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2 Overall objectives

Brain-inspired machine learning algorithms combined with big data have recently reached spectacular
results, equalling or beating humans on specific high level tasks (e.g. the game of go). However, there are
still a lot of domains in which even humans infants outperform machines: unsupervised learning of rules
and language, common sense reasoning, and more generally, cognitive flexibility (the ability to quickly
transfer competence from one domain to another one).

The aim of the Cognitive Computing team is to reverse engineer such human abilities, i.e., to construct
effective and scalable algorithms which perform as well (or better) than humans, when provided with
similar data, study their mathematical and algorithmic properties and test their empirical validity as
models of humans by comparing their output with behavioral and neuroscientific data. The expected
results are more adaptable and autonomous machine learning algorithm for complex tasks, and quantita-
tive models of cognitive processes which can used to predict human developmental and processing data.
Most of the work is focused on speech and language and common sense reasoning.

3 Research program

3.1 Background

In recent years, Artificial Intelligence (AI) has achieved important landmarks in matching or surpassing
human level performance on a number of high level tasks (playing chess and go, driving cars, categorizing
picture, etc., [41, 45, 50, 40, 47]). These strong advances were obtained by deploying on large amounts of
data, massively parallel learning architectures with simple brain-inspired ‘neuronal’ elements. However,
humans brains still outperform machines in several key areas (language, social interactions, common
sense reasoning, motor skills), and are more flexible : Whereas machines require extensive expert
knowledge and massive training for each particular application, humans learn autonomously over several
time scales: over the developmental scale (months), humans infants acquire cognitive skills with noisy
data and little or no expert feedback (weakly/unsupervised learning)[1]; over the short time scale (minutes,
seconds), humans combine previously acquired skills to solve new tasks and apply rules systematically
to draw inferences on the basis of extremely scarce data (learning to learn, domain adaptation, one- or
zero-shot learning) [43].

The general aim of CoML, following the roadmap described in [1], is to bridge the gap in cognitive
flexibility between humans and machines learning in language processing and common sense reasoning
by reverse engineering how young children between 1 and 4 years of age learn from their environment. We
conduct work along two axes: the first one, which we called Developmental AI is focused on building infant
inspired machine learning algorithms. The second axis is devoted to using the developed algorithms to
conduct quantitative studies of how infant learn across diverse environments.
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3.2 Weakly/Unsupervised Learning

Much of standard machine learning is construed as regression or classification problems (mapping input
data to expert-provided labels). Human infants rarely learn in this fashion, at least before going to school:
they learn language, social cognition, and common sense autonomously (without expert labels) and when
adults provide feedback, it is ambiguous and noisy and cannot be taken as a gold standard. Modeling or
mimicking such achievement requires deploying unsupervised or weakly supervised algorithms which
are less well known than their supervised counterparts.

We take inspiration from infant’s landmarks during their first years of life: they are able to learn
acoustic models, a lexicon, and susbtantive elements of language models and world models from raw
sensory inputs. Building on previous work [3, 7, 11], we use DNN and Bayesian architectures to model
the emergence of linguistic representations without supervision. Our focus is to establish how the labels
in supervised settings can be replaced by weaker signals coming either from multi-modal input or from
hierarchically organised linguistic levels.

At the level of phonetic representations, we study how cross-modal information (lips and self feedback
from articulation) can supplement top-down lexical information in a weakly supervised setting. We
use Siamese architectures or Deep CCA algorithms to combine the different views. We study how an
attentional framework and uncertainty estimation can flexibly combine these informations in order to
adapt to situations where one view is selectively degraded.

At the level of lexical representations, we study how audio/visual parallel information (ie. descriptions
of images or activities) can help in segmenting and clustering word forms, and vice versa, help in deriving
useful visual features. To achieve this, we will use architectures deployed in image captioning or sequence
to sequence translation [48].

At the level of semantic and conceptual representations, we study how it is possible to learn elements
of the laws of physics through the observation of videos (object permanence, solidity, spatio-temporal
continuity, inertia, etc.), and how objects and relations between objects are mapped onto language.

3.3 Evaluating Machine Intelligence

Increasingly, complicated machine learning systems are being incorporated into real-life applications
(e.g. self-driving cars, personal assistants), even though they cannot be formally verified, guaranteed
statistically, nor even explained. In these cases, a well defined empirical approach to evaluation can offer
interesting insights into the functioning and offer some control over these algorithms.

