RESEARCH CENTRE

2020
Grenoble - Rhone-Alpes ACTIVITY REPORT

IN PARTNERSHIP WITH:
Institut polytechnique de Grenoble, P]_‘Oj e Ct — Te am

Université Joseph Fourier (Grenoble)
CONVECS

Construction of verified concurrent
systems

IN COLLABORATION WITH: Laboratoire d’Informatique de Grenoble
(LIG)

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Proofs and Verification

Contents

Project-Team CONVECS

1

2

Team members, visitors, external collaborators

Overall objectives
2.1 OVEIVIBW . o o v it it e e et e e e e e e e e e e e

Research program

3.1 New Formal Languages and their Concurrent Implementations
3.2 Parallel and Distributed Verification
3.3 Timed, Probabilistic, and Stochastic Extensions
3.4 Component-Based Architectures for On-the-Fly Verification
3.5 Real-Life Applications and Case Studies ittt i

Application domains
Highlights of the year

New software and platforms

6.1 Newsoftware i e
6.1.1 CADP . . . o e
6.1.2 TRAIAN e

New results

7.1 New Formal Languages and their Implementations
7.1.1 LNT SpecificationLanguageottt i ittt n et e eee e
7.1.2 LOTOS NT SpecificationLanguage
7.1.3 Nested-UnitPetriNets
7.1.4 Formal Modeling and Analysisof BPMN

7.2 Parallel and Distributed Verification o .
7.2.1 Debugging of Concurrent Systems using Counterexample Analysis
7.2.2 Identifying Timing Interferences on Multicore Processors
7.2.3 Verification of Emergent Properties in Multi-agent Systems
7.24 OtherDevelopments i e e e e

7.3 Component-Based Architectures for On-the-Fly Verification
7.3.1 Compositional Verification
7.3.2 On-the-flyTest Case Extraction i,
7.3.3 Other Component Developments0 ene...

7.4 Real-Life Applicationsand Case Studieso ittt ittt et
7.4.1 Failure Management Protocol for Stateful IoT ApplicationsintheFog
7.4.2 Rigorous Design, Reconfiguration, and Deployment of IoT Applications
7.4.3 Asynchronous Circuit for the Protection against Physical Attacks

Bilateral contracts and grants with industry

8.1 Bilateral grantswithindustry e
8.1.1 NokiaBellLabs e
8.1.2 STMICroelectroniCsottt ittt e e

Partnerships and cooperations

9.1 Internationalinitiatives e e e
9.1.1 Inriainternational partners o v v v i i i i e e e e e e e
9.1.2 Other International Collaborations

9.2 Europeaninitiatives i i i i e e e e e e e e
9.2.1 FP7&H2020Projects. i i
9.2.2 Collaborations with major European organizations

10
11
12
13
13
13
14
14
14
14
15
15
16
16
16
17

18
18
18
18

9.3 Nationalinitiatives i i e e e e e e e e e e e 20

9.3.1 PIA (Programme d'Investissements d’Avenir) 20
9.3.2 Competitivity CIusters i e 20
9.3.3 Other National Collaborations 20

9.4 Regionalinitiatives e 21
9.4.1 Pack Ambition Recherche Région Auvergne-Rhone-Alpes 21

10 Dissemination 21
10.1 Promoting scientificactivities L L oL L 21
10.1.1 Scientific events: selection o e 21
10.1.2 Journal i e e e e e e 22
10.1.3 Software Dissemination and Internet Visibility 23
10.1.4 Invited talks oL 23
10.1.5 Research administration L L e 23

10.2 Teaching - Supervision - Juries i 24
10.2.1 Teaching o e e e 24
10.2.2 SUPETIVISION o o i e 24
10.23 JUIIES . . o v ot e e 24

10.3 Popularization o v i e e e e e e e e e e e e e 25
10.3.1 Articlesandcontents L L e 25

11 Scientific production 25
11.1 Major publications o i ittt e e e e e e e e e e e e e e e 25
11.2 Publicationsoftheyear e 26
11.3 Other o e e e 27

11.4 Cited publications i ittt e e e e e e e e e e 27

Project CONVECS

Project-Team CONVECS

Creation of the Team: 2012 January 01, updated into Project-Team: 2014 January 01

Keywords

Computer sciences and digital sciences

Al.3. - Distributed Systems

A1.3.5. - Cloud

A1.3.6. - Fog, Edge

A2.1.1. - Semantics of programming languages
A2.1.6. - Concurrent programming

A2.1.7. - Distributed programming

A2.4.1. - Analysis

A2.4.2. —Model-checking

A2.5. - Software engineering

A2.5.1. — Software Architecture & Design
A2.5.4. — Software Maintenance & Evolution
A2.5.5. — Software testing

A6.1.3. — Discrete Modeling (multi-agent, people centered)
A7.1.1. - Distributed algorithms

A7.1.3. — Graph algorithms

A7.2. - Logic in Computer Science

A8.9. - Performance evaluation
Other research topics and application domains

B6.1.1. — Software engineering
B6.3.2. — Network protocols
B6.4. — Internet of things

B6.6. — Embedded systems
B7.2.1. - Smart vehicles

B8.1. - Smart building/home

https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/OtherResearchTopicsandApplicationDomains.html

Inria Annual Report 2020

1 Team members, visitors, external collaborators

Research Scientists

¢ Radu Mateescu [Team leader, Inria, Senior Researcher, HDR]
e Hubert Garavel [Inria, Senior Researcher]
e Frédéric Lang [Inria, Researcher]

* Wendelin Serwe [Inria, Researcher]

Faculty Member

¢ Gwen Salaiin [Univ Grenoble Alpes, Professor, HDR]

Post-Doctoral Fellow

¢ Luca Di Stefano [Inria, from Nov 2020]

PhD Students

¢ Pierre Bouvier [Univ Grenoble Alpes]

» Philippe Ledent [STMicroelectronics, from Oct 2020]
¢ Lucie Muller [Inria, from Sep 2020]

¢ Ajay Muroor-Nadumane [Inria - Nokia Bell Labs]

e Ahang Zuo [Univ Grenoble Alpes, from Oct 2020]

Technical Staff

e Armen Inants [Inria, Engineer, until Jun 2020]

Interns and Apprentices

¢ Nicolas Amat [Univ Grenoble Alpes, from Feb 2020 until Aug 2020]
¢ Irman Faqrizal [Inria, from Feb 2020 until Jun 2020]
* Pedro Perez Torres [Inria, until Jul 2020]

¢ Imane Serdani [Inria, from Feb 2020 until Jun 2020]

Administrative Assistant

¢ Myriam Etienne [Inria]

Project CONVECS 3

2 Overall objectives

2.1 Overview

The CONVECS project-team addresses the rigorous design of concurrent asynchronous systems us-
ing formal methods and automated analysis. These systems comprise several activities that execute
simultaneously and autonomously (i.e., without the assumption about the existence of a global clock),
synchronize, and communicate to accomplish a common task. In computer science, asynchronous
concurrency arises typically in hardware, software, and telecommunication systems, but also in parallel
and distributed programs.

Asynchronous concurrency is becoming ubiquitous, from the micro-scale of embedded systems
(asynchronous logic, networks-on-chip, GALS - Globally Asynchronous, Locally Synchronous systems,
multi-core processors, etc.) to the macro-scale of grids and cloud computing. In the race for improved
performance and lower power consumption, computer manufacturers are moving towards asynchrony.
This increases the complexity of the design by introducing nondeterminism, thus requiring a rigorous
methodology, based on formal methods assisted by analysis and verification tools.

There exist several approaches to formal verification, such as theorem proving, static analysis, and
model checking, with various degrees of automation. When dealing with asynchronous systems involving
complex data types, verification methods based on state space exploration (reachability analysis, model
checking, equivalence checking, etc.) are today the most successful way to detect design errors that could
not be found otherwise. However, these verification methods have several limitations: they are not easily
accepted by industry engineers, they do not scale well while the complexity of designs is ever increasing,
and they require considerable computing power (both storage capacity and execution speed). These are
the challenges that CONVECS seeks to address.

To achieve significant impact in the design and analysis of concurrent asynchronous systems, several
research topics must be addressed simultaneously. There is a need for user-friendly, intuitive, yet formal
specification languages that will be attractive to designers and engineers. These languages should
provide for both functional aspects (as needed by formal verification) and quantitative ones (to enable
performance evaluation and architecture exploration). These languages and their associated tools should
be smoothly integrated into large-scale design flows. Finally, verification tools should be able to exploit the
parallel and distributed computing facilities that are now ubiquitous, from desktop to high-performance
computers.

3 Research program

3.1 New Formal Languages and their Concurrent Implementations

We aim at proposing and implementing new formal languages for the specification, implementation, and
verification of concurrent systems. In order to provide a complete, coherent methodological framework,
two research directions must be addressed:

* Model-based specifications: these are operational (i.e., constructive) descriptions of systems, usually
expressed in terms of processes that execute concurrently, synchronize together and communicate.
Process calculi are typical examples of model-based specification languages. The approach we
promote is based on LOTOS NT (LNT for short), a formal specification language that incorporates
most constructs stemming from classical programming languages, which eases its acceptance by
students and industry engineers. LNT [6] is derived from the ISO standard E-LOTOS (2001), of
which it represents the first successful implementation, based on a source-level translation from
LNT to the former ISO standard LOTOS (1989). We are working both on the semantic foundations of
LNT (enhancing the language with module interfaces and timed/probabilistic/stochastic features,
compiling the m among n synchronization, etc.) and on the generation of efficient parallel and dis-
tributed code. Once equipped with these features, LNT will enable formally verified asynchronous
concurrent designs to be implemented automatically.

* Property-based specifications: these are declarative (i.e., non-constructive) descriptions of systems,
which express what a system should do rather than how the system should do it. Temporal logics

4 Inria Annual Report 2020

and p-calculi are typical examples of property-based specification languages. The natural models
underlying value-passing specification languages, such as LNT, are Labeled Transition Systems
(LTSs or simply graphs) in which the transitions between states are labeled by actions containing
data values exchanged during handshake communications. In order to reason accurately about
these LTSs, temporal logics involving data values are necessary. The approach we promote is based
on MCL (Model Checking Language) [45], which extends the modal u-calculus with data-handling
primitives, fairness operators encoding generalized Biichi automata, and a functional-like language
for describing complex transition sequences. We are working both on the semantic foundations of
MCL (extending the language with new temporal and hybrid operators, translating these operators
into lower-level formalisms, enhancing the type system, etc.) and also on improving the MCL
on-the-fly model checking technology (devising new algorithms, enhancing ergonomy by detecting
and reporting vacuity, etc.).

We address these two directions simultaneously, yet in a coherent manner, with a particular focus on
applicable concurrent code generation and computer-aided verification.

3.2 Parallel and Distributed Verification

Exploiting large-scale high-performance computers is a promising way to augment the capabilities of for-
mal verification. The underlying problems are far from trivial, making the correct design, implementation,
fine-tuning, and benchmarking of parallel and distributed verification algorithms long-term and difficult
activities. Sequential verification algorithms cannot be reused as such for this task: they are inherently
complex, and their existing implementations reflect several years of optimizations and enhancements.
To obtain good speedup and scalability, it is necessary to invent new parallel and distributed algorithms
rather than to attempt a parallelization of existing sequential ones. We seek to achieve this objective by
working along two directions:

* Rigorous design: Because of their high complexity, concurrent verification algorithms should
themselves be subject to formal modeling and verification, as confirmed by recent trends in the
certification of safety-critical applications. To facilitate the development of new parallel and
distributed verification algorithms, we promote a rigorous approach based on formal methods and
verification. Such algorithms will be first specified formally in LNT, then validated using existing
model checking algorithms of the CADP toolbox. Second, parallel or distributed implementations
of these algorithms will be generated automatically from the LNT specifications, enabling them to
be experimented on large computing infrastructures, such as clusters and grids. As a side-effect,
this “bootstrapping” approach would produce new verification tools that can later be used to
self-verify their own design.

