo (Polyhedral Compilation Library) is framework to develop program anal-
ysis and optimizations in the polyhedral model. PoCo features polyhedral building blocks as well
as state-of-the-art polyhedral program analysis. PoCo has been registered at the APP (“agence de
protection des programmes”) and transferred to the XtremLogic start-up under an Inria licence.

News of the Year: This year, Christophe implemented significant features in PoCo. First, an algorithm to
derive an affine loop tiling from a regular kernel. Also, several polyhedral scheduling algorithms
(greedy and shallow heuristics).

Author: Christophe Alias

Contact: Christophe Alias

Participant: Christophe Alias

https://hal.inria.fr/hal-03143777

Project CASH 15

6.1.3 MPPcodegen
Name: Source-to-source loop tiling based on MPP
Keywords: Source-to-source compiler, Polyhedral compilation

Functional Description: MPPcodegen applies a monoparametric tiling to a C program enriched with
pragmas specifying the tiling and the scheduling function. The tiling can be generated by any
convex polyhedron and translation functions, it is not necessarily a partition. The result is a C pro-
gram depending on a scaling factor (the parameter). MPPcodegen relies on the MPP mathematical
library to tile the iteration sets.

URL: http://foobar.ens-1lyon.fr/mppcodegen/
Publication: hal-02493164

Authors: Christophe Alias, Guillaume Iooss, Sanjay Rajopadhye
Contacts: Christophe Alias, Guillaume Iooss, Sanjay Rajopadhye

Partner: Colorado State University

6.1.4 Encore with dataflow explicit futures
Keywords: Language, Optimizing compiler, Source-to-source compiler, Compilers

Functional Description: Fork of the Encore language compiler, with a new "Flow" construct implement-
ing data-flow explicit futures.

URL: https://gitlab.inria.fr/lhenrio/encorewithdatafuts

Contacts: Ludovic Henrio, Matthieu Moy

6.1.5 odoc
Keyword: Ocaml

Functional Description: OCaml is a statically typed programming language with wide-spread use in
both academia and industry. Odoc is a tool to generate documentation of OCaml libraries, either as
HTML websites for online distribution or to create PDF manuals and man pages.

News of the Year: This year, Gabriel Radanne rewrote a significant portion of odoc to provide improved
HTML output, make it possible to produce other document formats, and introduce the ability to
produce man pages. Florian Angeletti then implemented PDF output and integrated the usage
of odoc in the official OCaml distribution. Concurrently, Jon Ludlam and Leo White rewrote the
resolution mechanism of odoc. This all led to a joint presentation at the OCaml workshop and an
upcoming new major release.

URL: https://github.com/ocaml/odoc/
Contacts: Jon Ludlam, Gabriel Radanne

Participants: Jon Ludlam, Gabriel Radanne, Florian Angeletti, Leo White

6.1.6 calv
Name: AVL calculator
Keywords: Data structures, OpenMP

Functional Description: calv is a calculator which is used to run different implementations of AVL trees,
and compare their relative performances.

URL: https://gitlab.inria.fr/paiannet/calv

Contact: Paul Iannetta

http://foobar.ens-lyon.fr/mppcodegen/
https://hal.inria.fr/hal-02493164
https://gitlab.inria.fr/lhenrio/encorewithdatafuts
https://github.com/ocaml/odoc/
https://gitlab.inria.fr/paiannet/calv

16 Inria Annual Report 2020

6.1.7 mppcheck

Keywords: Polyhedral compilation, Program verification

Functional Description: mppcheck features a pragma language to specify a polyhedral program trans-
formation directly in the code and a verification algorithm able to check the correctness of the
specified transformation. Our language is general enough to specify a loop tiling by an arbitrary
polyhedral tile shape (e.g., hexagons, diamonds, trapezoids), and whose size may depend on a
scaling parameter (monoparametric tiling). Our verification algorithm checks the legality of the
proposed transformation, and provides counterexamples of unsatisfied dependences when it is
incorrect. In addition, out tool infers the domain of scaling parameters where the tiling is not legal.

URL: http://foobar.ens-1lyon.fr/mppcheck/

Publication: hal-03106070

Authors: Christophe Alias, Guillaume Iooss, Sanjay Rajopadhye
Contacts: Christophe Alias, Guillaume Iooss, Sanjay Rajopadhye
Participants: Christophe Alias, Guillaume Iooss, Sanjay Rajopadhye

Partner: Colorado State University

6.1.8 fkcc
Name: The Farkas Calculator
Keywords: DSL, Farkas Lemma, Polyhedral compilation

Scientific Description: fkcc is a scripting tool to prototype program analyses and transformations ex-
ploiting the affine form of Farkas lemma. Our language is general enough to prototype in a few lines
sophisticated termination and scheduling algorithms. The tool is freely available and may be tried
online via a web interface. We believe that fkcc is the missing chain to accelerate the development
of program analyses and transformations exploiting the affine form of Farkas lemma.

Functional Description: fkcc is a scripting tool to prototype program analyses and transformations
exploiting the affine form of Farkas lemma. Our language is general enough to prototype in a
few lines sophisticated termination and scheduling algorithms. The tool is freely available and
may be tried online via a web interface. We believe that fkcc is the missing chain to accelerate the
development of program analyses and transformations exploiting the affine form of Farkas lemma.

Release Contributions: - Script language - Polyhedral constructors - Farkas summation solver

News of the Year: This year, Christophe improved the projection algorithm invoked by the keep’ keyword
by combining a Gaussian elimination with a Fourier-Motzkin elimination. Compared to Chernikova
algorithm, the performances are greatly improved.

URL: http://foobar.ens-1lyon.fr/fkcc/

Publication: hal-03106000

Author: Christophe Alias

Contact: Christophe Alias

Participant: Christophe Alias

http://foobar.ens-lyon.fr/mppcheck/
https://hal.inria.fr/hal-03106070
http://foobar.ens-lyon.fr/fkcc/
https://hal.inria.fr/hal-03106000

Project CASH 17

6.1.9 Vellvin

Keywords: Coq, Semantic, Compilation, Proof assistant, Proof

Scientific Description: A modern formalization in the Coq proof assistant of the sequential fragment of
LLVM IR. The semantics, based on the Interaction Trees library, presents several rare properties
for mechanized development of this scale: it is compositional, modular, and extracts to a certified
executable interpreter. A rich equational theory of the language is provided, and several verified
tools based on this semantics are in development.

Functional Description: Formalization in the Coq proof assistant of a subset of the LLVM compilation
infrastructure.

URL: https://github.com/vellvm/vellvm
Contacts: Yannick Zakowski, Steve Zdancewic
Participants: Yannick Zakowski, Steve Zdancewic, Calvin Beck, Irene Yoon

Partner: University of Pennsylvania

7 New results

This section presents the scientific results obtained in the evaluation period. They are grouped according
to the directions of our research program.

7.1 Direction 1: Definition of Dataflow Representations of Parallel Programs

7.1.1 Dataflow-explicit futures

Participants Ludovic Henrio, Matthieu Moy, Amaury Maillé, Nicolas Chappe.

A future is a place-holder for a value being computed, and we generally say that a future is resolved when
the associated value is computed. In existing languages futures are either implicit, if there is no syntactic
or typing distinction between futures and non-future values, or explicit when futures are typed by a
parametric type and dedicated functions exist for manipulating futures. We defined a new form of future,
named data-flow explicit futures [39, 33], with specific typing rules that do not use classical parametric
types. The new futures allow at the same time code reuse and the possibility for recursive functions to
return futures like with implicit futures, and let the programmer declare which values are futures and
where synchronisation occurs, like with explicit futures. We prove that the obtained programming model
is as expressive as implicit futures but exhibits a different behaviour compared to explicit futures.