Several approaches exist to evaluate the ’cognitive’ abilities of machines, from the subjective com-
parison of human and machine performance [49] to application-specific metrics (e.g., in speech, word
error rate). A recent idea consist in evaluating an AI system in terms of it’s abilities [42] , i.e., functional
components within a more global cognitive architecture [46]. Psychophysical testing can offer batteries
of tests using simple tasks that are easy to understand by humans or animals (e.g, judging whether two
stimuli are same or different, or judging whether one stimulus is ‘typical’) which can be made selective to
a specific component and to rare but difficult or adversarial cases. Evaluations of learning rate, domain
adaptation and transfer learning are simple applications of these measures. Psychophysically inspired
tests have been proposed for unsupervised speech and language learning [10], [44].

3.4 Documenting human learning

Infants learn their first language in a spontaneous fashion, across a lot of variation in amount of speech
and the nature of the infant/adult interaction. In some linguistic communities, adults barely address
infants until they can themselves speak. Despite these large variations in quantity and content, language
learning proceeds at similar paces. Documenting such resilience is an essential step in understanding the
nature of the learning algorithms used by human infants. Hence, we propose to collect and/or analyse
large datasets of inputs to infants and correlate this with outcome measure (phonetic learning, vocabulary
growth, syntactic learning, etc.).
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4 Application domains

4.1 Speech processing for underresourced languages

We plan to apply our algorithms for the unsupervised discovery of speech units to problems relevant
to language documentation and the construction of speech processing pipelines for underresourced
languages.

4.2 Tools for the analysis of naturalistic speech corpora

Daylong recordings of speech in the wild gives rise a to number of specific analysis difficulties. We plan to
use our expertise in speech processing to develop tools for performing signal processing and helping
annotation of such resources for the purpose of phonetic or linguistic analysis.

5 New software and platforms

5.1 New software

5.1.1 shennong

Keywords: Speech processing, Python, Information extraction, Audio signal processing

Functional Description: Shennong is a Python library which implement the most used methods for
speech features extraction. Features extraction is the first step of every speech processing pipeline.

Shennong provides the following functionalities: - implementation of the main methods from state
of the art (including pre and post processing) - exhaustive documentation and tests - usage from a
Python API or a command line tool - simple and coherent interface

News of the Year: New processors for Vocal Tract Length Normalization and pitch extraction.

URL: https://docs.cognitive-ml.fr/shennong

Contact: Mathieu Bernard

5.1.2 phonemizer

Keyword: Text

Functional Description: * Conversion of a text into its phonemic representation * Wrapper on speech
synthesis programs espeak and festival

News of the Year: Support for SAMPA phonetic alphabet with the new espeak-sampa backend. A lot of
improvments and bug fixes.

URL: https://github.com/bootphon/phonemizer

Contact: Mathieu Bernard

5.1.3 TDE

Name: Term Discovery Evaluation

Keywords: NLP, Speech recognition, Speech

Scientific Description: This toolbox allows the user to judge of the quality of a word discovery algorithm.
It evaluates the algorithms on these criteria : - Boundary : efficiency of the algorithm to found
the actual boundaries of the words - Group : efficiency of the algorithm to group similar words -
Token/Type: efficiency of the algorithm to find all words from the corpus (types), and to find all
occurences (token) of these words. - NED : Mean of the edit distance across all the word pairs found

https://docs.cognitive-ml.fr/shennong
https://github.com/bootphon/phonemizer
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by the algorithm - Coverage : efficiency of the algorithm to find every discoverable phone in the
corpus

Functional Description: Toolbox to evaluate algorithms that segment speech into words. It allows the
user to evaluate the efficiency of algorithms to segment speech into words, and create clusters of
similar words.

News of the Year: Complete rewrite (optimization and bugfixes)

URL: https://github.com/bootphon/tdev2

Contact: Emmanuel Dupoux

5.1.4 wordseg

Name: wordseg

Keywords: Segmentation, Text, NLP

Functional Description: * Provides a collection of tools for text based word segmentation. * Covers
the whole segmentation pipeline: data preprocessing, algorithms, evaluation and descriptive
statistics. * Implements 6 segmentation algorithms and a baseline * Available as a Python library
and command-line tools

News of the Year: New functionalities for cross-validation.