¢ Performance optimization: In devising parallel and distributed verification algorithms, particular
care must be taken to optimize performance. These algorithms will face concurrency issues at
several levels: grids of heterogeneous clusters (architecture-independence of data, dynamic load
balancing), clusters of homogeneous machines connected by a network (message-passing commu-
nication, detection of stable states), and multi-core machines (shared-memory communication,
thread synchronization). We will seek to exploit the results achieved in the parallel and distributed
computing field to improve performance when using thousands of machines by reducing the num-
ber of connections and the messages exchanged between the cooperating processes carrying out
the verification task. Another important issue is the generalization of existing LTS representations
(explicit, implicit, distributed) in order to make them fully interoperable, such that compilers and
verification tools can handle these models transparently.

3.3 Timed, Probabilistic, and Stochastic Extensions

Concurrent systems can be analyzed from a qualitative point of view, to check whether certain properties
of interest (e.g., safety, liveness, fairness, etc.) are satisfied. This is the role of functional verification,
which produces Boolean (yes/no) verdicts. However, it is often useful to analyze such systems from a
quantitative point of view, to answer non-functional questions regarding performance over the long run,

Project CONVECS 5

response time, throughput, latency, failure probability, etc. Such questions, which call for numerical
(rather than binary) answers, are essential when studying the performance and dependability (e.g.,
availability, reliability, etc.) of complex systems.

Traditionally, qualitative and quantitative analyzes are performed separately, using different modeling
languages and different software tools, often by distinct persons. Unifying these separate processes to
form a seamless design flow with common modeling languages and analysis tools is therefore desirable,
for both scientific and economic reasons. Technically, the existing modeling languages for concurrent
systems need to be enriched with new features for describing quantitative aspects, such as probabilities,
weights, and time. Such extensions have been well-studied and, for each of these directions, there exist
various kinds of automata, e.g., discrete-time Markov chains for probabilities, weighted automata for
weights, timed automata for hard real-time, continuous-time Markov chains for soft real-time with
exponential distributions, etc. Nowadays, the next scientific challenge is to combine these individual
extensions altogether to provide even more expressive models suitable for advanced applications.

Many such combinations have been proposed in the literature, and there is a large amount of models
adding probabilities, weights, and/or time. However, an unfortunate consequence of this diversity is the
confuse landscape of software tools supporting such models. Dozens of tools have been developed to
implement theoretical ideas about probabilities, weights, and time in concurrent systems. Unfortunately,
these tools do not interoperate smoothly, due both to incompatibilities in the underlying semantic models
and to the lack of common exchange formats.

To address these issues, CONVECS follows two research directions:

e Unifying the semantic models. Firstly, we will perform a systematic survey of the existing semantic
models in order to distinguish between their essential and non-essential characteristics, the goal
being to propose a unified semantic model that is compatible with process calculi techniques for
specifying and verifying concurrent systems. There are already proposals for unification either
theoretical (e.g., Markov automata) or practical (e.g., PRISM and MODEST modeling languages),
but these languages focus on quantitative aspects and do not provide high-level control structures
and data handling features (as LNT does, for instance). Work is therefore needed to unify process
calculi and quantitative models, still retaining the benefits of both worlds.

* Increasing the interoperability of analysis tools. Secondly, we will seek to enhance the interoperabil-
ity of existing tools for timed, probabilistic, and stochastic systems. Based on scientific exchanges
with developers of advanced tools for quantitative analysis, we plan to evolve the CADP toolbox
as follows: extending its perimeter of functional verification with quantitative aspects; enabling
deeper connections with external analysis components for probabilistic, stochastic, and timed
models; and introducing architectural principles for the design and integration of future tools, our
long-term goal being the construction of a European collaborative platform encompassing both
functional and non-functional analyzes.

3.4 Component-Based Architectures for On-the-Fly Verification

On-the-fly verification fights against state explosion by enabling an incremental, demand-driven explo-
ration of LTSs, thus avoiding their entire construction prior to verification. In this approach, LTS models
are handled implicitly by means of their post function, which computes the transitions going out of given
states and thus serves as a basis for any forward exploration algorithm. On-the-fly verification tools are
complex software artifacts, which must be designed as modularly as possible to enhance their robustness,
reduce their development effort, and facilitate their evolution. To achieve such a modular framework, we
undertake research in several directions:

* New interfaces for on-the-fly LTS manipulation. The current application programming interface
(AP]) for on-the-fly graph manipulation, named OPEN/CAESAR [32], provides an “opaque” repre-
sentation of states and actions (transitions labels): states are represented as memory areas of fixed
size and actions are character strings. Although appropriate to the pure process algebraic setting,
this representation must be generalized to provide additional information supporting an efficient
construction of advanced verification features, such as: handling of the types, functions, data

6 Inria Annual Report 2020

values, and parallel structure of the source program under verification, independence of transitions
in the LTS, quantitative (timed/probabilistic/stochastic) information, etc.

e Compositional framework for on-the-fly LTS analysis. On-the-fly model checkers and equivalence
checkers usually perform several operations on graph models (LTSs, Boolean graphs, etc.), such
as exploration, parallel composition, partial order reduction, encoding of model checking and
equivalence checking in terms of Boolean equation systems, resolution and diagnostic generation
for Boolean equation systems, etc. To facilitate the design, implementation, and usage of these
functionalities, it is necessary to encapsulate them in software components that could be freely
combined and replaced. Such components would act as graph transformers, that would execute
(on a sequential machine) in a way similar to coroutines and to the composition of lazy functions in
functional programming languages. Besides its obvious benefits in modularity, such a component-
based architecture will also make it possible to take advantage of multi-core processors.

¢ New generic components for on-the-fly verification. The quest for new on-the-fly components for
LTS analysis must be pursued, with the goal of obtaining a rich catalog of interoperable components
serving as building blocks for new analysis features. A long-term goal of this approach is to provide
an increasingly large catalog of interoperable components covering all verification and analysis
functionalities that appear to be useful in practice. It is worth noticing that some components can
be very complex pieces of software (e.g., the encapsulation of an on-the-fly model checker for a
rich temporal logic). Ideally, it should be possible to build a novel verification or analysis tool by
assembling on-the-fly graph manipulation components taken from the catalog. This would provide
a flexible means of building new verification and analysis tools by reusing generic, interoperable
model manipulation components.

3.5 Real-Life Applications and Case Studies

We believe that theoretical studies and tool developments must be confronted with significant case
studies to assess their applicability and to identify new research directions. Therefore, we seek to apply
our languages, models, and tools for specifying and verifying formally real-life applications, often in the
context of industrial collaborations.

4 Application domains

The theoretical framework we use (automata, process algebras, bisimulations, temporal logics, etc.) and
the software tools we develop are general enough to fit the needs of many application domains. They
are applicable to virtually any system or protocol that consists of distributed agents communicating
by asynchronous messages. The list of recent case studies performed with the CADP toolbox (see in
particular § 7.4) illustrates the diversity of applications:

* Bioinformatics: genetic regulatory networks, nutritional stress response, metabolic pathways,
* Component-based systems: Web services, peer-to-peer networks,

* Cloud computing: self-deployment protocols, dynamic reconfiguration protocols,

* Fogand IoT: stateful IoT applications in the fog,

e Databases: transaction protocols, distributed knowledge bases, stock management,

¢ Distributed systems: virtual shared memory, dynamic reconfiguration algorithms, fault tolerance
algorithms, cloud computing, multi-agent systems,

e Embedded systems: air traffic control, avionic systems, train supervision systems, medical devices,

¢ Hardware architectures: multiprocessor architectures, systems on chip, cache coherency protocols,
hardware/software codesign,

Project CONVECS 7

e Human-machine interaction: graphical interfaces, biomedical data visualization, plasticity,
 Security protocols: authentication, electronic transactions, cryptographic key distribution,

o Telecommunications: high-speed networks, network management, mobile telephony, feature
interaction detection.

5 Highlights of the year

Frédéric Lang and Wendelin Serwe, together with Franco Mazzanti from CNR-ISTI/FMT (Pisa, Italy), won
the gold medals for the “Parallel CTL” track of the RERS’2020 (Rigorous Evaluation of Reactive Systems)
challenge'. The goal of this track was to verify 90 properties expressed in the branching-time temporal
logic CTL on several complex systems, having up to 16 concurrent processes and 75 synchronization
actions. These difficult verification problems were solved by exploiting new results in compositional
verification (see § 7.3.1) combined with the on-the-fly and partial model checking techniques of CADP.

6 New software and platforms

6.1 New software
6.1.1 CADP

Name: Construction and Analysis of Distributed Processes
Keywords: Formal methods, Verification

Functional Description: CADP (Construction and Analysis of Distributed Processes — formerly known as
CAESAR/ALDEBARAN Development Package) [5] is a toolbox for protocols and distributed systems
engineering.

In this toolbox, we develop and maintain the following tools:

e CAESAR.ADT [31] is a compiler that translates LOTOS abstract data types into C types and
C functions. The translation involves pattern-matching compiling techniques and automatic
recognition of usual types (integers, enumerations, tuples, etc.), which are implemented
optimally.

e CAESAR [37, 36] is a compiler that translates LOTOS processes into either C code (for rapid
prototyping and testing purposes) or finite graphs (for verification purposes). The translation
is done using several intermediate steps, among which the construction of a Petri net extended
with typed variables, data handling features, and atomic transitions.

* OPEN/CAESAR [32] is a generic software environment for developing tools that explore graphs
on the fly (for instance, simulation, verification, and test generation tools). Such tools can be
developed independently of any particular high level language. In this respect, OPEN/CAESAR
plays a central role in CADP by connecting language-oriented tools with model-oriented tools.
OPEN/CAESAR consists of a set of 16 code libraries with their programming interfaces, such
as:

CAESAR_GRAPH, which provides the programming interface for graph exploration,
CAESAR_HASH, which contains several hash functions,

CAESAR_SOLVE, which resolves Boolean equation systems on the fly,
CAESAR_STACK, which implements stacks for depth-first search exploration, and
CAESAR_TABLE, which handles tables of states, transitions, labels, etc.

A number of on-the-fly analysis tools have been developed within the OPEN/CAESAR envi-
ronment, among which:

Ihttp://rers-challenge.org/2020

http://rers-challenge.org/2020

Inria Annual Report 2020

BISIMULATOR, which checks bisimulation equivalences and preorders,

CUNCTATOR, which performs steady-state simulation of continuous-time Markov
chains,

DETERMINATOR, which eliminates stochastic nondeterminism in normal, probabilistic,
or stochastic systems,

DISTRIBUTOR, which generates the graph of reachable states using several machines,
EVALUATOR, which evaluates MCL formulas,

EXECUTOR, which performs random execution,

EXHIBITOR, which searches for execution sequences matching a given regular expres-
sion,

GENERATOR, which constructs the graph of reachable states,

PROJECTOR, which computes abstractions of communicating systems,

REDUCTOR, which constructs and minimizes the graph of reachable states modulo
various equivalence relations,

SIMULATOR, XSIMULATOR, and OCIS, which enable interactive simulation, and
TERMINATOR, which searches for deadlock states.

* BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using
efficient compression techniques) and a software environment for handling this format. BCG
also plays a key role in CADP as many tools rely on this format for their inputs/outputs. The
BCG environment consists of various libraries with their programming interfaces, and of
several tools, such as:

BCG_CMBP, which compares two graphs,

BCG_DRAW, which builds a two-dimensional view of a graph,

BCG_EDIT, which allows the graph layout produced by BCG_DRAW to be modified inter-
actively,

BCG_GRAPH, which generates various forms of practically useful graphs,

BCG_INFO, which displays various statistical information about a graph,

BCG_IO, which performs conversions between BCG and many other graph formats,
BCG_LABELS, which hides and/or renames (using regular expressions) the transition
labels of a graph,

BCG_MIN, which minimizes a graph modulo strong or branching equivalences (and can
also deal with probabilistic and stochastic systems),

BCG_STEADY, which performs steady-state numerical analysis of (extended) continuous-
time Markov chains,

BCG_TRANSIENT, which performs transient numerical analysis of (extended)
continuous-time Markov chains, and

XTL (eXecutable Temporal Language), which is a high level, functional language for
programming exploration algorithms on BCG graphs. XTL provides primitives to handle
states, transitions, labels, successor and predecessor functions, etc.