In 2020, we continued our work on the implementation of data-flow explicit futures in the Encore
compiler. We also showed that the forward [32] construct proposed in the context of control-flow futures
was semantically equivalent to the usual return construct in the context of data-flow explicit futures. We
submitted this work to the <Programming> journal, and submitted a major revision, currently under
review.

7.1.2 Promise Plus: Flexible Synchronization for Parallel Computations on Arrays

Participants Ludovic Henrio, Matthieu Moy, Amaury Maillé.

https://github.com/vellvm/vellvm

18 Inria Annual Report 2020

Parallel applications make use of parallelism where work is shared between tasks; often, tasks need
to exchange data stored in arrays and synchronize depending on the availability of these data. Fine-
grained synchronizations, e.g. one synchronization for each element in the array, may lead to too many
synchronizations while coarse-grained synchronizations, e.g. a single synchronization for the whole array,
may prevent parallelism. We propose PromisePlus, a synchronization tool allowing tasks to synchronize
on chunks of arrays with a granularity configurable by the programmer.

Results are still preliminary, but promising, and have been accepted for publication at the FSEN 2021
conference [11]. We are currently working on an extension where the granularity of synchronization can
vary at runtime.

7.1.3 Distributed futures

Participants Ludovic Henrio.

We proposed the definition of distributed futures, a construct that provides at the same time a data
container similar to a distributed vector, and a single synchronization entity that behaves similarly to a
standard future. This simple construct makes it easy to program a composition, in a task-parallel way, of
several massively data-parallel tasks. This work is realised in collaboration with Pierre Leca and Wijnand
Suijlen (Huawei Technologies), and Franc¢oise Baude (Université Cote d’Azur, CNRS, I3S). Pierre Leca
defended his PhD Thesis in October 2020.

7.1.4 Locally abstract globally concrete semantics

Participants Ludovic Henrio.

This research direction aims at designing a new way to write semantics for concurrent languages. The
objective is to design semantics in a compositional way, where each primitive has a local behavior, and to
adopt a style much closer to verification frameworks so that the design of an automatic verifier for the
language is easier. The local semantics is expressed in a symbolic and abstract way, a global semantics
gathers the abstract local traces and concretizes them. We have a reliable basis for the semantics of a
simple language (a concurrent while language) and for a complex one (ABS), but the exact semantics and
the methodology for writing it is still under development. After 2 meetings in 2019, this work has slowed
down in 2020, partly because the visit (as invited professor) od Reiner Hahnle had to be postponned. The
final version of the article is almost ready for a first submission.

This is a joint with Reiner Hihnle (TU Darmstadt), Einar Broch Johnsen, Crystal Chang Din, Lizeth
Tapia Tarifa (Univ Oslo), Ka I Pun (Univ Oslo and Univ of applied science).

7.1.5 PNets: Parametrized networks of automata

Participants Ludovic Henrio.

pNets (parameterised networks of synchronised automata) are semantic objects for defining the seman-
tics of composition operators and parallel systems. We have used pNets for the behavioral specification
and verification of distributed components, and proved that open pNets (i.e. pNets with holes) were a
good formalism to reason on operators and parameterized systems. This year, we have the following new
results:

¢ Aweak bisimulation theory for open pNets. This work is realized with Eric Madelaine (INRIA Sophia-
Antipolis) and Rabéa Ameur Boulifa (Telecom ParisTech). A journal article has been polished during
the year and submitted to LMCS in September 2020.

Project CASH 19

These work should be continued in 2021 and an internship student will be co-advised by ric Madelaine,
Rabéa Ameur Boulifa, and Ludovic Henrio. The subject of the internship is on "refinement for open
automata".

7.1.6 A Survey on Verified Reconfiguration

Participants Ludovic Henrio.

We are conducting a survey on the use of formal methods to ensure safety of reconfiguration of distributed
system, that is to say the runtime adaptation of a deployed distributed software system. The survey article
is written together with Hélene Coullon and Simon Robillard (IMT Atlantique, Inria, LS2N, UBL), and
Frédéric Loulergue (Northern Arizona University). Héléne Coullon is the coordinator and we expect the
article to be submitted in 2021.

7.1.7 A Survey on Parallelism and Determinacy

Participants Ludovic Henrio, Laure Gonnord, Christophe Alias, Gabriel Radanne.

We have started to investigate on the solutions that exist to ensure complete or partial determinacy
in parallel programs. The objective of this work is to provide a survey based on the different kinds of
solutions that exist to ensure determinism or at least limit data-races in concurrent execution of programs.
The study will cover language-based, compilation-based and also runtime-based solutions. We started
the bibliographic studies in 2019. The survey is in the last phase of writing before submission in Spring
2021

This work, coordinated by Laure Gonnord and Ludovic Henrio, also involves contributors outside the
CASH team. For the moment Gabriel Radanne (Initially Inria Paris, but joined CASH in 2020) and Lionel
Morel (CEA).

7.2 Direction 2: Expressivity and Scalability of Static Analyses

7.2.1 Decision results for solving Horn Clauses with arrays

Participants Laure Gonnord, Julien Braine.

Many approaches exist for verifying programs operating on Boolean and integer values (e.g. abstract
interpretation, counterexample-guided abstraction refinement using interpolants), but transposing them
to array properties has been fraught with difficulties. In the context of the Phd of Julien Braine, we propose
to work directly on horn clauses, because we think that it is a suitable intermediate representation for
verifying programs.

Currently, two techniques strike out to infer very precise quantified invariants on arrays using Horn
clauses: a quantifier instantiation method [1] and a cell abstraction method that can be rephrased on
Horn clauses. However, the quantifier instantiation method is parametrized by an heuristic and finding
a good heuristic is a major challenge, and the cell abstraction method uses an abstract interpretation
to completely remove arrays and is limited to linear Horn clauses. We combine these two techniques.
We provide an heuristic for the quantifier instantiation method of [26] by using the ideas from the cell
abstraction method of [47] and discover a requirement such that, when met, the heuristic is complete,
that is, there is no loss of information by using that heuristic. Furthermore, we prove that Horn clauses
that come from program semantic translation verify the requirement and therefore, we have an optimal
instantiation technique for program analysis.

20 Inria Annual Report 2020

This work is done in collaboration with David Monniaux (Verimag), coadvisor of the PhD of Julien
Braine. A short versionof the technique has been accepted in [5] The full contribution will be submitted
soon.

7.2.2 Pass Neutralization in LLVM

Participants Laure Gonnord, Avril De Goer de Hervé.

In the context of the CAPESA project, Sebastien Mosser, Jean Privat and Laure Gonnordcoadvised
the master internship of Avril De Goer de Hervé. The objective was to work on the definition and
implementation of Pass Neutralization inside the LLVM compiler.

We proposed a dynamic approach for measuring impact of passes improvement in theLLVMcompiler.
Pursuing the previous work on LLVM cartography, we propose a refinement of the previous collectedi
nformation with fine-grain dynamic analyses by pass neutralization, for which we propose a general
methodology.

A technical report has been produced. We submitted an extended version to the SLE conference, but
unfortunately the paper was rejected. We plan to do further experiments before re-submitting.

7.2.3 Anincremental type-checker for OCaml modules

Participants Gabriel Radanne, Didier Remy, Jacques Garrigue (University of
Nagoya).

Modules are a core feature of ML languages, allowing to assemble pieces of software in a high-level
and composable fashion. OCaml benefits from a particularly rich module system which was originally
described more than two decades ago, but has significantly grown since.