URL: https://wordseg.readthedocs.io

Contact: Mathieu Bernard

Partner: ENS Paris

6 New results

6.1 Unsupervised learning

Humans learn to speak and to perceive the world in a largely self-supervised fashion. Yet, most of machine
learning is still devoted to supervised algorithms that rely on abundant quantities of human labelled data.
We have used humans as sources of inspiration for developing novel machine learning benchmarks and
algorithms in order to push the field towards self-supervised learning.

• In [18], we present the results of the Zero Resource Speech Challenge 2020 (special session at
Interspeech 2020), which takes aims at learning speech representations from raw audio signals
without any labels. The challenge combines the data sets and metrics from two previous bench-
marks (2017 and 2019) and features two tasks which tap into two levels of speech representation.
The first task is to discover low bit-rate subword representations that optimize the quality of speech
synthesis; the second one is to discover word-like units from unsegmented raw speech. We present
the results of the twenty submitted models and discuss the implications of the main findings for
unsupervised speech learning.

• In [28], we introduce a new unsupervised task, spoken language modeling, which consists in
the learning of linguistic representations from raw audio signals without any labels. The task is
evaluated with a suite of 4 black-box, zero-shot metrics probing for the quality of the learned models
at 4 linguistic levels: phonetics, lexicon, syntax and semantics. We present the results and analyses
of a composite baseline made of the concatenation of three unsupervised systems: self-supervised
contrastive representation learning (CPC), clustering (k-means) and language modeling (LSTM
or BERT). The language models learn on the basis of the pseudo-text derived from clustering the
learned representations. This simple pipeline shows better than chance performance on all four
metrics, demonstrating the feasibility of spoken language modeling from raw speech. It also yields

https://github.com/bootphon/tdev2
https://wordseg.readthedocs.io
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worse performance compared to text-based ’topline’ systems trained on the same data, delineating
the space to be explored by more sophisticated end-to-end models. This task and baseline is to be
part of the Zero Resource Speech Benchmark 2021 (Interspeech 2021).

• Cross-lingual and multilingual training of Automatic Speech Recognition (ASR) has been extensively
investigated in the supervised setting. This assumes the existence of a parallel corpus of speech
and orthographic transcriptions. Recently, contrastive predictive coding (CPC) algorithms have
been proposed to pretrain ASR systems with unlabelled data. In [34] we investigate whether
unsupervised pretraining transfers well across languages. We show that a slight modification of
the CPC pretraining extracts features that transfer well to other languages, being on par or even
outperforming supervised pretraining. This shows the potential of unsupervised methods for
languages with few linguistic resources.

• Recent work on unsupervised contrastive learning of speech representation has shown promising
results, but so far has mostly been applied to clean, curated speech datasets. Can it also be used
with unprepared audio data "in the wild"? In [33], we explore three potential problems in this
setting: (i) presence of non-speech data, (ii) noisy or low quality speech data, and (iii) imbalance
in speaker distribution. We show that on the Libri-light train set, which is itself a relatively clean
speech-only dataset, these problems combined can already have a performance cost of up to 30%
relative for the ABX score. We show that the first two problems can be alleviated by data filtering,
with voice activity detection selecting speech segments, while perplexity of a model trained with
clean data helping to discard entire files. We show that the third problem can be alleviated by
learning a speaker embedding in the predictive branch of the model. We show that these techniques
build more robust speech features that can be transferred to an ASR task in the low resource setting.

• Contrastive Predictive Coding (CPC), based on predicting future segments of speech based on past
segments is emerging as a powerful algorithm for representation learning of speech signal. However,
it still under-performs other methods on unsupervised evaluation benchmarks. In [24], we intro-
duce WavAugment, a time-domain data augmentation library and find that applying augmentation
in the past is generally more efficient and yields better performances than other methods. We find
that a combination of pitch modification, additive noise and reverberation substantially increase
the performance of CPC (relative improvement of 18-22%), beating the reference Libri-light results
with 600 times less data. Using an out-of-domain dataset, time-domain data augmentation can
push CPC to be on par with the state of the art on the Zero Speech Benchmark 2017. We also
show that time-domain data augmentation consistently improves downstream limited-supervision
phoneme classification tasks by a factor of 12-15% relative.