For instance, one can define recursive functions on sets of states, which allow evaluation

and diagnostic generation fixed point algorithms for usual temporal logics (such as
HML [40], CTL[28], ACTL[29], etc.) to be defined in XTL.

* PBG (Partitioned BCG Graph) is a file format implementing the theoretical concept of Parti-
tioned LTS [35] and providing a unified access to a graph partitioned in fragments distributed
over a set of remote machines, possibly located in different countries. The PBG format is
supported by several tools, such as:

PBG_CP, PBG_MYV, and PBG_RM, which facilitate standard operations (copying, moving,
and removing) on PBG files, maintaining consistency during these operations,
PBG_MERGE (formerly known as BCG_MERGE), which transforms a distributed graph
into a monolithic one represented in BCG format,

Project CONVECS 9

- PBG_INFO, which displays various statistical information about a distributed graph.

* The connection between explicit models (such as BCG graphs) and implicit models (explored
on the fly) is ensured by OPEN/CAESAR-compliant compilers, e.g.:

BCG_OPEN, for models represented as BCG graphs,
CAESAR.OPEN, for models expressed as LOTOS descriptions,
EXP.OPEN, for models expressed as communicating automata,
FSP.OPEN, for models expressed as FSP [43] descriptions,
LNT.OPEN, for models expressed as LNT descriptions, and

SEQ.OPEN, for models represented as sets of execution traces.

The CADP toolbox also includes TGV (Test Generation based on Verification), which has been
developed by the VERIMAG laboratory (Grenoble) and Inria Rennes — Bretagne-Atlantique.

The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graph-
ical interface or the SVL [33] scripting language. Both EUCALYPTUS and SVL provide users with an
easy and uniform access to the CADP tools by performing file format conversions automatically
whenever needed and by supplying appropriate command-line options as the tools are invoked.

URL: http://cadp.inria.fr/

Authors: Hubert Garavel, Radu Mateescu, Frédéric Lang, Wendelin Serwe, David Champelovier, Damien
Thivolle

Contacts: Radu Mateescu, Hubert Garavel

Participants: Hubert Garavel, Frédéric Lang, Radu Mateescu, Wendelin Serwe

6.1.2 TRAIAN

Keywords: Compilation, LOTOS NT

Functional Description: TRAIAN is a compiler for translating LOTOS NT descriptions into C programs,
which will be used for simulation, rapid prototyping, verification, and testing.

The current version of TRAIAN, which handles LOTOS NT types and functions only, has useful
applications in compiler construction [34], being used in all recent compilers developed by CON-
VECS.

URL: http://convecs.inria.fr/software/traian/

Authors: Hubert Garavel, Frédéric Lang, Wendelin Serwe

Contacts: Hubert Garavel, Frédéric Lang, Wendelin Serwe

Participants: Hubert Garavel, Frédéric Lang, Wendelin Serwe

7 New results

7.1 New Formal Languages and their Implementations

7.1.1 LNT Specification Language

Participants Hubert Garavel, Frédéric Lang, Wendelin Serwe.

http://cadp.inria.fr/
http://convecs.inria.fr/software/traian/

10 Inria Annual Report 2020

LNT [6] [27] is a next-generation formal description language for asynchronous concurrent systems.
The design of LNT at CONVECS is the continuation of the efforts undertaken in the 80s to define sound
languages for concurrency theory and, indeed, LNT is derived from the ISO standards LOTOS (1989) and
E-LOTOS (2001). In a nutshell, LNT attempts to combine the best features of imperative programming
languages, functional languages, and value-passing process calculi.

LNT is not a frozen language: its definition started in 2005, as part of an industrial project. Since
2010, LNT has been systematically used by CONVECS for numerous case studies (many of which being
industrial applications — see § 7.4). LNT is also used as a back-end by other research teams who
implement various languages by translation to LNT. It is taught in university courses, e.g., at University
Grenoble Alpes and ENSIMAG, where it is positively accepted by students and industry engineers. Based
on the feedback acquired by CONVECS, LNT is continuously improved.

In 2020, the LNT language has progressively evolved, breaking away from some design decisions
inherited from LOTOS in the 80s to become a better language and to achieve convergence with the LOTOS
NT language supported by the TRAIAN compiler (see § 7.1.2):

¢ From now on, LNT keywords and pragmas must be written in lower case only. Six keywords denoting
new constructs (“access”, “alt”, “ensure”, “require”, “result”, and “trap”) have been introduced, as
well as six other keywords for arithmetic and logical operations, now available for overloaded
redefinitions. Predefined comparison operators and some Boolean operators were renamed in
a form closer to their mathematical notation. The symbol “=>” was replaced with “->” in field

updates and named-styles actual parameters of procedures and functions.

¢ A new instruction “access Ej, ..., E;;” has been introduced, which is similar to “use Xj, ..., X;,”, but
operates on events instead of variables.

¢ Two new clauses “require” and “ensure” have been introduced to express preconditions and post-
conditions for LNT functions and processes. Preconditions are Boolean expressions on the input
values of “in”, “in var”, and “in out” parameters of a function or process. Postconditions use the
new “result” keyword denoting the value returned by a function and the new “.in” and “.out” quali-
fiers denoting the values of "in out" parameters when entering and leaving a function or process.
Preconditions (resp. postconditions) are checked upon function or process call (resp. return), an

exception being raised when a precondition or postcondition is false.

e The LNT2LOTOS Reference Manual has been updated to document the changes of LNT, and the
CADP demo examples have been upgraded to the latest version of LNT. The “upc” shell script was
extended to ease the migration of LNT programs.

¢ Also, in addition to eleven bug fixes, the LNT2LOTOS translator was enhanced in many respects. It
can now handle larger LNT programes, it generates better LOTOS code (without useless parameters
in auxiliary processes) and, due to a refined data-flow analysis, it emits more warnings about
unused parameters, useless assignments, dead “case” branches, and synchronized events that are
not accessed in some parallel branches.

7.1.2 LOTOS NT Specification Language

Participants Hubert Garavel, Frédéric Lang, Wendelin Serwe.

We continued working on the TRAIAN compiler for the LOTOS NT language (a predecessor of LNT),
which is used for the construction of most CADP compilers and translators.

The version 2.x of TRAIAN that we have been developing for almost 20 years is increasingly difficult to
maintain. It consists of a large collection of attribute grammars and is built using the FNC-2 compiler
generation system, which is no longer supported. For this reason, TRAIAN 2.x only exists in a 32-bit
version, and sometimes hits the 4 GB RAM limit when dealing with large compiler specifications, such as
those of LNT2LOTOS or EVALUATOR 5.

Project CONVECS 11

For this reason, we undertook in 2018 a complete rewrite of TRAIAN to get rid of FNC-2. Two main
design decisions behind TRAIAN 3.0 are the following: (i) it supports (most of) the LOTOS NT language
currently accepted by TRAIAN 2.x, but also extensions belonging to LNT, so as to allow a future migration
from LOTOS NT to LNT; and (ii) TRAIAN 3.0 is currently written in LOTOS NT and compiled using TRAIAN
2.x, but should be ultimately capable of bootstrapping itself.

In 2020, our efforts led to the release of three new major versions of TRAIAN:

e TRAIAN 3.0 is the first version departing from TRAIAN 2.9, with a totally different internal architec-
ture, although with a source code of nearly the same size.

The lexer and parser of TRAIAN 3.0 are built using the SYNTAX compiler-generation system de-
veloped at Inria Paris, which triggered various enhancements of the programming interfaces of
SYNTAX. The abstract syntax tree of LOTOS NT, the library of predefined LOTOS NT types and
functions, the static semantics checking (identifier binding, type checking, dataflow analysis, etc.),
and the C code generation have been entirely redesigned in LOTOS NT.

TRAIAN 3.0 brings three major enhancements compared to TRAIAN 2.9:

- Compiler performance greatly improved, TRAIAN 3.0 being 6-7 times faster and using 120-
150 times less memory than TRAIAN 2.9, as measured when compiling two large programs
(LNT2LOTOS and TRAIAN 3.0 itself).

— Native 64-bit binaries of TRAIAN 3.0 are now available for Linux, macOS, OpenIndiana, and
Solaris 11. Together with the reduction of memory consumption, this fully solves the former 4
GB memory limitation that existed when running TRAIAN 2.9 in 64-bit compatibility mode.

- Error and warning messages produced by TRAIAN 3.0 are clearer and more concise.

TRAIAN 3.0 remains largely compatible with TRAIAN 2.9 concerning its input and (as close as
possible to) the C code generated as output. The TRAIAN manual page, the LOTOS NT user manual,
the mode files for the various editors, and the demo examples contained in the TRAIAN distribution
have been updated to reflect the changes brought to the language and its compiler. Test bases
gathering thousands of correct and incorrect LOTOS NT programs (totalling 920, 000 lines of code)
have been set up and are systematically used for non-regression testing.

* TRAIAN 3.1 is a consolidation release that brings five general enhancements and eight bug fixes, and
also a transition release that introduces seventeen language changes (all but one being backward
compatible) to LOTOS NT in order to progressively align it with LNT. To ease the upgrade of
existing LOTOS NT source code, a conversion tool named “traian_upc” was developed and used to
swiftly upgrade seven compilers written using LOTOS NT (namely, EXP2C, FSP2LOTOS, GRL2LNT,
MCL_EXPAND, PIC2LNT, SVL, and TRAIAN itself) totalling 168,000 lines of LOTOS NT code, as well
as the LOTOS NT test suites totalling 1,940,000 lines of code.

* TRAIAN 3.2 brings, in addition to nine bug fixes, nine language changes to LOTOS NT in order to
further align it with LNT, and twelve code-generation changes w.r.t. the former versions 3.0 and 3.1
of TRAIAN in order to simplify and improve, in many respects, its generated C code.

7.1.3 Nested-Unit Petri Nets

Participants Pierre Bouvier, Hubert Garavel.

Nested-Unit Petri Nets (NUPNs) are a model of computation that can be seen as an upward-
compatible extension of P/T nets, which are enriched with structural information on their concurrent
and hierarchical structure. Such structural information can easily be produced when NUPNs are gen-
erated from higher-level specifications (e.g., process calculi) and allows logarithmic reductions in the
number of bits required to represent reachable states, thus enabling verification tools to perform better.
For this reason, NUPNs have been so far implemented in thirteen verification tools developed in four

12 Inria Annual Report 2020

countries, and adopted by two international competitions (the Model Checking Contest and the Rigorous
Examination of Reactive Systems challenge). The complete theory of NUPNs is formalized in a journal
article [3] and their PNML representation is described here?.

In 2020, the NUPN format and its associated software tools were enhanced as follows:

¢ The definition of the NUPN format was made more precise concerning character strings and the
“Imultiple_arcs” and “Imultiple_initial_tokens” pragmas, for which new static semantics constraints
and invariants have been formulated. These changes have been implemented in the CAESAR.BDD
tool, which is now stricter.

¢ In addition to five bug fixes, CAESAR.BDD has undergone deep changes. The internal data struc-
tures for representing transitions and arcs have been entirely rewritten, replacing bit matrices with
adjacency lists; although both implementations have respective merits, the new implementation
handles all NUPN models that the former implementation handled, plus other NUPN models that
could not be handled.

» The static exploration algorithm of CAESAR.BDD that computes a subset of dead places and dead
transitions was enhanced to exploit the “lunit_safe” pragma. Also, this static algorithm is now
invoked twice, before and after the dynamic exploration algorithm based on Binary Decision
Diagrams (BDDs), reducing the number of iterations by 37%.