This year, Gabriel Radanne, in collaboration with Didier RéEmy and Jacques Garrigue, started formal-
izing a new module system which combines all of the features that have been introduced since the
last formalization effort by Xavier Leroy. This new system also improves inference and provides a solid
basis for further experiments, such as the “modular implicits” that are currently being investigated
in the cambium inria team. Gabriel Radanne started a “clean room” implementation of a prototype
type-checker for this new module system.

7.2.4 Aformal, compositional, modular and executable semantics for LLVM IR

Participants Yannick Zakowski, Calvin Beck (University of Pennsylvania),
Irene Yoon (University of Pennsylvania), Steve Zdancewic (University
of Pennsylvaniay).

The industrial-strength compilation infrastructure LLVM is particularly centered around an informally
defined intermediate representation named LLVM IR. The correctness of all optimizations, static analyzes
and tools used at the core of LLVM hence rely on a fine understanding of the semantics of this SSA-based
language.

Yannick Zakowski, in collaboration with Calvin Beck, Irene Yoon and Steve Zdancewic from the
University of UPenn, has developed in the Coq proof assistant a new formal semantics for a large
subset of sequential LLVM IR. In contrast with previous formal works, this semantics brings modern
semantic approaches — denotational and exploiting algebraic-effects — to the formal verification of realistic
languages. This feat is achieved by building on the Interaction Trees library that Yannick Zakowski has
developed with co-authors a year prior.

This work is currently submitted at PLDI'21. The associated artifact is available publicly: https:
//github.com/vellvm/vellvm/tree/artifact.

https://github.com/vellvm/vellvm/tree/artifact
https://github.com/vellvm/vellvm/tree/artifact

Project CASH 21

7.2.5 An equational proof of correctness for the HELIX backend

Participants Yannick Zakowski, Calvin Beck (University of Pennsylvania),
Irene Yoon (University of Pennsylvania), llia Zaichuk (Di Gamma),
Vadim Zaliva (Carneggie Mellon University), Steve Zdancewic (Univer-
sity of Pennsylvania).

The SPIRAL project, developped over the last twenty years, is a compilation infrastructure to synthe-
size high performance code for numerical computations from high level mathematical specifications.
The HELIX project is a recent effort to formalize in the Coq proof assistant part of this infrastructure,
developped by Vadim Zaliva during his PhD.

Yannick Zakowski has written with his collaborators a backend for HELIX by compiling down to
Vellvim, the formalization of LLVM IR he has developed. They proved most of this compiler correct — some
operators are not yet covered. The same way Vellvm introduces modern semantic techniques, this proof
of correctness introduces modern proof techniques: we reason compositionaly and equationaly using a
termination sensitive relational program logic, in stark contrast with the traditional simulation diagrams.

This work is currently submitted at ITP’21. The associated artifact is available publicly: https:
//github.com/vzaliva/helix/tree/itp21.

7.3 Direction 3: Compiling and Scheduling Dataflow Programs

7.3.1 FKcC : the Farkas Calculator

Participants Christophe Alias.

We propose a new domain-specific language and a tool, FKCC, to prototype program analyses and
transformations exploiting the affine form of Farkas lemma. Our language is general enough to prototype
in a few lines sophisticated termination and scheduling algorithms. The tool is freely available and may be
tried online via a web interface. We believe that FKCC is the missing chain to accelerate the development
of program analyses and transformations exploiting the affine form of Farkas lemma.

This work has been presented in the IMPACT’20 workshop [2].

7.3.2 On the Verification of Polyhedral Program Transformations

Participants Christophe Alias, Guillaume Iooss, Sanjay Rajopadhye.

This work presents a pragma language to specify a polyhedral program transformation directly in
the code and a verification algorithm able to check the correctness of the specified transformation. Our
language is general enough to specify a loop tiling by an arbitrary polyhedral tile shape (e.g., hexagons,
diamonds, trapezoids), and whose size may depend on a scaling parameter (monoparametric tiling). Our
verification algorithm checks the legality of the proposed transformation, and provides counterexamples
of unsatisfied dependences when it is incorrect. In addition, out tool infers the domain of scaling
parameters where the tiling is not legal. We developed a tool suite implementing these concepts with a
verification tool (mppcheck) and a code generation tool (mppcodegen), that are available and may be
downloaded together with a rich set of examples. We evaluate the performance of the verification and the
code generation on kernels from the PolyBench suite.

This work is achieved in collaboration with Guillaume Iooss (CORSE team) and Sanjay Rajopadhye
(Colorado State University) and will be presented as a regular paper in the HPCS’20 conference (special
session CADO) [3].

https://github.com/vzaliva/helix/tree/itp21
https://github.com/vzaliva/helix/tree/itp21

22 Inria Annual Report 2020

7.3.3 Scheduling Trees

Participants Laure Gonnord, Paul Iannetta.

As a first step to schedule non polyhedral computation kernels, we investigated the tree datastructure.
A large bibliography on tree algorithmics and complexity leds us to chose to work on balanced binary
trees, for which we have designed algorithms to change their memory layout into adjacent arrays. We
rephrased the classical algorithms (construction, search, destruction...) in this setting, and implemented
them in C.

The results of the experimentation and the new data layout have been accepted at the COMPAS french
conference[12] and as a short CGO paper. Further promising experiments with openMP and a benchmark
coming from the ocaml typer (with Gabriel Radanne) are currently done.

This work is done in collaboration with Lionel Morel (CEA Grenoble), coadvisor of the PhD of Paul
lannetta.

7.3.4 Formalisation of the Polyhedral Model

Participants Laure Gonnord, Paul Iannetta.

Last year, together with Lionel Morel (Insa/CEA) and Tomofumi Yuki (Inria, Rennes), we revisited
the polyhedral model’s key analysis, dependency analysis, published in a research report [41]. This year
we pursued in this direction. We have now a better formalisation, and a better understanding of the
expressivity and applicability.

We still have one step to study in order to be able to have a full semantic polyhedral model: properly
formalise code scheduling and code generation within our semantic model. Code sheduling is under
progress.

This work is made in collaboration with Lionel Morel (CEA Grenoble) who coadvise Paul Iannetta.

7.4 Direction 4: HLS-specific Dataflow Optimizations

7.4.1 Data-aware Process Networks

Participants Christophe Alias, Alexandru Plesco.

With the emergence of reconfigurable FPGA circuits as a credible alternative to GPUs for HPC acceler-
ation, new compilation paradigms are required to map high-level algorithmic descriptions to a circuit
configuration (High-Level Synthesis, HLS). In particular, novel parallelization algorithms and interme-
diate representations are required. In this work, we present the data-aware process networks (DPN), a
dataflow intermediate representation suitable for HLS in the context of high-performance computing.
DPN combines the benefits of a low-level dataflow representation — close to the final circuit — and affine
iteration space tiling to explore the parallelization trade-offs (local memory size, communication volume,
parallelization degree). We outline our compilation algorithms to map a C program to a DPN (front-
end), then to map a DPN to an FPGA configuration (back-end). Finally, we present synthesis results on
compute-intensive kernels from the Polybench suite.

The results of this work have been transferred to the XtremLogic startup, it will be presented as a
regular paper in the CC’21 conference.

7.5 Direction 5: Simulation of Hardware

7.5.1 Standard-compliant Parallel SystemC simulation of Loosely-Timed Transaction Level Models

Project CASH 23

Participants Matthieu Moy.