• In [23], we introduce Libri-light, a new collection of spoken English audio suitable for training
speech recognition systems under limited or no supervision. It is derived from open-source
audio books from the LibriVox project. It contains over 60K hours of audio , which is, to our
knowledge, the largest freely-available corpus of speech. The audio has been segmented using
voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally,
we provide baseline systems and evaluation metrics working under three settings: (1) the zero
resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant
supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours)
aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on
the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art.
Index Terms-unsupervised and semi-supervised learning , distant supervision, dataset, zero-and
low resource ASR.

6.2 Language emergence in communicative agents

In this relatively new research topic, which is currently the focus of Rahma Chaabouni’s PhD thesis, we
study the inductive biases of neural systems by presenting them with few or no data.

• Previous work has shown that artificial neural agents naturally develop surprisingly non-efficient
codes. This is illustrated by the fact that in a referential game involving a speaker and a listener
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neural networks optimizing accurate transmission over a discrete channel, the emergent messages
fail to achieve an optimal length. Furthermore, frequent messages tend to be longer than infrequent
ones, a pattern contrary to the Zipf Law of Abbreviation (ZLA) observed in all natural languages.
In [32], we show that near-optimal and ZLA-compatible messages can emerge, but only if both
the speaker and the listener are modified. We hence introduce a new communication system,
"LazImpa", where the speaker is made increasingly lazy, i.e. avoids long messages, and the listener
impatient, i.e., seeks to guess the intended content as soon as possible.

• Natural language allows us to refer to novel composite concepts by combining expressions denoting
their parts according to systematic rules, a property known as compositionality. In [16], we study
whether the language emerging in deep multi-agent simulations possesses a similar ability to
refer to novel primitive combinations, and whether it accomplishes this feat by strategies akin
to human-language compositionality. Equipped with new ways to measure compositionality in
emergent languages inspired by disentan-glement in representation learning, we establish three
main results. First, given sufficiently large input spaces, the emergent language will naturally
develop the ability to refer to novel composite concepts. Second, there is no correlation between
the degree of compositional-ity of an emergent language and its ability to generalize. Third, while
compositionality is not necessary for generalization, it provides an advantage in terms of language
transmission: The more compositional a language is, the more easily it will be picked up by new
learners, even when the latter differ in architecture from the original agents. We conclude that
compositionality does not arise from simple generalization pressure, but if an emergent language
does chance upon it, it will be more likely to survive and thrive.

6.3 Evaluation of AI algorithms

Machine learning algorithms are typically evaluated in terms of end-to-end tasks, but it is very often
difficult to get a grasp of how they achieve these tasks, what could be their break point, and more generally,
how they would compare to the algorithms used by humans to do the same tasks. This is especially true
of Deep Learning systems which are particularly opaque. The team develops evaluation methods based
on psycholinguistic/linguistic criteria, and deploy them for systematic comparison of systems.

• In [15], we study spoken word embeddings, which are fixed-size acoustic representations of
variable-length audio sequences and we systematically compare two popular metrics for the
quality of such embeddings: ABX discrimination and Mean Average Precision (MAP), on 5 lan-
guages across 17 embedding methods, ranging from supervised to fully unsu-pervised, and using
different loss functions (autoencoders, cor-respondance autoencoders, siamese). Then we use the
ABX and MAP to predict performances on a new downstream task: the unsupervised estimation of
the frequencies of speech segments in a given corpus. We find that overall, ABX and MAP correlate
with one another and with frequency estimation. However, substantial discrepancies appear in the
fine-grained distinctions across languages and/or embedding methods. This makes it un-realistic
at present to propose a task-independent silver bullet method for computing the intrinsic quality
of speech embed-dings. There is a need for more detailed analysis of the metrics currently used to
evaluate such embeddings.

• Vector space models of words have long been claimed to capture linguistic regularities as simple
vector translations, but problems have been raised with this claim. In [20], we decompose and
empirically analyze the classic arithmetic word analogy test, to motivate two new metrics that
address the issues with the standard test, and which distinguish between class-wise offset con-
centration (similar directions between pairs of words drawn from different broad classes, such as
France-London, China-Ottawa,. . .) and pairing consistency (the existence of a regular transforma-
tion between correctly-matched pairs such as France:Paris::China:Beijing). We show that, while
the standard analogy test is flawed, several popular word embeddings do nevertheless encode
linguistic regularities.