L]

Several options of CAESAR.BDD were enhanced in terms of performance (increased speed), ac-
curacy (results with fewer unknown values), and scalability (handling of larger NUPN models),
and six new options were added. The CAESAR.BDD and NUPN manual pages have been updated
accordingly.

Our work on decomposing Petri nets into networks of automata based on the NUPN model led to
a publication in an international conference [13]. Besides experimenting our tool chain extensively on
a collection of over 12,000 Petri nets, we also applied it to decompose into networks of automata 113
models or instances of Petri nets proposed at the MCC contest.

7.1.4 Formal Modeling and Analysis of BPMN

Participants Francisco Durdn, Ylies Falcone, Camilo Rocha, Gwen Salaiin,
Ahang Zuo.

BPMN is a workflow-based notation that has been published as an ISO standard and has become
the main language for business process modeling. However, specifying processes with BPMN is not an
easy task for non-experts and this is still an issue to make BPMN widely used in any company around the
world. Process mining techniques are helpful to automatically infer processes from execution logs, but
this is not a solution to make users more comfortable with BPMN. In the context of the MOAP project
(see § 9.4.1), we proposed a different approach supporting the modelling of business processes in a
semi-automated way. We focus on a timed version of BPMN, where to each task is associated a range
indicating the minimum and maximum duration it takes to execute that task. In a first step, the user
defines the tasks involved in the process and possibly gives a partial order between some of these tasks. A
first algorithm then generates an abstract graph, which serves as a simplified version of the process being
specified. Given such an abstract graph, a second algorithm computes the minimum and maximum time
for executing the whole graph. The user can rely on this information for refining the graph. For each
version of the graph, these minimum/maximum execution times are computed. Once the user is satisfied
with a specific abstract graph, our third algorithm can be used to synthesize the BPMN process from that
graph. This approach was implemented in a tool and validated on several case studies.

In collaboration with Francisco Durdn (University of Mélaga, Spain) and Camilo Rocha (University of
Cali, Colombia), we also considered the optimization of business processes, which is a strategic activity in
organizations because of its potential to increase profit margins and reduce operational costs. One of the

2http://mcc.1ip6.fr/nupn.php

http://mcc.lip6.fr/nupn.php

Project CONVECS 13

main challenges in this activity is concerned with the problem of optimizing the allocation and sharing of
resources. Companies are continuously adjusting their resources to their needs following various dynamic
provisioning strategies, which are difficult to compare. In this work, we proposed an automatic analysis
technique to evaluate and compare the execution time and resource occupancy of a business process
relative to a workload and a provisioning strategy. Such analysis is performed on models conforming
to an extension of BPMN with quantitative information, including resource availability and constraints.
Within this framework, the approach is fully mechanized using a formal and executable specification in
the rewriting logic framework, which relies on existing techniques and tools for simulating probabilistic
and real-time specifications. This work led to a publication in an international workshop [15].

7.2 Parallel and Distributed Verification

7.2.1 Debugging of Concurrent Systems using Counterexample Analysis

Participants Irman Faqrizal, Gwen Salatin.

Designing and developing distributed software has always been a tedious and error-prone task, and
the ever increasing software complexity is making matters even worse. Model checking is an established
technique for automatically finding bugs by verifying that a model satisfies a given temporal property.
When the model violates the property, the model checker returns a counterexample, which is a sequence
of actions leading to a state where the property is not satisfied. Understanding this counterexample
for debugging the specification or program is a complicated task because the counterexample gives
only a partial view of the source of the problem, and because there is usually little support beyond that
counterexample to identify the source of the problem.

In 2020, we proposed a few techniques for simplifying the debugging of erroneous behavioural models
represented as Labelled Transition Systems. We first focused on the erroneous part of the model, for
which we detect specific states (called faulty states) where a choice is possible between executing a correct
behaviour or falling into an erroneous part of the model. Our goal was to group these faulty states into
clusters, which help the user to identify the source of the bug, since each cluster of states provides some
information about the bug. We implemented this technique into a tool, which allows the visualization
of the faulty model and the computation of clusters. This work led to a publication in an international
conference [16].

7.2.2 Identifying Timing Interferences on Multicore Processors

Participants Frédéric Lang, Radu Mateescu, Wendelin Serwe.

Multicore platforms provide the computing capabilities and the power efficiency required by the
complex applications embedded in aeronautical, spatial, and automotive systems. Some of the hardware
resources provided by the platform — including buses, caches, IPs — are shared between concurrent
tasks executing in parallel on different cores. This sharing may lead tasks to interfere with each other.
Therefore, crucial design activities are to identify interferences, and bound the penalty induced by those
interferences, as part of the demonstration of compliance of applications to their temporal requirements.

In the framework of the CAPHCA project (see § 9.3.1), in collaboration with Eric Jenn and Viet
Anh Nguyen (IRT Saint-Exupéry, Toulouse), we studied the detection of interferences in concurrent
applications using formal methods. A first and conservative approach is to consider that every access
to a shared resource leads to an interference. This safe approach is usually too pessimistic to be useful.
Therefore, we proposed a less pessimistic approach, which takes into account the actual behavior of the
hardware and application to filter out situations where interferences cannot occur. Our method relies
on (i) the behavioral modeling of applications and of their execution platform, using the LNT formal
language, (ii) the definition of interferences using temporal properties, and (iii) the exploitation of the
behavioral model and of the temporal properties, using the CADP toolbox. This method was applied to

14 Inria Annual Report 2020

the Infineon AURIX TC275 system-on-chip, and the experimental results indicated that our approach is
not only safe, but also prevents reporting spurious interferences compared to a purely structural analysis.
This work led to a publication in an international conference [22].

7.2.3 Verification of Emergent Properties in Multi-agent Systems

Participants Luca Di Stefano, Frédéric Lang, Wendelin Serwe.

Multi-agent systems are collections of autonomous components that interact with each other and
with their shared environment. These systems may display collective properties that arise from the
interplay between agents. Reasoning about these properties turns out to be hard, due to the very large
state space that these systems usually exhibit. Therefore, automatic procedures to formally guarantee the
emergence of such properties may prove helpful in the design of reliable artificial multi-agent systems.

In 2020, we contributed to this topic as follows:

* We developed a fully-automated translation from a domain-specific language called LAbS [50] to
the LNT formal description language. After translating a system specification into LNT, we can use
CADP to either verify that the system displays emergent properties, or generate random execution
traces which could be used, e.g., for testing. The procedure was described in L. Di Stefano’s PhD
thesis [51] and resulted in a paper which is currently under review by an international journal.

¢ The aforementioned translation was implemented as part of the SLiVER tool [51]. This work led to
a publication in an international conference [14].

7.2.4 Other Developments

Participants Pierre Bouvier, Hubert Garavel.

We built the VLSAT-1 benchmark suite [24] (where “VL” stands for “Very Large”), a collection of 100
SAT formulas to be used as benchmarks in scientific experiments and software competitions. These SAT
formulas have been obtained from the automatic conversion [13] into NUPNs of a large collection of
Petri nets modelling real-life problems, such as communication protocols and concurrent systems. The
VLSAT-1 benchmark suite is available via the CADP web site® or via its DOI*.

7.3 Component-Based Architectures for On-the-Fly Verification

7.3.1 Compositional Verification

Participants Frédéric Lang, Radu Mateescu, Wendelin Serwe.

The CADP toolbox contains various tools dedicated to compositional verification, among which
EXPOPEN, BCG_MIN, BCG_CMBP, and SVL play a central role. EXPOPEN explores on the fly the graph
corresponding to a network of communicating automata (represented as a set of BCG files). BCG_MIN and
BCG_CMP respectively minimize and compare behavior graphs modulo strong or branching bisimulation
and their stochastic extensions. SVL (Script Verification Language) is both a high-level language for
expressing complex verification scenarios and a compiler dedicated to this language.

In 2020, we implemented a reduction preserving sharp bisimulation (see below) in BCG_MIN and
SVL.

Shttp://cadp.inria.fr/resources/vlsat
4http://dx.doi.org/10.18709/perscido.2020.03.ds300

http://cadp.inria.fr/resources/vlsat
http://dx.doi.org/10.18709/perscido.2020.03.ds300

Project CONVECS 15

In collaboration with Franco Mazzanti (ISTI-CNR, Pisa, Italy), we used the compositional verification
tools of CADP in the framework of the RERS’2020 challenge, which consisted in verifying 90 CTL properties
on varying-size models of concurrent systems.

We applied to these examples a combination of techniques, namely:

¢ maximal hiding [46], which hides in the model all actions that are not necessary to verify the
property;

¢ sharp bisimulation [18], which identifies in the property a set of so-called weak and strong actions,
and uses this knowledge to (sometimes noticeably) enhance the reduction that can be applied to
the model, while preserving the truth value of the formula;

¢ partial model checking [42], a compositional verification technique originally proposed by Ander-
sen in the 90’s and for which we developed an implementation on top of CADP.

This combination of techniques and tools allowed us to verify 79 out of the 90 CTL formulas and to win
the RERS’2020 challenge. The 11 remaining formulas could not be solved due to state space explosion.

This work led to one publication in an international conference [18] and another publication accepted
in an international journal to be published in 2021. Another work on compositional verification, carried
out in collaboration with Sander de Putter and Anton Wijs (Eindhoven University of Technology, The
Netherlands), led to a publication in an international journal [11].

7.3.2 On-the-fly Test Case Extraction

Participants Radu Mateescu, Wendelin Serwe.

The CADP toolbox provides support for conformance test case generation by means of the TGV tool.
Given a formal specification of a system and a test purpose described as an input-output LTS (IOLTS),
TGV automatically generates test cases, which assess using black box testing techniques the conformance
of a system under test w.r.t. the formal specification. A test purpose describes the goal states to be reached
by the test and enables one to indicate parts of the specification that should be ignored during the testing
process. TGV does not generate test cases completely on the fly (i.e., online), because it first generates the
complete test graph (CTG) and then traverses it backwards to produce controllable test cases.

To address these limitations, we developed the prototype tool TESTOR® to extract test cases completely
on the fly. TESTOR presents several advantages w.r.t. TGV: (i) it has a more modular architecture, based
on generic graph transformation components taken from the OPEN/CAESAR libraries (7-compression,
T-confluence, 7-closure, determinization, resolution of Boolean equation systems); (ii) it is capable of
extracting a test case entirely on the fly, by exploiting the diagnostic generation features of the Boolean
equation system resolution algorithms; (iii) it enables a more flexible expression of test purposes, taking
advantage of the multiway rendezvous, a primitive to express communication and synchronization
among a set of distributed processes.

In 2020, in collaboration with Lina Marsso (University of Toronto, Canada), we proposed an automatic
approach to generate a test plan (set of test purposes) with its associated test suite (set of test cases)
covering all transitions of the IOLTS model of the system. The approach can also be applied to improve an
existing test plan, by both completing the coverage and eliminating all redundancies. We implemented
our approach on top of CADP and experimented it on several examples of concurrent systems. This
enabled us to identify and evaluate possible variants and heuristics to fine-tune the overall performance
of the approach, as well as the quality of the computed test plan. This work led to a publication in an
international conference [20] and a new version 3.3 of the TESTOR tool.

7.3.3 Other Component Developments

Shttp://convecs.inria.fr/software/testor
P

http://convecs.inria.fr/software/testor

16 Inria Annual Report 2020

Participants Hubert Garavel, Frédéric Lang, Radu Mateescu, Wendelin Serwe.

In 2020, several components of CADP have been improved as follows:

¢ In addition to seven bug fixes, the MCL v4 language was extended with a function “card” to compute
the number of elements in a set of natural numbers, which is a useful feature for specifying certain
temporal operators on the past.

¢ In addition to eight bug fixes and various other enhancements, all the CADP tools built using
Syntax and TRAIAN (namely, EXP2C, FSP2LOTOS, LNT2LOTOS, MCL_EXPAND, and SVL) have
been recompiled using the new versions 3.0-3.2 of TRAIAN. The C compilers used to build the
CADP tools have been upgraded to more recent versions, and all the C code (either source code of
the CADP tools, or code generated by these tools) was modified to remove all compiler warnings.