To face the growing complexity of System-on-Chips (SoCs) and their tight time-tomarket constraints,
Virtual Prototyping (VP) tools based on SystemC/TLM must get faster while keeping accuracy. However,
the Accellera SystemC reference implementation remains sequential and cannot leverage the multiple
cores of modern workstations. In this paper, we present a new implementation of a parallel and standard-
compliant SystemC kernel, reaching unprecedented performances. By coupling a parallel SystemC kernel
and memory access monitoring, we are able to keep SystemC atomic thread evaluation while leveraging
the available host cores. Evaluations show a x19 speed-up compared to the Accellera SystemC kernel
using 33 host cores reaching speeds above 2000 Million simulated Instructions Per Second (MIPS). In
2020, we extended the approach to allow running full-stack simulation including hardware, advanced
operating system such as Linux, and application, which raises new issues (virtual memory, heavy use of
lockless synchronization in the kernel, ...).

This work was be published at the ASP-DAC 2020 conference [6], and an extended journal version was
accepted in 2021. The Ph.D Thesis of Gabriel Busnot on the subject was defended in December 2020.

7.5.2 Simulation of the Portals 4 protocol, and case study on the BXI interconnect

Participants Julien Emmanuel, Ludovic Henrio, Matthieu Moy.

In the context of Julien Emmanuel’s CIFRE Ph.D, in collaboration with Atos/Bull, we present a new
network simulator, which models the Portals 4 communication protocol used in High Performance Com-
puting (HPC). It is built on top of SimGrid and uses cooperative actors to model the interactions between
compute nodes in a supercomputer. Unlike most simulators in HPC, it models both communications on
the interconnect and on the PCle network inside each compute node, whithout going for a full emulation
of the hardware. The simulator can be used to optimize or debug an application without having to use an
actual supercomputer. This is made possible by leveraging SimGrid’s flow model and it enables accurate
simulation with good performances, even when running the model on a laptop. We test this simulator
with custom experiments as well as existing Portals code, and compare the results with Portals executions
on an actual cluster using Atos’ BXI interconnect. The simulator is currently being extended to support
unmodified MPI applications.

This work was published at the MSPDS workshop of the HPCS conference [8].

7.5.3 Response time analysis of dataflow applications on a many-core processor with shared-memory
and network-on-chip

Participants Matthieu Moy.

In RTNS 2016, Rihani et al. [55] proposed an algorithm to compute the impact of interference on
memory accesses on the timing of a task graph. It calculates a static, time-triggered schedule, i.e. a
release date and a worst-case response time for each task. The task graph is a DAG, typically obtained by
compilation of a high-level dataflow language, and the tool assumes a previously determined mapping
and execution order. The algorithm is precise, but suffers from a high O(n*) complexity, n being the
number of input tasks. Since we target many-core platforms with tens or hundreds of cores, applications
likely to exploit the parallelism of these platforms are too large to be handled by this algorithm in
reasonable time.

This paper proposes a new algorithm that solves the same problem. Instead of performing global
fixed-point iterations on the task graph, we compute the static schedule incrementally, reducing the
complexity to O(N?). Experimental results show a reduction from 535 seconds to 0.90 seconds on a
benchmark with 384 tasks, i.e. 593 times faster.

24 Inria Annual Report 2020

This work was published at DATE 2020 [7].

8 Bilateral contracts and grants with industry

CIFRE Ph.D of Julien Emmanuel with Bull/Atos, hosted by Inria. 2020-2023.

9 Partnerships and cooperations

9.1 International initiatives

CAPESA

Title: CharActerisation of Program Evolution with Static Analyses
Duration: 2020 - 2022

Coordinator: Laure Gonnord

Partners:

e Computer Science Department at Université du Québec a Montréal (UQAM), ACE research
group (https://ace-design.github.io/)., Université du Québec A Montréal (Canada)

Inria contact: Laure Gonnord

Summary: In this project we propose to study code transformation in terms of "semantic diff". This
notion will be defined thanks to code intermediate representations such as Abstract Syntax Trees
(AST) or the control flow graph, not by textual representation. The objective is not only to compute
but also to manipulate these "diffs" in several contexts: being able to reapply a diff on another
program than the one it comes from, quantify the interference between two diffs, and more
generally to study the composability of several diffs. The approach will be experimentally validated
on problems coming from the domain of expertise of both teams of the cooperation: compiler pass
analyses (expertise of CASH), and git commits (expertise of UQAM). The complementarity of the
analysis and compilation approaches of the CASH team and the expertise on software engineering
of the UQAM member will ensure the success and the originality of the project.

9.1.1 Participation in other international programs
PolyTrace exploratory action

Title: PolyTrace - Compiling from execution traces
Duration: 2020 - 2024

Coordinator: Christophe Alias

Partners:

* Prof. Keiji Kimura, Waseda University, Tokyo, Japan
Inria contact: Christophe Alias

Summary: In this project, we propose a new paradigm for compiler optimization: given several opti-
mized execution traces, learn a compiler optimization which produces the same effects (same
schedule, same parallelism, same memory allocation). We focus on regular programs and poly-
hedral compilation, where we believe the properties of regularity enable such an inference. The
approach will be applied to buffer sizing, then to polyhedral scheduling.

https://ace-design.github.io/

Project CASH 25

9.1.2 ANR

¢ Laure Gonnord’s “Jeune Chercheur” ANR, CODAS, has started in January 2018 (42 months).

10 Dissemination

10.1 Promoting scientific activities
10.1.1 Scientific events: organisation

General chair, scientific chair

¢ Laure Gonnord is in the steering commitee of the NSAD (Numerical and Symbolic Abstract Do-
mains), from 2019

10.1.2 Scientific events: selection

Chair of conference program committees

¢ Christophe Alias was PC chair for the computer architecture track of Compas’20, a French confer-
ence on computer architecture and operating systems.

Member of the conference program committees
¢ Matthieu Moy was PC member at Emsoft’2020

¢ Laure Gonnord was PC member at POPL'2021 and CC’2021

10.1.3 Invited talks

¢ Laure Gonnord was invited in the IRIF "PPS Seminar" in November 2020.

10.1.4 Leadership within the scientific community

¢ Laure Gonnord belongs to the national board of the GDR GPL (starting 2021) and chair of the
associated Junior School.

¢ Ludovic Henrio is now leading the new compilation and language group of the GDR GPL (starting
2021).
10.1.5 Scientific expertise

¢ Christophe Alias is scientific advisor (concours scientifique) for the XTREMLOGIC start-up.

10.2 Teaching - Supervision - Juries
10.2.1 Teaching

e Bachelor (“Licence”):

Christophe Alias, Compilation, CM+TD, 27h, 3A, INSA Centre Val de Loire. (2020)
Matthieu Moy, Concurrent Programming, CM+TD+TP, 57h, L3, UCBL. (2020)

Matthieu Moy, Recursive Programming, TD+TP, 28h, L1, UCBL. (2020)

Matthieu Moy, Git, CM+TP: 12h, L3, UCBL. (2020)

- Amaury Maillé, Concurrent Programming, 8h TD, 16h TP, L3, UCBL. (2020)

— Amaury Maillé, Algorithms and Object-Oriented Programming, 28h TP, L3, UCBL. (2020)

- Julien Emmanuel, Programmation fonctionnelle pour le WEB, TP, 28h, L2, UCBL. (2020)

26

Inria Annual Report 2020

- Julien Emmanuel, Base de données et Programmation WEB, TP, 22h, L2, UCBL. (2020)
— Julien Braine, Architecture et Systémes (ASR1), TP/TD 32h. L3, ENSL (2020)
- Laure Gonnord, Systemes (ASR 5), CM+TD+TP (half online), 29h, L2, Lyon1
Master:
— Christophe Alias, Compiler optimizations for embedded applications, CM+TD, 27h, 4A, INSA

Centre Val de Loire. (2020)

— Christophe Alias and Matthieu Moy, Hardware Compilation and Simulation, CM+TD, 32h,
M2 Informatique Fondamentale, ENS de Lyon. (2020)

- Matthieu Moy, Software Engineering, CM+TD+TP, 25h, M1, UCBL. (2020)
— Paul Iannetta, Software Engineering, TP, 16.5h, M1, UCBL. (2020)

- Matthieu Moy, Compilation and program transformations, TD+TP, 22,5h, CM: 7.5h. M1, UCBL.
(2020, Sept-Jan 21)

- Matthieu Moy, Compilation and program transformations, TD+TPB 22,5h, CM: 7.5h. M1, UCBL.
(2020, Jan: intensive course)

— Laure Gonnord, Préparation au concours du CAPES-NSI, 50h, CM, TD, TP, Lyon1 (2020).