• Reconstruction of articulatory trajectories from the acoustic speech signal has been proposed for
improving speech recognition and text-to-speech synthesis. However, to be useful in these settings,
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articulatory reconstruction must be speaker independent. Furthermore, as most research focuses
on single, small data sets with few speakers, robust articulatory reconstruction could profit from
combining data sets. Standard evaluation measures such as root mean squared error and Pearson
correlation are inappropriate for evaluating the speaker independence of models or the usefulness
of combining data sets. In [29], we present a new evaluation for articulatory reconstruction which
is independent of the articulatory data set used for training: the phone discrimination ABX task. We
use the ABX measure to evaluate a bi-LSTM based model trained on three data sets (14 speakers),
and show that it gives information complementary to standard measures, enabling us to evaluate
the effects of data set merging, as well as the speaker independence of the model.

6.4 Quantitative studies of human learning and processing

Evidently, infants are acquiring their language based on whatever linguistic input is available around them.
The extent of variation that can be found across languages, cultures and socio-economic background
provides strong constraints (lower bounds on data, higher bounds on noise, and variation and ambiguity)
for language learning algorithms. Vice-versa, aging adults, or patients with neurological impairements
show degradation in speech and language patterns which can be used to diagnose or predict the progress
of the impairement.

• A prominent hypothesis holds that by speaking to infants in infant-directed speech (IDS) as
opposed to adult-directed speech (ADS), parents help them learn phonetic categories. Specifically,
two characteristics of IDS have been claimed to facilitate learning: hyperarticulation, which makes
the categories more separable and variability, which makes the generalization more robust. In
[36], we test the separability and robustness of vowel category learning on acoustic representations
of speech uttered by Japanese adults in either ADS, IDS (addressed to 18-24 month olds) or read
speech (RS). Separability is determined by means of a distance measure computed between the five
short vowel categories of Japanese, while robustness is assessed by testing the ability of six different
machine learning algorithms trained to classify vowels to generalize on stimuli spoken by a novel
speaker in ADS. Using two different speech representations, we find that hyperarticulated speech,
in the case of RS, can yield better separability, and that increased between-speaker variability
in ADS, can yield, for some algorithms, more robust categories. However, these conclusions do
not apply to IDS, which turned out to yield neither more separable nor more robust categories
compared to ADS inputs. We discuss the usefulness of machine learning algorithms run on real
data to test hypotheses about the functional role of IDS.

• Before they even speak, infants become attuned to the sounds of the language(s) they hear, pro-
cessing native phonetic contrasts more easily than non-native ones. For example, between 6-8
months and 10-12 months, infants learning American English get better at distinguishing English
[r] and [l], as in ‘rock’ vs ‘lock’, relative to infants learning Japanese. Influential accounts of this early
phonetic learning phenomenon initially proposed that infants group sounds into native vowel-
and consonant-like phonetic categories—like [r] and [l] in English—through a statistical cluster-
ing mechanism dubbed ‘distributional learning’. The feasibility of this mechanism for learning
phonetic categories has been challenged, however. In [38] we demonstrate that a distributional
learning algorithm operating on naturalistic speech can predict early phonetic learning as observed
in Japanese and American English infants, suggesting that infants might learn through distribu-
tional learning after all. We further show, however, that contrary to the original distributional
learning proposal, our model learns units too brief and too fine-grained acoustically to correspond
to phonetic categories. This challenges the influential idea that what infants learn are phonetic
categories. More broadly, our work introduces a novel mechanism-driven approach to the study of
early phonetic learning, together with a quantitative modeling framework that can handle realistic
input. This allows, for the first time, accounts of early phonetic learning to be linked to concrete,
systematic predictions regarding infants’ attunement.

• Disfluent speech has been previously addressed from two main perspectives: the clinical per-
spective focusing on diagnostic, and the Natural Language Processing (NLP) perspective aiming
at modeling these events and detect them for downstream tasks. In addition, previous works
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often used different metrics depending on whether the input features are text or speech, making it
difficult to compare the different contributions. In [30], we introduce a new evaluation framework
for disfluency detection inspired by the clinical and NLP perspective together with the theory of
performance from (Clark, 1996) which distinguishes between primary and collateral tracks. We
introduce a novel forced-aligned disfluency dataset from a corpus of semi-directed interviews,
and present baseline results directly comparing the performance of text-based features (word and
span information) and speech-based (acoustic-prosodic information). Finally, we introduce new
audio features inspired by the word-based span features. We show experimentally that using these
features outperformed the baselines for speech-based predictions on the present dataset.