¢ The binaries of CADP have been ported on SunOS 5.11 OpenIndiana, Debian 10.0, and macOS
10.15 “Catalina”, respectively.

7.4 Real-Life Applications and Case Studies

7.4.1 Failure Management Protocol for Stateful IoT Applications in the Fog

Participants Gwen Salaiin.

Recent computing trends have been advocating for more distributed paradigms, namely Fog comput-
ing, which extends the capacities of the Cloud at the edge of the network, that is, close to end devices
and end users in the physical world. The Fog is a key enabler of Internet of Things (IoT) applications
as it resolves some of the needs that the Cloud fails to provide, such as low network latencies, privacy,
QoS, and geographical requirements. For this reason, the Fog has become increasingly popular and finds
application in many fields, such as smart homes and cities, agriculture, healthcare, transportation, etc.

The Fog, however, is unstable because it is constituted of billions of heterogeneous devices in a dy-
namic ecosystem. [oT devices may regularly fail because of bulk production and cheap design. Moreover,
the Fog-IoT ecosystem is cyber-physical, so that devices are subjected to external physical world condi-
tions, which increase the occurrence of failures. When failures occur in such an ecosystem, the resulting
inconsistencies in the application may affect the physical world by inducing hazardous and costly situa-
tions. Together with Orange Labs, we proposed an end-to-end autonomic failure management approach
for IoT applications deployed in the Fog, ensuring that failures are recovered in a cyber-physical consis-
tent way [10]. Designing such highly distributed management protocols is a difficult and error-prone
task.

In 2020, in collaboration with Loic Letondeur (Orange Labs, Meylan), we undertook the formal
specification and verification of this failure management protocol. We started by devising a formal
specification of the protocol in LNT, encompassing the behaviour of the various manager entities involved
(stable storage, global manager, and Fog agents). A part of the LNT model was generated automatically
from an abstract description of the input application (Fog nodes, software elements, appliances, and their
dependencies). This LNT model was used for extensive analysis to ensure that the protocol satisfies the
desired properties. We identified twelve properties that must be respected by the protocol (architectural
invariants, final objective, and functional properties), specified them formally in MCL, and verified them
on the LNT model using the EVALUATOR model checker. This verification allowed us to detect several
issues in the protocol and to correct them in its implementation developed by Orange Labs. This work
led to a publication in an international conference [23].

7.4.2 Rigorous Design, Reconfiguration, and Deployment of IoT Applications

Project CONVECS 17

Participants Radu Mateescu, Ajay Muroor Nadumane, Gwen Salaiin.

The Internet of Things (IoT) applications are built by interconnecting everyday objects over the
Internet. As IoT is becoming popular among consumers, the challenge of making IoT applications
easy to design and deploy is more relevant than ever. In 2020, we considered this challenge along two
perspectives:

¢ In the framework of our collaboration with Nokia Bell Labs (see § 8.1.1), we continued our work
on helping consumers to easily design correct IoT applications and also support the deployment
of these applications. One popular way to build IoT applications in the consumer domain is
by combining different objects using Event-Condition-Action (ECA) rules of the form “IF event
THEN action”. Our broad objective is to leverage formal methods to provide end-users of IoT
applications design-time guarantees that the designed application will behave, upon deployment,
as intended. In this context, we proposed a formal development framework based on the Web
of Things (WoT). The objects are described using a behavioural model derived from the Thing
Description specification of WoT. Then, the applications are designed not only by specifying
individual ECA rules, but also by composing these rules using a simple, yet versatile composition
language. The description of the objects and their composition are translated automatically into
an LNT model, on which a set of generic and application-specific properties are verified using
the CADP tools before the deployment of the application. All these steps are implemented and
packaged in a tool named MozART, built on top of Mozilla WebThings platform. These results have
been published in A. Muroor Nadumane’s PhD thesis [49] and at an international conference [17].

¢ In collaboration with Francisco Durdn (University of Mdlaga, Spain), we studied the reconfigu-
ration of the deployed IoT applications during their lifecycle. The approach proposed relies on
specifying reconfiguration properties that enable one to qualitatively compare the behaviour of
the new configuration against the original configuration. The reconfiguration analysis is based on
a specification in rewriting logic using Maude, and was implemented in the R-MozART tool built
on top of the WebThings platform. This work led to a publication accepted in an international
conference.

7.4.3 Asynchronous Circuit for the Protection against Physical Attacks

Participants Radu Mateescu, Wendelin Serwe.

In the context of the Securiot-2 project (see § 9.3.2), we experimented with modeling, at various
abstraction levels, an asynchronous circuit patented by Tiempo Secure for detecting physical attacks,
such as cutting wires, setting a wire to a constant voltage, or producing short-circuits. We considered the
modeling and analysis of this circuit, called shield, at two abstraction levels. First, at circuit level, we took
into account only the components (sequencers) of the circuit and their interconnection, without modeling
the implementation details of these components. This level is appropriate for reasoning about the desired
properties of the shield, namely the detection of physical attacks. The regular structure of the shield
(serial pipeline or sequencers) enables inductive arguments that reduce all possible attack configurations
to a finite set, which we analyzed exhaustively. Our analysis confirmed that all physical attacks, except two
kinds of short-circuit, are detected by the shield. However, even if these short-circuits are theoretically
possible, they are forbidden in practice by the physical layout of the shield, which therefore ensures full
protection. Next, we undertook a gate-level modeling, focusing on the implementation of a sequencer in
terms of logical gates. Here, we explored a range of different modeling variants for gates, electric wires,
and forks (isochronic or not), and analyzed their respective impact on the faithfulness of the global circuit
model, the size of the underlying state spaces, the expression of correctness properties, and the overall
ease of verification. We also pointed out that certain modeling variants lead to deadlocks in the circuit.

18 Inria Annual Report 2020

This work led to a publication in an international workshop [21]. All models and verification scripts
are available from the MARS model repository®.

8 Bilateral contracts and grants with industry

8.1 Bilateral grants with industry
8.1.1 NokiaBell Labs

Participants Radu Mateescu, Ajay Muroor Nadumane, Gwen Salaiin (correspon-
dent).

Ajay Muroor Nadumane is supported by a PhD grant (from October 2017 to December 2020) from
Nokia Bell Labs (Nozay) on IoT service composition (see § 7.4.2) supported by formal methods, under the
supervision of Gwen Salaiin (CONVECS), Radu Mateescu (CONVECS), and Michel Le Pallec (Nokia Bell
Labs).

8.1.2 ST Microelectronics

Participants Philippe Ledent, Radu Mateescu (correspondent), Wendelin Serwe.

Philippe Ledent is supported by a CIFRE PhD grant (from October 2020 to September 2023) from
ST Microelectronics (Grenoble) on the formal validation of security requirements for Systems-on-Chip,
under the supervision of Olivier Haller (ST Microelectronics), Radu Mateescu (CONVECS), and Wendelin
Serwe (CONVECS).

9 Partnerships and cooperations

9.1 International initiatives

H. Garavel is a member of IFIP (International Federation for Information Processing) Technical Commit-
tee 1 (Foundations of Computer Science) Working Group 1.8 on Concurrency Theory chaired successively
by Luca Aceto and Jos Baeten.

9.1.1 Inriainternational partners

Informal international partners Saarland University (Germany): we collaborate on a regular basis
with the DEPEND (Dependable Systems and Software) research group headed by Holger Hermanns, who
received an ERC Advanced Grant (“POWVER”) in 2016.

9.1.2 Other International Collaborations
In 2020, we had scientific relations with several universities and institutes abroad, including:
¢ University of Mdalaga, Spain (Francisco Durén),

¢ University of Cali, Colombia (Camilo Rocha),

ISTI/CNR, Pisa, Italy (Franco Mazzanti),
¢ Eindhoven University of Technology, The Netherlands (Anton Wijs and Sander de Putter),

¢ IMT School for Advanced Studies, Lucca, Italy (Rocco De Nicola),

Shttp://mars-workshop.org/repository/022-Shield.html

http://mars-workshop.org/repository/022-Shield.html

Project CONVECS 19

¢ Gran Sasso Science Institute, LAquila, Italy (Omar Inverso),

¢ University of Toronto, Canada (Lina Marsso).

9.2 European initiatives

9.2.1 FP7 & H2020 Projects
ArchitectECA2030

Participants Radu Mateescu (correspondent), Lucie Muller, Wendelin Serwe.

Title: Trustable architectures with acceptable residual risk for the electric, connected and automated
cars

Duration: July 2020 - June 2023
Coordinator: Infineon Technologies AG (Germany)

Partners:

¢ AVL List GMBH (Austria)

¢ Datasoft Embedded GMBH (Austria)

* Infineon Technologies AG (Austria)

¢ SBA Research GMBH (Austria)

¢ Virtual Vehicle Research GMBH (Austria)
e TU GRAZ (Austria)

¢ IMA (Czech Republic)

* Brno University of Technology (Czech Republic)
¢ Inria (France)

* Infineon Technologies AG (Germany)

* SafeTRANS e.V. (Germany)

* Volkswagen AG (Germany)

e TU Dresden (Germany)

» TeraGlobus (Lithuania)

e Nxtech (Norway)

e Sintef (Norway)

¢ TracSense (Norway)

* NXP (The Netherlands)

e TU Delft (The Netherlands)

* University of Nevada, Reno (USA)

Inria contact: Radu Mateescu

Summary: Independent validation is fundamental for assessing the capability and safety of solutions in
electric, connected and automated (ECA) vehicles. The project aims at designing electronic com-
ponents and systems (ECS) in a robust, traceable, mission-validated way, quantifying the accepted
residual risk of ECS for ECA vehicles, and increasing the end-user acceptance due to more reliable
and robust ECS. The main contributions of CONVECS in the project are the formal modeling and
validation of components embedded in autonomous vehicles.

20 Inria Annual Report 2020

9.2.2 Collaborations with major European organizations

The CONVECS project-team is member of the FMICS (Formal Methods for Industrial Critical Systems)
working group of ERCIM’. H. Garavel and R. Mateescu are members of the FMICS board, H. Garavel
being in charge of dissemination actions.

9.3 National initiatives

9.3.1 PIA (Programme d’Investissements d’Avenir)
CAPHCA

Participants Frédéric Lang, Radu Mateescu (correspondent), Wendelin Serwe.

CAPHCA (Critical Applications on Predictable High-Performance Computing Architectures) is a project
funded by the PIA. The project, led by IRT Saint-Exupéry (Toulouse), involves a dozen of industrial
partners (among which Airbus, CS Systémes d'Information, Synopsis, and Thales Avionics), the University
Paul Sabatier (Toulouse), and Inria Grenoble — Rhone-Alpes (CONVECS and SPADES project-teams).
CAPHCA addresses the dual problem of achieving performance and determinism when using new, high
performance, multicore System-on-Chip (SoC) platforms for the deployment of real-time, safety-critical
applications. The methodology adopted by CAPHCA consists in building a pragmatic combination of
methods, tools, design constraints and patterns deployable at a short-term horizon in the industrial
domains targeted in the project.

CAPHCA started in December 2017 and ended in September 2020. The main contributions of CON-
VECS to CAPHCA were the detection of concurrency errors and timing interferences in parallel applica-
tions by means of formal methods and verification techniques.

9.3.2 Competitivity Clusters
SECURIOT-2

Participants Hubert Garavel (correspondent), Armen Inants, Radu Mateescu, Wen-
delin Serwe.

SECURIOT-2 is a project funded by the FUI (Fonds Unique Interministériel) within the Péle de Com-
pétitivité Minalogic. The project, led by Tiempo Secure (Grenoble), involves the SMEs (Small and Medium
Enterprises) Alpwise, Archos, Sensing Labs, and Trusted Objects, the Institut Fourier and the VERIMAG
laboratories of Université Grenoble Alpes, and CONVECS. SECURIOT-2 aims at developing a secure
micro-controller unit (SMCU) that will bring to the IoT a high level of security, based on the techniques
used for smart cards or electronic passports. The SMCU will also include an original power management
scheme adequate with the low power consumption constraints of the IoT.