- Laure Gonnord, Ludovic Henrio, Gabriel Radanne and Yannick Zakowski, Compilation and
Program Analysis, video recording and online courses, total 26 hours CM, ENSL (2020)

- Paul Iannetta and Gabriel Radanne, Compilation and Program Analysis, online labs, 28h each
(2020).

— Amaury Maillé, Advanced Programming, 15 h TP, M1, UCBL. (2020)

- Ludovic Henrio, “An algorithmic approach to distributed systems”, 6h (CM+TD), M2, Univer-
sity of Nice Sophia-Antipolis.

10.2.2 Supervision

L]

Defended PhD: Gabriel Busnot, “Accélération SystemC pour la co-simulation multi-physique et
la simulation de modeéles hétérogénes en complexité”, Univ. Lyon 1, started in october 2017,
supervised by Matthieu Moy (LIP) and Tanguy Sassolas (CEA-LIST).

PhD in progress (from Sept. 2018): Paul Iannetta “Complex data structures scheduling for optimiz-
ing compilers”, supervised by Lionel Morel (CITI/CEA) and Laure Gonnord (LIP).

PhD in progress (from Sept. 2018): Julien Braine “Horn Clauses as an Efficient Intermediate
Representation for Data Structure Verification”, supervised by David Monniaux (CNRS/Verimag)
and Laure Gonnord (LIP).

Defended PhD: Pierre Leca, “Distributed BSP: Active Objects for BSPlib programs”, CIFRE Huawei/UNS,
started in August 2017, supervised by Gaétan Hains (Huawei), Wijnand Suijlen (Huawei), Francoise
Baude (UNS./13S), Ludovic Henrio (LIP).

PhD in progress: Amaury Maillé, “Programming model to assemble compute kernels safely and
efficiently: Future- based synchronization for arrays and matrices”, ENS Lyon, supervised by
Matthieu Moy and Ludovic Henrio. Started in October 2019, supervised by Gaétan Hains (Huawei),
Wijnand Suijlen (Huawei), Francoise Baude (UNS./13S), Ludovic Henrio (LIP).

10.2.3 Juries

Christophe Alias was reviewer for the PhD thesis of Harenome Razanajato, "Polyhedral Code
Generation: Reducing Overhead and Increasing Parallelism", University of Strasbourg (September
2020)

Christophe Alias is oral examiner for the second concours of ENS de Lyon.

Project CASH 27

¢ Laure Gonnord was jury member for the Concours d’admission de I’Agrégation de Sciences Indus-
trielles, spécialité Informatique Industrielle, in June 2019 and 2020.

¢ Laure Gonnord was jury member for the Junior Inria research positions selection of the Bordeaux
Inria center and the National Inria selection in Spring 2020.

¢ Laure Gonnord was external jury member for the PhD defense of Nicolas Szlifierski, IMT Atlantique.
“Controle str de chaines d’obfuscations logicielles” (December 2020)

¢ Laure Gonnord was external jury member for the PhD defense of Rémy Griiblatt, Univ. Lyonl.
“From WiFi Performance Evaluation to Controlled Mobility in Drone Networks” (January 2021)

Matthieu Moy was reviewer for the Ph.D of Riyane SID LAKHDAR, “Methodology for Code-Optimization
of Memory Data-Layouts for High-Performance-System Architectures with Complex Memory Hier-
archies” (CEA Grenoble).

10.3 Popularization
10.3.1 Education

¢ Video “Polyedres et synthése de programmes” by Christophe Alias for the cycle de conférences NSI,
sponsored by Inria for the purpose of high-school teachers.

11 Scientific production

11.1 Publications of the year
International journals

[1]1 L. Henrio, C. Kessler and L. Li. ‘Leveraging access mode declarations in a model for memory consis-
tency in heterogeneous systems’. In: Journal of Logical and Algebraic Methods in Programming 110
(Jan. 2020), pp. 1-17. DOI: 10.1016/j. jlamp.2019.100498. URL: https://hal.archives-ouv
ertes.fr/hal-02331964.

International peer-reviewed conferences

[2] C. Alias. ‘Farkas Lemma made easy’. In: 10th International Workshop on Polyhedral Compilation
Techniques (IMPACT 2020). Bologna, Italy, 22nd Dec. 2019, pp. 1-6. URL: https://hal.inria.fr
/hal-02422033.

[3] C.Alias, G. Iooss and S. Rajopadhye. ‘On the Verification of Polyhedral Program Transformations’.
In: 18th International Conference on High Performance Computing & Simulation (HPCS 2020),
3rd Special Session on Compiler Architecture, Design and Optimization (CADO 2020). Barcelona,
Spain, 25th Jan. 2020. URL: https://hal.archives-ouvertes.fr/hal-03106070.

[4] C. Alias and A. Plesco. ‘Data-Aware Process Networks’. In: Proceedings of the 30th ACM SIGPLAN
International Conference on Compiler Construction. Virtual, South Korea, 2nd Mar. 2021. DOI:
10.1145/3446804 .3446847. URL: https://hal.inria.fr/hal-03143777.

[5] J.Braine and L. Gonnord. ‘Proving array properties using data abstraction’. In: Numerical and
Symbolic Abstract Domains (NSAD). Virtual, United States, 24th Sept. 2020. URL: https://hal.ar
chives-ouvertes.fr/hal-02948081.

[6] G.Busnot, T. Sassolas, N. Ventroux and M. Moy. ‘Standard-compliant Parallel SystemC simulation
of Loosely-Timed Transaction Level Models’. In: ASP-DAC 2020 - 25th Asia and South Pacific Design
Automation Conference. Beijing, China: https://aspdac2020.github.io/aspdac20/, 13th Jan.
2020, pp. 1-6. URL: https://hal.archives-ouvertes.fr/hal-02416253.

https://doi.org/10.1016/j.jlamp.2019.100498
https://hal.archives-ouvertes.fr/hal-02331964
https://hal.archives-ouvertes.fr/hal-02331964
https://hal.inria.fr/hal-02422033
https://hal.inria.fr/hal-02422033
https://hal.archives-ouvertes.fr/hal-03106070
https://doi.org/10.1145/3446804.3446847
https://hal.inria.fr/hal-03143777
https://hal.archives-ouvertes.fr/hal-02948081
https://hal.archives-ouvertes.fr/hal-02948081
https://aspdac2020.github.io/aspdac20/
https://hal.archives-ouvertes.fr/hal-02416253

28 Inria Annual Report 2020

[71 M. Dupont De Dinechin, M. Schuh, M. Moy and C. Maiza. ‘Scaling Up the Memory Interference
Analysis for Hard Real-Time Many-Core Systems’. In: DATE 2020 - Design, Automation and Test in
Europe Conference. Grenoble, France, 9th Mar. 2020, pp. 1-4. URL: https://hal.archives-ouv
ertes.fr/hal-02431273.