6.5 Test of the psychological validity of AI algorithms.

In this section, we focus on the utilisation of machine learning algorithms of speech and language
processing to derive testable quantitative predictions in humans (adults or infants).

• In [19], we explore the minimal knowledge a listener needs to compensate for phonological assim-
ilation, one kind of phonological process responsible for variation in speech. We used standard
automatic speech recognition models to represent English and French listeners. We found that,
first, some types of models show language-specific assimilation patterns comparable to those
shown by human listeners. Like English listeners, when trained on English, the models compensate
more for place assimilation than for voicing assimilation, and like French listeners, the models
show the opposite pattern when trained on French. Second, the models which best predict the
human pattern use contextually-sensitive acoustic models and language models, which capture
allophony and phonotactics, but do not make use of higher-level knowledge of a lexicon or word
boundaries. Finally, some models overcompensate for assimilation, showing a (super-human)
ability to recover the underlying form even in the absence of the triggering phonological context,
pointing to an incomplete neutralization not exploited by human listeners.

• The language discrimination process in infants has been successfully modeled using i-vector
based systems, with results replicating several experimental findings. Still, recent work found
intriguing results regarding the difference between monolingual and mixed-language exposure on
language discrimination tasks. In [17], we use two carefully designed datasets, with an additional
"bilingual" condition on the i-vector model of language discrimination. Our results do not show
any difference in the ability of discriminating languages between the three backgrounds, although
we do replicate past observations that distant languages (English-Finnish) are easier to discriminate
than close languages (English-German). We do, however, find a strong effect of background when
testing for the ability of the learner to automatically sort sentences in language clusters: bilingual
background being generally harder than mixed background (one speaker one language). Other
analyses reveal that clustering is dominated by speakers information rather than by languages.

• Disease-modifying treatments are currently assessed in neurodegenerative diseases. Huntington’s
Disease represents a unique opportunity to design automatic sub-clinical markers, even in pre-
manifest gene carriers. In [31] we investigated phonatory impairments as potential clinical markers
and propose them for both diagnosis and gene carriers follow-up. We used two sets of features:
Phonatory features and Modulation Power Spectrum Features. We found that phonation is not
sufficient for the identification of sub-clinical disorders of premanifest gene carriers. According to
our regression results, Phonatory features are suitable for the predictions of clinical performance in
Huntington’s Disease.

• In [27], we present the Perceptimatic English Benchmark, an open experimental benchmark for
evaluating quantitative models of speech perception in English. The benchmark consists of ABX
stimuli along with the responses of 91 American Englishspeaking listeners. The stimuli test discrim-
ination of a large number of English and French phonemic contrasts. They are extracted directly
from corpora of read speech, making them appropriate for evaluating statistical acoustic models
(such as those used in automatic speech recognition) trained on typical speech data sets. We show
that phone discrimination is correlated with several types of models, and give recommendations for
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researchers seeking easily calculated norms of acoustic distance on experimental stimuli. We show
that DeepSpeech, a standard English speech recognizer, is more specialized on English phoneme
discrimination than English listeners, and is poorly correlated with their behaviour, even though it
yields a low error on the decision task given to humans.

• In [26], we present a data set and methods to compare speech processing models and human be-
haviour on a phone discrimination task. We provide Perceptimatic, an open data set which consists
of French and English speech stimuli, as well as the results of 91 English-and 93 French-speaking
listeners. The stimuli test a wide range of French and English contrasts, and are extracted directly
from corpora of natural running read speech, used for the 2017 Zero Resource Speech Challenge.
We provide a method to compare humans’ perceptual space with models’ representational space,
and we apply it to models previously submitted to the Challenge. We show that, unlike unsuper-
vised models and supervised multilingual models, a standard supervised monolingual HMM-GMM
phone recognition system, while good at discriminating phones, yields a representational space
very different from that of human native listeners.

6.6 Applications and tools for researchers

Some of CoMLs’ activity is to produce speech and language technology tools that facilitate research into
language development or clinical applications.