SECURIOT-2 started in September 2017 and ended in June 2020. The main contributions of CONVECS
to SECURIOT-2 (see § 7.4.3) were the formal modeling and verification of the asynchronous hardware
implementing the secure elements developed by the project partners.

9.3.3 Other National Collaborations

We had sustained scientific relations with the following researchers:
¢ Loic Letondeur (Orange Labs, Meylan),
¢ Fabrice Kordon and Lom Messan Hillah (LIP6, Paris),

¢ Michel Le Pallec (Nokia Bell Labs, Nozay).

"http://fmics.inria.fr

http://fmics.inria.fr

Project CONVECS 21

9.4

9.4.1

Regional initiatives

Pack Ambition Recherche Région Auvergne-Rhone-Alpes

MOAP

Participants Gwen Salaiin (correspondent), Ahang Zuo.

MOAP is a project funded by the Auvergne-Rhéne-Alpes region within the Pack Ambition Recherche
programme. The project involves the project-teams CONVECS and CORSE, and the SOITEC company.
MOAP aims at providing modelling and automated analysis techniques for enabling companies to master
the complexity of their internal processes and for optimizing those processes with the final goal of
improving the quality and productivity of their businesses.

MOAP started in October 2020 for three years. The main contributions of CONVECS to MOAP are the
formal modeling and automated verification of BPMN processes.

10

Dissemination

10.1 Promoting scientific activities

General chair, scientific chair

H. Garavel is a member of the model board® of MCC (Model Checking Contest). In 2020, he helped
preparing new models (especially those in the NUPN format) and verified, using the CESAR.BDD
tool of CADP, the forms describing all benchmark models submitted by the contest participants; this
revealed a number of inconsistencies. The results of MCC’2020 have been published online [41].

Together with Peter Hofner (Data61, CSIRO, Sydney, Australia), H. Garavel set up a model repository
(hosted on the Gforge of Inria) to collect and archive formal models of real systems; this infras-
tructure is used by the series of MARS workshops”. This repository currently contains 21 models,
among which 7 were deposited by CONVECS.

G. Salaiin is member of the steering committee of the ACM SAC-SVT (Symposium of Applied
Computing — Software Verification and Testing track) conference series since 2018.

G. Salaiin is member of the steering committee of the SEFM (International Conference on Software
Engineering and Formal Methods) conference series since 2014.

G. Salaiin is member of the steering committee of the FOCLASA (International Workshop on
Foundations of Coordination Languages and Self-Adaptative Systems) workshop series since 2011.

10.1.1 Scientific events: selection

Chair of conference program committees

¢ Ansgar Fehnker (University of Twente, The Netherlands) and H. Garavel were co-chairs for

MARS’2020 (4th Workshop on Models for Formal Analysis of Real Systems) held as part of ETAPS’2020,
Dublin, Ireland, April 26, 2020.

Member of the conference program committees

F Lang was a programme committee member of ETR’2020 (Ecole d’été Temps-Réel). Due to the
Covid-19 pandemic, the event has been postponed to 2021.

8http://mcc.1ip6.fr/models.php
9http://www.mars-workshop.org/

http://mcc.lip6.fr/models.php
http://www.mars-workshop.org/

22

Inria Annual Report 2020

R. Mateescu was a programme committee member of FMICS’2020 (25th International Conference
on Formal Methods for Industrial Critical Systems), Vienna, Austria, September 2-3, 2020.

R. Mateescu was a programme committee member of IFIP-ICTSS’2020 (32nd IFIP International
Conference on Testing Software and Systems), Napoli, Italy, October 6-8, 2020.

G. Salaiin was program committee member of SAC-SVT’2020 (35th ACM/SIGAPP Symposium on
Applied Computing - Software Verification and Testing Track), Brno, Czech Republic, March 30-April
3, 2020.

G. Salaiin was a programme committee member of COORDINATION’2020 (22nd International
Conference on Coordination Models and Languages), La Valletta, Malta, June 15-19, 2020.

G. Salaiin was a programme committee member of COMPSAC-SETA’'2020 (IEEE International
Conference on Computers, Software, and Applications - Software Engineering Technologies and
Applications), Madrid, Spain, July 13-17, 2020.

G. Salaiin was a programme committee member of FormaliSE’2020 (8th International Conference
on Formal Methods in Software Engineering), virtual event, July 13, 2020.

G. Salaiin was a programme committee member of SEFM’2020 (18th International Conference on
Software Engineering and Formal Methods), Amsterdam, The Netherlands, September 14-18, 2020.

G. Salaiin was a programme committee member of FOCLASA'2020 (18th International Workshop
on Coordination and Self-Adaptativeness of Software Applications), Amsterdam, The Netherlands,
September 15, 2020.

G. Salaiin was a programme committee member of HPCS-SERCO’2020 (4th Special Session on High
Performance Services Computing and Internet Technologies), virtual event, January 25-29, 2021.

Reviewer

¢ E Lang was a reviewer for SAC-SVT’2020 and MARS’2020.

¢ A. Muroor Nadumane was a reviewer for SAC-SVT’2020, SEFM’2020, COORDINATION’2020,

COMPSAC-SETA'2020, and FormaliSE’2020.

¢ W. Serwe was a reviewer for SEFM’2020.

10.1.2 Journal

Member of the editorial boards

¢ H. Garavel is an editorial board member of STTT (Springer International Journal on Software Tools

for Technology Transfer).

Reviewer - reviewing activities

* E Lang was a reviewer for JSS (Journal of Systems & Software).

¢ R. Mateescu was a reviewer for ISSE (Innovations in Systems and Software Engineering) and SQJ

(Software Quality Journal).

¢ G. Salaiin was a reviewer for JUCS (Journal of Universal Computer Science), LMCS (Logical Methods

in Computer Science), SCP (Science of Computer Programming), SOCA (Service Oriented Computing
and Applications), SOSYM (Software and Systems Modeling), SQJ, and TSE (IEEE Transactions on
Software Engineering).

Project CONVECS 23

10.1.3 Software Dissemination and Internet Visibility

The CONVECS project-team distributes several software tools, among which the CADP toolbox.
In 2020, the main facts are the following:

¢ We prepared and distributed twelve successive versions (2020-a to 2020-1) of CADP.

¢ We were requested to grant CADP licenses for 222 different computers, located in 47 different
institutions in the world.

The CONVECS Web site'® was updated with scientific contents, announcements, publications, etc.

By the end of December 2020, the CADP forum'!, opened in 2007 for discussions regarding the CADP
toolbox, had over 455 registered users and over 1957 messages had been exchanged.

Also, for the 2020 edition of the Model Checking Contest, we provided 7 families of models (totalling
141 Nested-Unit Petri Nets) derived from our LNT models.

Other research teams took advantage of the software components provided by CADP (e.g., the BCG
and OPEN/CAESAR environments) to build their own research software. We can mention the following
developments:

¢ The OCARINA tool for Analyzing AADL Descriptions [47, 48]

¢ Verification of Formal Requirements in the Context of ISO 26262 [44]
Other teams also used the CADP toolbox for various case studies:

¢ Modeling the Raft Distributed Consensus Protocol in LNT [30]

¢ Detection of Android Malware using Model Checking and Machine Learning [38, 39]

10.1.4 Invited talks
¢ A. Muroor Nadumane gave a talk entitled “Verification Guided Design and Deployment of IoT
Applications” at the Inria-Nokia Bell Labs seminar held as a virtual event on November 5, 2020.
10.1.5 Research administration

¢ E Lang is chair of the “Commission du développement technologique”, which is in charge of select-
ing R&D projects for Inria Grenoble — Rhone-Alpes, and giving an advice on the recruitment of
temporary engineers.

¢ R. Mateescu is the scientific correspondent of the European and International Partnerships for
Inria Grenoble — Rhone-Alpes.

¢ R. Mateescu is a member of the Comité d’orientation scientifique for Inria Grenoble - Rhone-Alpes.
¢ R. Mateescu was (until September 2020) a member of the “Bureau” of the LIG laboratory.

¢ R. Mateescu was appointed to the Executive Commission in charge of International Relations at
COMUE Université Grenoble Alpes.

¢ G. Salaiin is a member of the Scientific Committee of the PCS (Pervasive Computing Systems) action
of the PERSYVAL Labex.

e W. Serwe is (together with Laurent Lefévre from the AVALON Inria project-team) correspondent in
charge of the 2020 Inria activity reports at Inria Grenoble — Rhone-Alpes.

¢ W. Serwe is a member of the “Comité de Centre” at Inria Grenoble — Rhone-Alpes.

¢ W. Serwe was (until September 2020) “chargé de mission” for the scientific axis Formal Methods,
Models, and Languages of the LIG laboratory.

Opttp://convecs.inria.fr
Uhttp://cadp.inria.fr/forum. html

http://convecs.inria.fr
http://cadp.inria.fr/forum.html

24

Inria Annual Report 2020

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

CONVECS is a host team for the computer science master MOSIG (Master of Science in Informatics at
Grenoble), common to Grenoble INP and Université Grenoble Alpes (UGA).
In 2020, we carried out the following teaching activities:

P. Bouvier supervised two groups of 1st year students in the context of the course “Algorithmique”
(33 hours “équivalent TD”) at ENSIMAG.

E Lang gave a course on “Formal Software Development Methods” (7.5 hours “équivalent TD”) in
the framework of the “Software Engineering” lecture given to first year students of the MOSIG.

E Lang and R. Mateescu gave a lecture on “Modeling and Analysis of Concurrent Systems: Models
and Languages for Model Checking” (27 hours “équivalent TD”) to third year students of ENSIMAG
and second year students of the MOSIG.

G. Salaiin taught about 230 hours of classes (algorithmics, Web development, object-oriented
programming) at the department MMI of IUT1 (UGA). He is also headmaster of the “Services
Mobiles et Interface Nomade” (SMIN) professional licence (third year of university) at IUT1/UGA.

W. Serwe supervised a group of six teams in the context of the “projet Génie Logiciel” (55 hours

équivalent TD’, consisting in 13.5 hours of lectures, plus supervision and evaluation), ENSIMAG,
January 2020.

W. Serwe, together with Ioannis Parissis (LCIS), gave a lecture on “Verification and Test Theories”
(18 hours “équivalent TD” on behavioural testing) to second year students of the MOSIG.

10.2.2 Supervision

PhD: A. Muroor Nadumane, “Models and Verification for Composition and Reconfiguration of Web
of Things Applications”, Université Grenoble Alpes, December 10, 2020, G. Salaiin, R. Mateescu, and
M. Le Pallec

PhD in progress: P. Bouvier, “Implémentation et vérification des langages concurrents de nouvelle
génération”, Université Grenoble Alpes, since October 2019, H. Garavel and R. Mateescu

PhD in progress: P. Ledent, “Formal Validation of Security Requirements for a System-on-Chip
Architecture”, Université Grenoble Alpes, since October 2020, R. Mateescu, W. Serwe, and O. Haller

PhD in progress: L. Muller, “Formal Modelling and Validation for Electric, Connected, and Auto-
mated Vehicles”, Université Grenoble Alpes, since September 2020, R. Mateescu and W. Serwe

PhD in progress: A. Zuo, “Modelling, Optimization and Predictive Analysis of Business Processes”,
Université Grenoble Alpes, since October 2020, G. Salaiin and Ylies Falcone

10.2.3 Juries

L]

R. Mateescu was reviewer of Thomas Neele’s PhD thesis, entitled “Reductions for Parity Games
and Model Checking”, defended at Eindhoven University of Technology (The Netherlands) on
September 16, 2020.

R. Mateescu was reviewer of Luca Di Stefano’s PhD thesis, entitled “Modelling and Verification of
Multi-Agent Systems via Sequential Emulation”, defended at Gran Sasso Science Institute (Italy) on
October 13, 2020.