[8] J. Emmanuel, M. Moy, L. Henrio and G. Pichon. ‘Simulation of the Portals 4 protocol, and case
study on the BXI interconnect’. In: HPCS 2020 - International Conference on High Performance
Computing & Simulation. Barcelona, Spain: http://hpcs2020.cisedu. info, 10th Dec. 2020,
pp- 1-8. URL: https://hal.archives-ouvertes.fr/hal-02972297.

[9] L.Henrio, E. B.Johnsen and V. K. I. Pun. ‘Active Objects with Deterministic Behaviour’. In: Integrated
Formal Methods. IFM 2020. Integrated Formal Methods. IFM 2020. Lugano, Switzerland, 13th Nowv.
2020, pp. 181-198. DOI: 10.1007/978-3-030-63461-2_10. URL: https://hal.archives-ouve
rtes.fr/hal-03008405.

[10] P Leca, W. Suijlen, L. Henrio and E Baude. ‘Distributed futures for efficient data transfer between
parallel processes’. In: SAC 2020 - 35th ACM/SIGAPP Symposium On Applied Computing. Brno,
Czech Republic, 30th Mar. 2020. DOI: 10.1145/3341105.3374104. URL: https://hal.archive
s-ouvertes.fr/hal-02417953.

[11] A. Maillé, L. Henrio and M. Moy. ‘Promise Plus: Flexible Synchronization for Parallel Computations
on Arrays’. In: Lecture Notes in Computer Science. 9th IPM International Conference on Fundamen-
tals of Software Engineering. Tehran, Iran, 19th May 2021. URL: https://hal.archives-ouvert
es.fr/hal-03143269.

Conferences without proceedings

[12] P Iannetta, L. Gonnord and L. Morel. ‘On optimizing scalar self-rebalancing trees’. In: COMPAS
2020 - Conférence francophone d’informatique en Parallélisme, Architecture et Systeme. Lyon,
France, 2020. URL: https://hal.archives-ouvertes.fr/hal-03048742.

Reports & preprints

[13] P Iannetta, L. Gonnord and L. Morel. On optimizing scalar self-rebalancing trees. LYON, France:
INRIA, LIP; Inria - Research Centre Grenoble — Rhone-Alpes; Université de Lyon I Claude Bernard,
2020. URL: https://hal.inria.fr/hal-02573052.

[14] G.Iooss, C. Alias and S. Rajopadhye. Monoparametric Tiling of Polyhedral Programs. 3rd Jan. 2021.
URL:https://hal.inria.fr/hal-02493164.

11.2 Other

Softwares

[15] [SW] H. Renaud, Fut on Flow, 6th Aug. 2020. HAL: (hal-02908763), URL: https://hal.archiv
es-ouvertes.fr/hal-02908763, vCs: https://gitlab.inria.fr/datafut/fut-on-flow,
SWHID: (swh:1:dir:409184eb3c27c62e3f£996elbla7baf41c5b3153;origin=https://hal
.archives-ouvertes.fr/hal-02908763;visit=swh:1:snp:9a972df7a%a7d45584256fc07
22e03a27d211154 ;anchor=swh:1:rev:£c074c0539a309fefc4d51c77£5816bc054a5fd6 ; pa
th=/).

11.3 Cited publications
[16] D. Caromel and L. Henrio. A Theory of Distributed Objects. Springer-Verlag, 2004.

[17] C.Alias, A. Darte, P. Feautrier and L. Gonnord. ‘Multi-dimensional Rankings, Program Termination,
and Complexity Bounds of Flowchart Programs’. In: International Static Analysis Symposium
(SAS’10). 2010.

[18] C. Alias and A. Plesco. Data-aware Process Networks. Research Report RR-8735. Inria - Research
Centre Grenoble — Rhéne-Alpes, June 2015, p. 32. URL: https://hal.inria.fr/hal-01158726.

https://hal.archives-ouvertes.fr/hal-02431273
https://hal.archives-ouvertes.fr/hal-02431273
http://hpcs2020.cisedu.info
https://hal.archives-ouvertes.fr/hal-02972297
https://doi.org/10.1007/978-3-030-63461-2_10
https://hal.archives-ouvertes.fr/hal-03008405
https://hal.archives-ouvertes.fr/hal-03008405
https://doi.org/10.1145/3341105.3374104
https://hal.archives-ouvertes.fr/hal-02417953
https://hal.archives-ouvertes.fr/hal-02417953
https://hal.archives-ouvertes.fr/hal-03143269
https://hal.archives-ouvertes.fr/hal-03143269
https://hal.archives-ouvertes.fr/hal-03048742
https://hal.inria.fr/hal-02573052
https://hal.inria.fr/hal-02493164
https://hal.archives-ouvertes.fr/hal-02908763
https://hal.archives-ouvertes.fr/hal-02908763
https://hal.archives-ouvertes.fr/hal-02908763
https://gitlab.inria.fr/datafut/fut-on-flow
http://archive.softwareheritage.org/swh:1:dir:409184eb3c27c62e3ff996e1b1a7baf41c5b3153;origin=https://hal.archives-ouvertes.fr/hal-02908763;visit=swh:1:snp:9a972df7a9a7d45584256fc0722e03a27d211154;anchor=swh:1:rev:fc074c0539a309fefc4d51c77f5816bc054a5fd6;path=/
http://archive.softwareheritage.org/swh:1:dir:409184eb3c27c62e3ff996e1b1a7baf41c5b3153;origin=https://hal.archives-ouvertes.fr/hal-02908763;visit=swh:1:snp:9a972df7a9a7d45584256fc0722e03a27d211154;anchor=swh:1:rev:fc074c0539a309fefc4d51c77f5816bc054a5fd6;path=/
http://archive.softwareheritage.org/swh:1:dir:409184eb3c27c62e3ff996e1b1a7baf41c5b3153;origin=https://hal.archives-ouvertes.fr/hal-02908763;visit=swh:1:snp:9a972df7a9a7d45584256fc0722e03a27d211154;anchor=swh:1:rev:fc074c0539a309fefc4d51c77f5816bc054a5fd6;path=/
http://archive.softwareheritage.org/swh:1:dir:409184eb3c27c62e3ff996e1b1a7baf41c5b3153;origin=https://hal.archives-ouvertes.fr/hal-02908763;visit=swh:1:snp:9a972df7a9a7d45584256fc0722e03a27d211154;anchor=swh:1:rev:fc074c0539a309fefc4d51c77f5816bc054a5fd6;path=/
https://hal.inria.fr/hal-01158726

Project CASH 29

(19]

(20]

(21]

(22]
(23]

(24]

(25]

(26]

(27]

[28]

(29]

(30]

(31]

(32]

[33]

C. Alias and A. Plesco. Method of Automatic Synthesis of Circuits, Device and Computer Program
associated therewith. Patent FR1453308. Apr. 2014.

C. Alias and A. Plesco. ‘Optimizing Affine Control with Semantic Factorizations’. In: ACM Transac-
tions on Architecture and Code Optimization (TACO) 14.4 (Dec. 2017), p. 27.

I. Amer, C. Lucarz, G. Roquier, M. Mattavelli, M. Raulet, J.-E Nezan and O. Deforges. ‘Reconfigurable
video coding on multicore’. In: Signal Processing Magazine, IEEE 26.6 (2009), pp. 113-123. URL:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5230810.

S. Ananian. ‘The Static Single Information Form’. MA thesis. MIT, Sept. 1999.

C. B. Aoun, L. Andrade, T. Maehne, E Pécheux, M.-M. Louérat and A. Vachouxy. ‘Pre-simulation
elaboration of heterogeneous systems: The SystemC multi-disciplinary virtual prototyping ap-
proach’. In: Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2015
International Conference on. IEEE. 2015, pp. 278-285.