• Spontaneous conversations in real-world settings such as those found in child-centered recordings
have been shown to be amongst the most challenging audio files to process. Nevertheless, building
speech processing models handling such a wide variety of conditions would be particularly useful
for language acquisition studies in which researchers are interested in the quantity and quality of
the speech that children hear and produce, as well as for early diagnosis and measuring effects
of remediation. In [25], we present our approach to designing an open-source neural network to
classify audio segments into vocalizations produced by the child wearing the recording device,
vocalizations produced by other children, adult male speech, and adult female speech. To this end,
we gathered diverse child-centered corpora which sums up to a total of 260 hours of recordings
and covers 10 languages. Our model can be used as input for downstream tasks such as estimating
the number of words produced by adult speakers, or the number of linguistic units produced by
children. Our architecture combines SincNet filters with a stack of recurrent layers and outperforms
by a large margin the state-of-the-art system, the Language ENvironment Analysis (LENA) that has
been used in numerous child language studies.

• In [35], we introduce Seshat, a new, simple and open-source software to efficiently manage an-
notations of speech corpora. The Seshat software allows users to easily customise and manage
annotations of large audio corpora while ensuring compliance with the formatting and naming
conventions of the annotated output files. In addition, it includes procedures for checking the
content of annotations following specific rules are implemented in personalised parsers. Finally, we
propose a double-annotation mode, for which Seshat computes automatically an associated inter-
annotator agreement with the γ measure taking into account the categorisation and segmentation
discrepancies.

7 Bilateral contracts and grants with industry

• Facebook AI Research Grant (2020, PI: E. Dupoux, 350K€) - Unrestricted Gift - The aim is to help the
development of machine learning tools geared towards the psycholinguistic research community.
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8 Partnerships and cooperations

8.1 National initiatives

8.1.1 ANR

• ANR-Transatlantic Platform Digging into Data - ACLEW (2017–2020. 5 countries; Total budget:
1.4M€; coordinating PI : M. Soderstrom; Local PI: A. Cristia; Leader of tools development and co-PI
: E. Dupoux) - Constructing tools for the Analysis of Children’s Language Experiences Around the
World.

• ANR GEOMPHON. (2018-2021; coordinating PI : E. Dunbar; 299K€) - Study the effects of typologi-
cally common properties of linguistic sound systems on speech perception, human learning, and
machine learning applied to speech.

9 Dissemination

9.1 Promoting scientific activities

9.1.1 Scientific events: organisation

E. D.upoux and E. Dunbar organized the ZeroSpeech Challengee 2020 (Challenge and Special Session,
Interspeech 2020)

9.2 Teaching - Supervision - Juries

9.2.1 Teaching

E. Dupoux is co-director of the Cognitive Engineering track in the Cognitive Science Master (ENS, EHESS,
Paris V).

• Master : E. Dupoux (with B. Sagot, ALMANACH, N. Zeghidour & R. Riad, COML), "Algorithms for
speech and language processing", 30h, M2, (MVA), ENS Cachan, France

• Master : E. Dupoux, "Cognitive Engineering", 80h, M2, ITI-PSL, Paris France

• Doctorat : E. Dupoux, "Computational models of cognitive development", 32 h, Séminaire EHESS,
Paris France

• Master: E. Dunbar, "Phonology" , 36 h, Master Sciences du Langage, Paris Diderot

• Master: E. Dunbar, "Statistics", 28h, Master Sciences du Langage, Paris Diderot

• Licence 3: E. Dunbar, "Phonology", 36h, Licence Sciences du Langage, Paris Diderot

• Licence 3: E. Dunbar, "Experimental methods", 36h, Licence Sciences du Langage, Paris Diderot

9.2.2 Supervision

• PhD in progress : Rahma Chaabouni, Language learning in artificial agents, Sept 2017, co-advised
E. Dupoux, M. Baroni (Facebook-CIFRE); to be defended in March 2021

• PhD in progress : Ronan Riochet, Learning models of intuitive physics, Sept 2017, co-advised E.
Dupoux, I. Laptev, J. Sivic; to be defended in May 2021
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• PhD in progress : Rachid Riad, "Speech technology for biomarkers in neurodegenerative diseases" ,
Sept 2018, co-advised E. Dupoux, A.-C. Bachoud-Levi

• PhD in progress : Robin Algayres "Audio word embeddings and word segmentation" , from Oct
2019, co-advised E. Dupoux, B. Sagot

• PhD in progress: Juliette Millet, "Modeling L2 Speech perception", from Sept 2018, advised E.
Dunbar Bachoud-Lévi

• PhD in progress: Maureen de Seyssel, "Modeling bilingual language acquisition", from Sept 2020,
co-advised E. Dupoux, G. Wisniewski
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