R. Mateescu was reviewer of Anders Mariegaard’s PhD thesis, entitled “Quantitative Systems:
Efficient Reasoning under Uncertainty”, defended at Aalborg University (Denmark) on November 6,
2020.

Project CONVECS 25

¢ R. Mateescu was reviewer of Hermann Felbinger’s PhD thesis, entitled “Characterizing Quality
Assessment and Redundancy Elimination of Test Suites Without Execution”, defended at Graz
University of Technology (Austria) on December 22, 2020.

¢ G. Salaiin was reviewer of Samir Chouali’s Habilitation thesis, entitled “Contributions a la concep-
tion rigoureuse des systémes a base de composants exploitant des modeles SysML et des approches
formelles”, defended at Université de Franche-Comté on July 10, 2020.

10.3 Popularization

10.3.1 Articles and contents

Participants Hubert Garavel.

At the FMICS’2020 international conference, together with Maurice ter Beek (ISTI-CNR, Pisa, Italy)
and Jaco van de Pol (University of Twente, The Netherlands), we organized an expert survey on formal
methods to celebrate the 25th anniversary of FMICS. The survey addressed 30 questions on the past,
present, and future of formal methods in research, industry, and education. The detailed report of the
study [26] presents an analysis of the opinions of 130 renowned experts in formal methods (among which
three Turing award winners), as well as thought-provoking position statements on formal methods of 111
of them. The survey is both an exercise in collective thinking and a family picture of key actors in formal
methods.

11 Scientific production

11.1 Major publications

[1]1 X. Etchevers, G. Salaiin, E Boyer, T. Coupaye and N. De Palma. ‘Reliable Self-deployment of Dis-
tributed Cloud Applications’. In: Software: Practice and Experience 47.1 (2017), pp. 3-20. DOIL:
10.1002/spe.2400. URL: https://hal.inria.fr/hal-01290465.

[2] H. Evrard and E Lang. ‘Automatic Distributed Code Generation from Formal Models of Asyn-
chronous Processes Interacting by Multiway Rendezvous’. In: Journal of Logical and Algebraic
Methods in Programming 88 (Mar. 2017), p. 33. DOI: 10.1016/j . jlamp.2016.09.002. URL:
https://hal.inria.fr/hal-01412911.

[3] H. Garavel. ‘Nested-unit Petri nets’. In: Journal of Logical and Algebraic Methods in Programming
104 (Apr. 2019), pp. 60-85. DOL: 10.1016/j.jlamp.2018.11.005. URL: https://hal.inria.fr
/hal-02072190.

[4] H. Garavel, E Lang and R. Mateescu. ‘Compositional Verification of Asynchronous Concurrent
Systems using CADP’. In: Acta Informatica 52.4 (June 2015), p. 56. DOI: 10.1007/s00236-015-02
26-1. URL: https://hal.inria.fr/hal-01247507.

[5] H. Garavel, E Lang, R. Mateescu and W. Serwe. ‘CADP 2011: A Toolbox for the Construction and
Analysis of Distributed Processes’. In: International Journal on Software Tools for Technology
Transfer 15.2 (2013), pp. 89-107. DOI: 10.1007/s10009-012-0244-z. URL: http://hal.inria
.fr/hal-00715056.

[6] H. Garavel, E Lang and W. Serwe. ‘From LOTOS to LNT’. In: ModelEd, TestEd, TrustEd - Essays
Dedicated to Ed Brinksma on the Occasion of His 60th Birthday. Ed. by J.-P. Katoen, R. Langerak
and A. Rensink. Vol. 10500. Lecture Notes in Computer Science. Springer, Oct. 2017, pp. 3-26. DOIL:
10.1007/978-3-319-68270-9_1. URL: https://hal.inria.fr/hal-01621670.

[7] A.Krishna, P. Poizat and G. Salaiin. ‘Checking Business Process Evolution’. In: Science of Computer
Programming 170 (Jan. 2019), pp. 1-26. DOI: 10.1016/j.scico0.2018.09.007. URL: https://ha
l.inria.fr/hal-01920273.

https://doi.org/10.1002/spe.2400
https://hal.inria.fr/hal-01290465
https://doi.org/10.1016/j.jlamp.2016.09.002
https://hal.inria.fr/hal-01412911
https://doi.org/10.1016/j.jlamp.2018.11.005
https://hal.inria.fr/hal-02072190
https://hal.inria.fr/hal-02072190
https://doi.org/10.1007/s00236-015-0226-1
https://doi.org/10.1007/s00236-015-0226-1
https://hal.inria.fr/hal-01247507
https://doi.org/10.1007/s10009-012-0244-z
http://hal.inria.fr/hal-00715056
http://hal.inria.fr/hal-00715056
https://doi.org/10.1007/978-3-319-68270-9_1
https://hal.inria.fr/hal-01621670
https://doi.org/10.1016/j.scico.2018.09.007
https://hal.inria.fr/hal-01920273
https://hal.inria.fr/hal-01920273

26 Inria Annual Report 2020

[8] R.Mateescu and W. Serwe. ‘Model Checking and Performance Evaluation with CADP Illustrated on
Shared-Memory Mutual Exclusion Protocols’. In: Science of Computer Programming (Feb. 2012).
DOI: 10.1016/j.scico0.2012.01.003. URL: http://hal.inria.fr/hal-00671321.

11.2 Publications of the year
International journals

[9]1 A.Inants and J. Euzenat. ‘So, what exactly is a qualitative calculus?’ In: Artificial Intelligence 289
(2020), p. 103385. DO1: 10.1016/j .artint.2020.103385. URL: https://hal.archives-ouver
tes.fr/hal-02942947.

[10] U. Ozeer, L. Letondeur, G. Salaiin, E-G. Ottogalli and J.-M. Vincent. ‘F 3 ARIoT: A Framework for
Autonomic Resilience of IoT Applications in the Fog’. In: Internet of Things (1st Dec. 2020), pp. 1-54.
DOIL: 10.1016/j.10t.2020.100275. URL: https://hal.inria.fr/hal-02933365.

[11] S. de Putter, E Lang and A. Wijs. ‘Compositional model checking with divergence preserving
branching bisimilarity is lively’. In: Science of Computer Programming 196 (Sept. 2020), p. 102493.
DOIL: 10.1016/j.scico.2020.102493. URL: https://hal.inria.fr/hal-02890800.

[12] G. Salaiin. ‘Quantifying the Similarity of Non-bisimilar Labelled Transition Systems’. In: Science
of Computer Programming 202 (1st Feb. 2021). po1: 10.1016/j . scico.2020.102580. URL:
https://hal.inria.fr/hal-03017666.

International peer-reviewed conferences

[13] P Bouvier, H. Garavel and H. Ponce de Le6n. ‘Automatic Decomposition of Petri Nets into Au-
tomata Networks - A Synthetic Account’. In: PETRI NETS 2020 - 41st International Conference
on Application and Theory of Petri Nets and Concurrency. Paris, France, 24th June 2020. URL:
https://hal.inria.fr/hal-02875957.

[14] L.DiStefano, E Lang and W. Serwe. ‘Combining SLiVER with CADP to Analyze Multi-agent Systems’.
In: Lecture Notes in Computer Science. COORDINATION 2020 - 22nd IFIP WG 6.1 International
Conference on Coordination Models and Languages. Vol. 12134. La Valetta, Malta, 10th June 2020,
pp- 370-385. DOI: 10.1007/978-3-030-50029-0_23. URL: https://hal.inria.fr/hal-0289
0401.

[15] E Duran, C. Rocha and G. Salaiin. ‘Analysis of the Runtime Resource Provisioning of BPMN Pro-
cesses using Maude’. In: WRLA 2020 - 13th International Workshop on Rewriting Logic and its
Applications. Dublin, Ireland, 25th Apr. 2020, pp. 1-16. URL: https://hal.inria.fr/hal-02931
077.

[16] I Faqrizal and G. Salaiin. ‘Clusters of Faulty States for Debugging Behavioural Models’. In: APSEC
2020 - 27th Asia-Pacific Software Engineering Conference. Singapore, Singapore, 2nd Dec. 2020,
pp.- 1-9. URL: https://hal.inria.fr/hal-03035539.

[17] A.Krishna, M. Le Pallec, A. Martinez, R. Mateescu and G. Salaiin. ‘MOZART: Design and Deployment
of Advanced IoT Applications’. In: WWW 2020 - International World Wide Web Conference. Taipei,
Taiwan, 20th Apr. 2020, pp. 1-4. DOI: 10.1145/3366424.3383532. URL: https://hal.inria.fr
/hal-02554029.

[18] E Lang, R. Mateescu and E Mazzanti. ‘Sharp Congruences Adequate with Temporal Logics Com-
bining Weak and Strong Modalities’. In: TACAS 2020 - Tools and Algorithms for the Construction
and Analysis of Systems. Vol. 12079. Lecture Notes in Computer Science. Dublin, Ireland, 17th Apr.
2020, pp. 57-76. DOI: 10.1007/978-3-030-45237-7_4. URL: https://hal.inria.fr/hal-02
555692.

[19] L. Marsso. ‘Specifying a Cryptographical Protocol in Lustre and SCADE’. In: MARS 2020 - 4th
Workshop on Models for Formal Analysis of Real Systems. Vol. 316. Electronic Proceedings in
Theoretical Computer Science. Dublin, Ireland, 26th Apr. 2020, pp. 149-199. DOI: 10.4204/EPTCS.
316.7.URL:https://hal.inria.fr/hal-02556856.

https://doi.org/10.1016/j.scico.2012.01.003
http://hal.inria.fr/hal-00671321
https://doi.org/10.1016/j.artint.2020.103385
https://hal.archives-ouvertes.fr/hal-02942947
https://hal.archives-ouvertes.fr/hal-02942947
https://doi.org/10.1016/j.iot.2020.100275
https://hal.inria.fr/hal-02933365
https://doi.org/10.1016/j.scico.2020.102493
https://hal.inria.fr/hal-02890800
https://doi.org/10.1016/j.scico.2020.102580
https://hal.inria.fr/hal-03017666
https://hal.inria.fr/hal-02875957
https://doi.org/10.1007/978-3-030-50029-0_23
https://hal.inria.fr/hal-02890401
https://hal.inria.fr/hal-02890401
https://hal.inria.fr/hal-02931077
https://hal.inria.fr/hal-02931077
https://hal.inria.fr/hal-03035539
https://doi.org/10.1145/3366424.3383532
https://hal.inria.fr/hal-02554029
https://hal.inria.fr/hal-02554029
https://doi.org/10.1007/978-3-030-45237-7_4
https://hal.inria.fr/hal-02555692
https://hal.inria.fr/hal-02555692
https://doi.org/10.4204/EPTCS.316.7
https://doi.org/10.4204/EPTCS.316.7
https://hal.inria.fr/hal-02556856

Project CONVECS 27

[20] L.Marsso, R. Mateescu and W. Serwe. ‘Automated Transition Coverage in Behavioural Conformance
Testing’. In: ICTSS 2020 - 32nd IFIP International Conference on Testing Software and Systems.
Napolj, Italy, 2nd Dec. 2020, pp. 219-235. DOI: 10.1007/978-3-030-64881-7_14. URL: https:
//hal.inria.fr/hal-03038050.

[21] R.Mateescu, W. Serwe, A. Bouzafour and M. Renaudin. ‘Modeling an Asynchronous Circuit Ded-
icated to the Protection Against Physical Attacks’. In: MARS 2020 - 4th Workshop on Models for
Formal Analysis of Real Systems. Vol. 316. Electronic Proceedings in Theoretical Computer Science.
Dublin, Ireland, 26th Apr. 2020, pp. 200-239. DOI: 10.4204/EPTCS.316.8. URL: https://hal.in
ria.fr/hal-02559125.

[22] V.a.Nguyen, E. Jenn, W. Serwe, E Lang and R. Mateescu. ‘Using Model Checking to Identify Timing
Interferences on Multicore Processors’. In: ERTS 2020 - 10th European Congress on Embedded
Real Time Software and Systems. Toulouse, France: http://www.erts2020.org/, 29th Jan. 2020,
pp. 1-10. URL: https://hal.inria.fr/hal-02462085.