P. Aubry, P-E. Beaucamps, E Blanc, B. Bodin, S. Carpov, L. Cudennec, V. David, P. Doré, P. Dubrulle,
B. Dupont De Dinechin, E Galea, T. Goubier, M. Harrand, S. Jones, J.-D. Lesage, S. Louise, N. Morey
Chaisemartin, T. H. Nguyen, X. Raynaud and R. Sirdey. ‘Extended Cyclostatic Dataflow Program
Compilation and Execution for an Integrated Manycore Processor’. In: Alchemy 2013 - Architecture,
Languages, Compilation and Hardware support for Emerging ManYcore systems. Vol. 18. Proceed-
ings of the International Conference on Computational Science, ICCS 2013. Barcelona, Spain, June
2013, pp. 1624-1633. DOI: 10.1016/j .procs.2013.05.330. URL: https://hal.inria.fr/hal-
00832504.

D. Becker, M. Moy and J. Cornet. ‘Parallel Simulation of Loosely Timed SystemC/TLM Programs:
Challenges Raised by an Industrial Case Study’. In: MDPI Electronics 5.2 (2016). Ed. by E Rousseau,
G. Nicolescu, A. Baghdadi and M. Bassiouni, p. 22. DOI: 10.3390/electronics5020022. URL:
https://hal.archives-ouvertes.fr/hal-01321055.

N. Bjorner, K. McMillan and A. Rybalchenko. ‘On Solving Universally Quantified Horn Clauses’.
In: Static Analysis: 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013.
Proceedings. Ed. by E Logozzo and M. Fahndrich. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 105-125. URL: http://dx.doi.org/10.1007/978-3-642-38856-9_8.

P. Cousot and R. Cousot. ‘Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints’. In: 4th ACM Symposium on Principles of
Programming Languages (POPL'77). Los Angeles, Jan. 1977, pp. 238-252.

E De Boer, V. Serbanescu, R. Hihnle, L. Henrio, J. Rochas, C. C. Din, E. Broch Johnsen, M. Sirjani,
E. Khamespanah, K. Fernandez-Reyes and A. M. Yang. ‘A Survey of Active Object Languages’. In:
ACM Comput. Surv. 50.5 (Oct. 2017), 76:1-76:39. DOI: 10.1145/3122848. URL: http://doi.acm
.org/10.1145/3122848.

P, Feautrier. ‘Dataflow analysis of array and scalar references’. In: International Journal of Parallel
Programming 20.1 (1991), pp. 23-53.

P, Feautrier. ‘Scalable and Structured Scheduling’. In: International Journal of Parallel Programming
34.5 (Oct. 2006), pp. 459-487.

P. Feautrier, A. Gamatié and L. Gonnord. ‘Enhancing the Compilation of Synchronous Dataflow
Programs with a Combined Numerical-Boolean Abstraction’. In: CSI Journal of Computing 1.4
(2012), 8:86-8:99. URL: http://hal.inria.fr/hal-00860785.

K. Fernandez-Reyes, D. Clarke, E. Castegren and H.-P. Vo. ‘Forward to a Promising Future’. In:
Conference proceedings COORDINATION 2018. 2018.

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. Broch Johnsen and T. Wrigstad. ‘Godot: All the Benefits
of Implicit and Explicit Futures’. In: ECOOP 2019 - 33rd European Conference on Object-Oriented
Programming. Leibniz International Proceedings in Informatics (LIPIcs). London, United Kingdom,
July 2019, pp. 1-28. URL: https://hal.archives-ouvertes.fr/hal-02302214.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5230810
https://doi.org/10.1016/j.procs.2013.05.330
https://hal.inria.fr/hal-00832504
https://hal.inria.fr/hal-00832504
https://doi.org/10.3390/electronics5020022
https://hal.archives-ouvertes.fr/hal-01321055
http://dx.doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1145/3122848
http://doi.acm.org/10.1145/3122848
http://doi.acm.org/10.1145/3122848
http://hal.inria.fr/hal-00860785
https://hal.archives-ouvertes.fr/hal-02302214

30

Inria Annual Report 2020

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

(43]

(44]

[45]

(46]

(47]

(48]

(49]

[50]

(51]

R. Fontaine, L. Gonnord and L. Morel. ‘Polyhedral Dataflow Programming: a Case Study’. In:
SBAC-PAD 2018 - 30th International Symposium on Computer Architecture and High-Performance
Computing. Lyon, France: IEEE, Sept. 2018, pp. 1-9. URL: https://hal-cea.archives-ouverte
s.fr/cea-01855997.

L. Gonnord, P. Iannetta and L. Morel. Semantic Polyhedral Model for Arrays and Lists. Research
Report RR-9183. Inria Grenoble Rhéne-Alpes ; UCBL ; LIP - ENS Lyon ; CEA List, June 2018. URL:
https://hal.archives-ouvertes.fr/hal-01815759.

M. I. Gordon. ‘Compiler techniques for scalable performance of stream programs on multicore
architectures’. PhD thesis. Massachusetts Institute of Technology. Dept. of Electrical Engineering
and Computer Science, 2010.

0. Hakjoo, L. Wonchan, H. Kihong, Y. Hongseok and Y. Kwangkeun. ‘Selective context-sensitivity
guided by impact pre-analysis’. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI '14, Edinburgh, United Kingdom - June 09 - 11, 2014. ACM, 2014, p. 49.

N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud. ‘The synchronous data flow programming
language LUSTRE'. In: Proceedings of the IEEE 79.9 (Sept. 1991), pp. 1305-1320.

L. Henrio. Data-flow Explicit Futures. Research Report. I3S, Université Cote d’Azur, Apr. 2018. URL:
https://hal.archives-ouvertes.fr/hal-01758734.

M. Duranton, D. Black-Schaffer, K. De Bosschere and J. Maebe. The HIPEAC VISION FOR AD-
VANCED COMPUTING IN HORIZON 2020, ht tps : //www.hipeac.net /v 13.2013. URL:
https://www.hipeac.net/v13.

P Iannetta, L. Gonnord, L. Morel and T. Yuki. Semantic Array Dataflow Analysis. Research Report
RR-9232. Inria Grenoble Rhone-Alpes, Dec. 2018, pp. 1-22. URL: https://hal.archives-ouver
tes.fr/hal-01954396.

IEEE 1666 Standard: SystemC Language Reference Manual. Open SystemC Initiative. 2011. URL:
http://www.accellera.org/.

G. Kahn. ‘The semantics of a simple language for parallel programming’. In: Information processing.
North-Holland, 1974.

A. Krizhevsky, 1. Sutskever and G. E. Hinton. ‘Imagenet classification with deep convolutional
neural networks’. In: Advances in neural information processing systems. 2012, pp. 1097-1105.

M. Maalej, V. Paisante, P. Ramos, L. Gonnord and E Pereira. ‘Pointer Disambiguation via Strict
Inequalities’. In: Code Generation and Optimisation. Austin, United States, Feb. 2017. URL: https:
//hal.archives-ouvertes.fr/hal-01387031.

M. Maalej Kammoun. ‘Low-cost memory analyses for efficient compilers’. These de doctorat,
Université Lyonl. PhD thesis. Université Lyon 1, 2017. URL: http://www.theses.fr/2017LYSE1l
167.

D. Monniaux and L. Gonnord. ‘Cell morphing: from array programs to array-free Horn clauses’. In:
23rd Static Analysis Symposium (SAS 2016). Ed. by X. Rival. Static Analysis Symposium. Edimbourg,
United Kingdom, Sept. 2016. URL: https://hal.archives-ouvertes.fr/hal-01206882.

M. Moy. ‘Parallel Programming with SystemC for Loosely Timed Models: A Non-Intrusive Approach’.
In: DATE. Grenoble, France, Mar. 2013, p. 9. URL: https://hal.archives-ouvertes.fr/hal-0
0761047.

OSCI TLM-2.0 Language Reference Manual. Open SystemC Initiative (OSCI). June 2008. URL: http:
//wuw.accellera.org/downloads/standards.

V. Paisante, M. Maalej, L. Barbosa, L. Gonnord and E M. Q. Pereira. ‘Symbolic Range Analysis of
Pointers’. In: International Symposium of Code Generation and Optmization. Barcelon, Spain, Mar.
2016, pp. 791-809. URL: https://hal.inria.fr/hal-01228928.

A. Plesco. ‘Program Transformations and Memory Architecture Optimizations for High-Level
Synthesis of Hardware Accelerators’. Theses. Ecole normale supérieure de lyon - ENS LYON, Sept.
2010. URL: https://tel.archives-ouvertes.fr/tel-00544349.

https://hal-cea.archives-ouvertes.fr/cea-01855997
https://hal-cea.archives-ouvertes.fr/cea-01855997
https://hal.archives-ouvertes.fr/hal-01815759
https://hal.archives-ouvertes.fr/hal-01758734
https://www.hipeac.net/v13
https://www.hipeac.net/v13
https://hal.archives-ouvertes.fr/hal-01954396
https://hal.archives-ouvertes.fr/hal-01954396
http://www.accellera.org/
https://hal.archives-ouvertes.fr/hal-01387031
https://hal.archives-ouvertes.fr/hal-01387031
http://www.theses.fr/2017LYSE1167
http://www.theses.fr/2017LYSE1167
https://hal.archives-ouvertes.fr/hal-01206882
https://hal.archives-ouvertes.fr/hal-00761047
https://hal.archives-ouvertes.fr/hal-00761047
http://www.accellera.org/downloads/standards
http://www.accellera.org/downloads/standards
https://hal.inria.fr/hal-01228928
https://tel.archives-ouvertes.fr/tel-00544349

Project CASH 31

(52]

[53]

(54]

(53]

(56]

[57]

[58]

[59]

(60]

(61]

[62]

[63]

(64]

(65]

L.-N. Pouchet. Polybench: The polyhedral benchmark suite. 2012. URL: http://www.cs.ucla.edu
/~pouchet/software/polybench/.

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. ‘Numerical recipes in C++’. In: The
art of scientific computing (2015).

P. Quinton. ‘Automatic synthesis of systolic arrays from uniform recurrent equations’. In: ACM
SIGARCH Computer Architecture News 12.3 (1984), pp. 208-214.

H. Rihani, M. Moy, C. Maiza, R. I. Davis and S. Altmeyer. ‘Response time analysis of synchronous
data flow programs on a many-core processor’. In: RTNS. ACM. 2016, pp. 67-76.

H. Rihani, M. Moy, C. Maiza, R. I. Davis and S. Altmeyer. ‘Response Time Analysis of Synchronous
Data Flow Programs on a Many-Core Processor’. In: Proceedings of the 24th International Conference
on Real-Time Networks and Systems. RTNS ’16. Brest, France: ACM, 2016, pp. 67-76. DOI: 10.1145
/2997465.2997472. URL: http://doi.acm.org/10.1145/2997465.2997472.

H. N. W. Santos, I. Maffra, L. Oliveira, E Pereira and L. Gonnord. ‘Validation of Memory Accesses
Through Symbolic Analyses’. In: Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages And Applications (OOPSLA’'14). Portland, Oregon, United
States, Oct. 2014. URL: http://hal.inria.fr/hal-01006209.

B. da Silva, A. Braeken, E. H. D’'Hollander and A. Touhafi. ‘Performance modeling for FPGAs: extend-
ing the roofline model with high-level synthesis tools’. In: International Journal of Reconfigurable
Computing 2013 (2013), p. 7.

W. Thies. ‘Language and compiler support for stream programs’. PhD thesis. Massachusetts Insti-
tute of Technology, 2009.

J. Travis and J. Kring. LabVIEW for everyone: graphical programming made easy and fun. Prentice-
Hall, 2007.

A. Turjan. ‘Compiling Nested Loop Programs to Process Networks’. PhD thesis. Universiteit Leiden,
2007.

N. Ventroux and T. Sassolas. ‘A new parallel SystemC kernel leveraging manycore architectures’. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016. 1EEE. 2016, pp. 487-492.

S. Verdoolaege. ‘Polyhedral Process Networks'. In: Handbook of Signal Processing Systems. Springer,
2010, pp. 931-965.

S. Williams, A. Waterman and D. Patterson. ‘Roofline: an insightful visual performance model for
multicore architectures’. In: Communications of the ACM 52.4 (2009), pp. 65-76.

P. Wilmott. Quantitative Finance. Wiley, 2006.

http://www.cs.ucla.edu/~pouchet/software/polybench/
http://www.cs.ucla.edu/~pouchet/software/polybench/
https://doi.org/10.1145/2997465.2997472
https://doi.org/10.1145/2997465.2997472
http://doi.acm.org/10.1145/2997465.2997472
http://hal.inria.fr/hal-01006209

	Project-Team CASH
	Team members, visitors, external collaborators
	Overall objectives
	Overall Objectives

	Research program
	Definition of dataflow representations of parallel programs
	Expected Impact
	Scientific Program

	Expressivity and Scalability of Static Analyses
	Expected impact
	Scientific Program

	Compiling and Scheduling Dataflow Programs
	Expected impact
	Scientific Program

	HLS-specific Dataflow Optimizations
	Expected Impact
	Scientific Program

	Simulation of Hardware
	Expected Impact
	Scientific Program

	Application domains
	Social and environmental responsibility
	Footprint of research activities
	Impact of research results

	New software and platforms
	New software
	DCC
	PoCo
	MPPcodegen
	Encore with dataflow explicit futures
	odoc
	calv
	mppcheck
	fkcc
	Vellvm

	New results
	Direction 1: Definition of Dataflow Representations of Parallel Programs
	Dataflow-explicit futures
	Promise Plus: Flexible Synchronization for Parallel Computations on Arrays
	Distributed futures
	Locally abstract globally concrete semantics
	PNets: Parametrized networks of automata
	A Survey on Verified Reconfiguration
	A Survey on Parallelism and Determinacy

	Direction 2: Expressivity and Scalability of Static Analyses
	Decision results for solving Horn Clauses with arrays
	Pass Neutralization in LLVM
	An incremental type-checker for OCaml modules
	A formal, compositional, modular and executable semantics for LLVM IR
	An equational proof of correctness for the HELIX backend

	Direction 3: Compiling and Scheduling Dataflow Programs
	fkcc : the Farkas Calculator
	On the Verification of Polyhedral Program Transformations
	Scheduling Trees
	Formalisation of the Polyhedral Model

	Direction 4: HLS-specific Dataflow Optimizations
	Data-aware Process Networks

	Direction 5: Simulation of Hardware
	Standard-compliant Parallel SystemC simulation of Loosely-Timed Transaction Level Models
	Simulation of the Portals 4 protocol, and case study on the BXI interconnect
	Response time analysis of dataflow applications on a many-core processor with shared-memory and network-on-chip

	Bilateral contracts and grants with industry
	Partnerships and cooperations
	International initiatives
	Participation in other international programs
	ANR

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Invited talks
	Leadership within the scientific community
	Scientific expertise

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Education

	Scientific production
	Publications of the year
	Other
	Cited publications