[23] U. Ozeer, G. Salaiin, L. Letondeur, E-G. Ottogalli and J.-M. Vincent. ‘Verification of a Failure
Management Protocol for Stateful IoT Applications’. In: Proc. of FMICS’20. Vienne, Austria, 2nd Sept.
2020. DOI1: 10.1007/978-3-030-58298-2_12. URL: https://hal.inria.fr/hal-02930872.

Reports & preprints

[24] P Bouvier and H. Garavel. The VLSAT-1 Benchmark Suite. INRIA Grenoble Rhone-Alpes, 16th Nov.
2020, p. 6. URL: https://hal.archives-ouvertes.fr/hal-03007233.

[25] H. Garavel. Proposal for Adding Useful Features to Petri-Net Model Checkers. Inria Grenoble - Rhone-
Alpes, 23rd Dec. 2020. URL: https://hal.inria.fr/hal-03087421.

11.3 Other
Scientific popularization

[26] H. Garavel, M. ter Beek and J. van de Pol. ‘The 2020 Expert Survey on Formal Methods’. In: FMICS
2020: 25th International Conference on Formal Methods for Industrial Critical Systems. Vienna,
Austria, 29th Aug. 2020, pp. 3-69. DOI: 10.1007/978-3-030-58298-2_1. URL: https://hal.in
ria.fr/hal-03082818.

11.4 Cited publications

[27] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C. McKinty, V. Powazny, E Lang, W. Serwe and
G. Smeding. ‘Reference Manual of the LNT to LOTOS Translator (Version 6.8)’. INRIA, Grenoble,
France. Jan. 2019.

[28] E. M. Clarke, E. A. Emerson and A. P. Sistla. ‘Automatic Verification of Finite-State Concurrent
Systems using Temporal Logic Specifications’. In: ACM Transactions on Programming Languages
and Systems 8.2 (Apr. 1986), pp. 244-263.

[29] R.De Nicola and E W. Vaandrager. ‘Action versus State Based Logics for Transition Systems’. In:
Semantics of Concurrency. Vol. 469. Lecture Notes in Computer Science. Springer Verlag, 1990,
pp. 407-419.

[30] H. Evrard. ‘Modeling the Raft Distributed Consensus Protocol in LNT’. In: Proceedings of the 4th
Workshop on Models for Formal Analysis of Real Systems, MARS@ETAPS’2020 (Dublin, Ireland).
Ed. by A. Fehnker and H. Garavel. Vol. 316. EPTCS. Apr. 2020, pp. 15-39.

[31] H. Garavel. ‘Compilation of LOTOS Abstract Data Types’. In: Proceedings of the 2nd International
Conference on Formal Description Techniques FORTE'89 (Vancouver B.C., Canada). Ed. by S. T.
Vuong. North Holland, Dec. 1989, pp. 147-162.

https://doi.org/10.1007/978-3-030-64881-7_14
https://hal.inria.fr/hal-03038050
https://hal.inria.fr/hal-03038050
https://doi.org/10.4204/EPTCS.316.8
https://hal.inria.fr/hal-02559125
https://hal.inria.fr/hal-02559125
http://www.erts2020.org/
https://hal.inria.fr/hal-02462085
https://doi.org/10.1007/978-3-030-58298-2_12
https://hal.inria.fr/hal-02930872
https://hal.archives-ouvertes.fr/hal-03007233
https://hal.inria.fr/hal-03087421
https://doi.org/10.1007/978-3-030-58298-2_1
https://hal.inria.fr/hal-03082818
https://hal.inria.fr/hal-03082818

28

Inria Annual Report 2020

(32]

[33]

(34]

[35]

(36]

[37]

[38]

[39]

(40]

(41]

(42]

(43]
(44]

(45]

[46]

H. Garavel. ‘OPEN/CZASAR: An Open Software Architecture for Verification, Simulation, and Testing’.
In: Proceedings of the First International Conference on Tools and Algorithms for the Construction
and Analysis of Systems TACAS'98 (Lisbon, Portugal). Ed. by B. Steffen. Vol. 1384. Lecture Notes
in Computer Science. Full version available as INRIA Research Report RR-3352. Berlin: Springer
Verlag, Mar. 1998, pp. 68-84.

H. Garavel and E Lang. ‘SVL: a Scripting Language for Compositional Verification’. In: Proceedings of
the 21st IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed
Systems FORTE'2001 (Cheju Island, Korea). Ed. by M. Kim, B. Chin, S. Kang and D. Lee. Full version
available as INRIA Research Report RR-4223. IFIP. Kluwer Academic Publishers, Aug. 2001, pp. 377-
392.

H. Garavel, E Lang and R. Mateescu. ‘Compiler Construction using LOTOS NT’. In: Proceedings
of the 11th International Conference on Compiler Construction CC 2002 (Grenoble, France). Ed. by
N. Horspool. Vol. 2304. Lecture Notes in Computer Science. Springer Verlag, Apr. 2002, pp. 9-13.

H. Garavel, R. Mateescu and I. Smarandache-Sturm. ‘Parallel State Space Construction for Model-
Checking’. In: Proceedings of the 8th International SPIN Workshop on Model Checking of Software
SPIN’2001 (Toronto, Canada). Ed. by M. B. Dwyer. Vol. 2057. Lecture Notes in Computer Science.
Revised version available as INRIA Research Report RR-4341 (December 2001). Berlin: Springer
Verlag, May 2001, pp. 217-234.

H. Garavel and W. Serwe. ‘State Space Reduction for Process Algebra Specifications’. In: Theoretical
Computer Science 351.2 (Feb. 2006), pp. 131-145.

H. Garavel and J. Sifakis. ‘Compilation and Verification of LOTOS Specifications’. In: Proceedings
of the 10th International Symposium on Protocol Specification, Testing and Verification (Ottawa,
Canada). Ed. by L. Logrippo, R. L. Probert and H. Ural. IFIP. North Holland, June 1990, pp. 379-394.

S. E. Hatib. ‘Une approche sémantique de détection de maliciel Android basée sur la vérification de
modeles et 'apprentissage automatique’. Master thesis. Québec, Canada: Laval University, 2020.

S. E. Hatib, L. Ricaud, J. Desharnais and N. Tawbi. ‘Toward Semantic-Based Android Malware
Detection Using Model Checking and Machine Learning’. In: Risks and Security of Internet and
Systems - 15th International Conference, CRiSIS’2020 (Paris, France). Ed. by J. Garcia-Alfaro, J.
Leneutre, N. Cuppens and R. Yaich. Vol. 12528. Lecture Notes in Computer Science. Springer, Nov.
2020, pp. 289-307.

M. Hennessy and R. Milner. ‘Algebraic Laws for Nondeterminism and Concurrency’. In: Journal of
the ACM 32 (1985), pp. 137-161.

E Kordon, H. Garavel, L. M. Hillah, E Hulin-Hubard, E. Amparore, B. Berthomieu, S. Biswal,
D. Donatelli, E Galla, G. Ciardo, S. Dal Zilio, P. Jensen, C. He, D. Le Botlan, S. Li, A. Miner, J.
Srba and . Thierry-Mieg. Complete Results for the 2020 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2020/results.php. June 2020. (Visited on 2020).

E Lang and R. Mateescu. ‘Partial Model Checking using Networks of Labelled Transition Systems
and Boolean Equation Systems’. In: Logical Methods in Computer Science 9.4 (Oct. 2013). URL:
https://hal.inria.fr/hal-00872181.

J. Magee and J. Kramer. Concurrency: State Models and Java Programs. 2006th ed. Wiley, Apr. 2006.

D. Makartetskiy, G. Marchetto, R. Sisto, E Valenza, M. Virgilio, D. Leri, P. Denti and R. Finizio.
‘(User-friendly) Formal Requirements Verification in the Context of ISO 26262’. In: Engineering
Science and Technology, an International Journal 23.3 (2020), pp. 494-506.

R. Mateescu and D. Thivolle. ‘A Model Checking Language for Concurrent Value-Passing Systems’.
In: Proceedings of the 15th International Symposium on Formal Methods FM'08 (Turku, Finland).
Ed. by J. Cuellar, T. Maibaum and K. Sere. Vol. 5014. Lecture Notes in Computer Science. Springer
Verlag, May 2008, pp. 148-164.

R. Mateescu and A. Wijs. ‘Property-Dependent Reductions Adequate with Divergence-Sensitive
Branching Bisimilarity’. In: Science of Computer Programming (Apr. 2014). DO1: 10.1016/j.scico
.2014.04.004. URL: https://hal.inria.fr/hal-01016922.

https://hal.inria.fr/hal-00872181
https://doi.org/10.1016/j.scico.2014.04.004
https://doi.org/10.1016/j.scico.2014.04.004
https://hal.inria.fr/hal-01016922

Project CONVECS 29

(47]

(48]

(49]

[50]

(51]

H. Mkaouar, B. Zalila, J. Hugues and M. Jmaiel. ‘A Formal Approach to AADL Model-based Software
Engineering’. In: Springer International Journal on Software Tools for Technology Transfer (STTT)
22 (2020), pp. 219-247.

H. Mkaouar, B. Zalila, J. Hugues and M. Jmaiel. ‘Towards a Formal Specification for an AADL
Behavioural Subset using the LNT Language’. In: International Journal of Business and Systems
Research 14.2 (2020), pp. 162-190.

A. K. M. Nadumane. ‘Models and Verification for Composition and Reconfiguration of Web of
Things Applications’. PhD Thesis. Université Grenoble Alpes, Dec. 2020.

R. D. Nicola, L. Di Stefano and O. Inverso. ‘Multi-agent Systems with Virtual Stigmergy’. In: Sci.
Comput. Program. 187 (2020), p. 102345.

L. D. Stefano. ‘Modelling and Verification of Multi-Agent Systems via Sequential Emulation’. PhD
Thesis. Gran Sasso Science Institute, LAquila, Italy, Oct. 2020.

	Project-Team CONVECS
	Team members, visitors, external collaborators
	Overall objectives
	Overview

	Research program
	New Formal Languages and their Concurrent Implementations
	Parallel and Distributed Verification
	Timed, Probabilistic, and Stochastic Extensions
	Component-Based Architectures for On-the-Fly Verification
	Real-Life Applications and Case Studies

	Application domains
	Highlights of the year
	New software and platforms
	New software
	CADP
	TRAIAN

	New results
	New Formal Languages and their Implementations
	LNT Specification Language
	LOTOS NT Specification Language
	Nested-Unit Petri Nets
	Formal Modeling and Analysis of BPMN

	Parallel and Distributed Verification
	Debugging of Concurrent Systems using Counterexample Analysis
	Identifying Timing Interferences on Multicore Processors
	Verification of Emergent Properties in Multi-agent Systems
	Other Developments

	Component-Based Architectures for On-the-Fly Verification
	Compositional Verification
	On-the-fly Test Case Extraction
	Other Component Developments

	Real-Life Applications and Case Studies
	Failure Management Protocol for Stateful IoT Applications in the Fog
	Rigorous Design, Reconfiguration, and Deployment of IoT Applications
	Asynchronous Circuit for the Protection against Physical Attacks

	Bilateral contracts and grants with industry
	Bilateral grants with industry
	Nokia Bell Labs
	ST Microelectronics

	Partnerships and cooperations
	International initiatives
	Inria international partners
	Other International Collaborations

	European initiatives
	FP7 & H2020 Projects
	Collaborations with major European organizations

	National initiatives
	PIA (Programme d'Investissements d'Avenir)
	Competitivity Clusters
	Other National Collaborations

	Regional initiatives
	Pack Ambition Recherche Région Auvergne-Rhône-Alpes

	Dissemination
	Promoting scientific activities
	Scientific events: selection
	Journal
	Software Dissemination and Internet Visibility
	Invited talks
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Articles and contents

	Scientific production
	Major publications
	Publications of the year
	Other
	Cited publications

