RESEARCH CENTRE

2020
Sophia Antipolis - Méditerranée ACTIVITY REPORT

Project-Team

ECUADOR

Program transformations for scientific
computing

DOMAIN

Applied Mathematics, Computation and
Simulation

THEME

Numerical schemes and simulations

Contents

Project-Team ECUADOR
1 Team members, visitors, external collaborators
2 Overall objectives

3 Research program
3.1 Algorithmic Differentiation
3.2 Static Analysis and Transformation of programs
3.3 Algorithmic Differentiation and Scientific Computing

4 Application domains
4.1 Algorithmic Differentiation e
4.2 Multidisciplinary optimization L L e
4.3 Inverse problems and Data Assimilation
4.4 Linearization i e e e e e e e e e e e e
4.5 Meshadaptation i it e e e e e e e

5 Social and environmental responsibility
5.1 Impactofresearchresults ittt e

6 New software and platforms
6.1 Newsoftware
6.1.1 AIRONUM e e e e e
6.1.2 TAPENADE. e e

7 Newresults
7.1 Algorithmic Differentiationof OpenMP
7.2 Application to large industrialcodes L L L o
7.3 ACTOACOUSLICS . . v v v v vttt i e et e e e e e e e e e e
7.4 Turbulencemodels e e e e e e
7.5 Rotatingmachines e
7.6 High order approximations i e
7.7 Control of approxXimation €Irors v v v it i e e e e e e e e e e e

8 Dissemination
8.1 Promotingscientificactivities. L e
8.1.1 Scientific events: organisation e
8.1.2 Scientific eXpertise i v i i e e e e e e

9 Scientific production
9.1 Major publications i e e
9.2 Publicationsoftheyear e e
9.3 Citedpublications e

Project ECUADOR

Project-Team ECUADOR

Creation of the Project-Team: 2014 January 01

Keywords

Computer sciences and digital sciences

A2.1.1. - Semantics of programming languages
A2.2.1. - Static analysis

A2.5. - Software engineering

A6.1.1. - Continuous Modeling (PDE, ODE)
A6.2.6. — Optimization

A6.2.7. — High performance computing

A6.3.1. — Inverse problems

A6.3.2. — Data assimilation
Other research topics and application domains

B1.1.2. - Molecular and cellular biology
B3.2. - Climate and meteorology

B3.3.2. — Water: sea & ocean, lake & river
B3.3.4. — Atmosphere

B5.2.3. — Aviation

B5.2.4. — Aerospace

B9.6.3. — Economy, Finance

https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2020

1 Team members, visitors, external collaborators

Research Scientists

¢ Laurent Hascoét [Team leader, Inria, Senior Researcher, HDR]
¢ Alain Dervieux [Inria, Emeritus, HDR]

e Valérie Pascual [Inria, Researcher]

PhD Student

¢ Matthieu Gschwend [Inria, from Oct 2020]

Administrative Assistant

e Christine Claux [Inria]

External Collaborator

¢ Bruno Koobus [Univ Montpellier II (sciences et techniques du Languedoc)]

2 Overall objectives

Team Ecuador studies Algorithmic Differentiation (AD) of computer programs, blending :

¢ AD theory: We study software engineering techniques, to analyze and transform programs me-
chanically. Algorithmic Differentiation (AD) transforms a program P that computes a function F,
into a program P’ that computes analytical derivatives of F. We put emphasis on the adjoint mode
of AD, a sophisticated transformation that yields gradients for optimization at a remarkably low
cost.

¢ AD application to Scientific Computing: We adapt the strategies of Scientific Computing to take
full advantage of AD. We validate our work on real-size applications.

We aim to produce AD code that can compete with hand-written sensitivity and adjoint programs used in
the industry. We implement our algorithms into the tool Tapenade, one of the most popular AD tools at
present.

Our research directions :

 Efficient adjoint AD of frequent dialects e.g. Fixed-Point loops.
¢ Development of the adjoint AD model towards Dynamic Memory Management.

¢ Evolution of the adjoint AD model to keep in pace with with modern programming languages
constructs.

¢ Optimal shape design and optimal control for steady and unsteady simulations. Higher-order
derivatives for uncertainty quantification.

¢ Adjoint-driven mesh adaptation.

3 Research program

3.1 Algorithmic Differentiation

Project ECUADOR 3

Participants Laurent Hascoét, Valérie Pascual.

Glossary

algorithmic differentiation (AD, aka Automatic Differentiation) Transformation of a program, that
returns a new program that computes derivatives of the initial program, i.e. some combination
of the partial derivatives of the program’s outputs with respect to its inputs.

adjoint Mathematical manipulation of the Partial Differential Equations that define a problem,
obtaining new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in adjoint AD, that trades duplicate execution of a
part of the program to save some memory space that was used to save intermediate results.

Algorithmic Differentiation (AD) differentiates programs. The input of AD is a source program P
that, given some X € R”, returns some Y = F(X) € R™, for a differentiable F. AD generates a new source
program P’ that, given X, computes some derivatives of F [4].

Any execution of P amounts to a sequence of instructions, which is identified with a composition of
vector functions. Thus, if

p runs {I1; ;... Ip;},

F thenis fyofy_10...0fi, @

where each fj is the elementary function implemented by instruction Ix. AD applies the chain rule
to obtain derivatives of F. Calling X} the values of all variables after instruction I, i.e. Xy = X and
X = fi(Xg_1), the Jacobian of F is

F'(X) = fy(Xp-1) . fy 1 (Xp-2) f{(X0) @

which can be mechanically written as a sequence of instructions I ;C This can be generalized to higher
level derivatives, Taylor series, etc. Combining the [;C with the control of P yields P, and therefore this
differentiation is piecewise.

The above computation of F'(X), albeit simple and mechanical, can be prohibitively expensive on
large codes. In practice, many applications only need cheaper projections of F'(X) such as:

* Sensitivities, defined for a given direction X in the input space as:

F'(X).X = fp(Xp-1)- fpo1(Xp-2) fi(Xo) . X . 3)

This expression is easily computed from right to left, interleaved with the original program instruc-
tions. This is the tangent mode of AD.

* Adjoints, defined after transposition (F'*), for a given weighting Y of the outputs as:

F*00.Y = f{* (X0 fy" (X). [l (Xp-2). [(Xp-1).Y . (4)

This expression is most efficiently computed from right to left, because matrixxvector products
are cheaper than matrixxmatrix products. This is the adjoint mode of AD, most effective for
optimization, data assimilation [25], adjoint problems [19], or inverse problems.

4 Inria Annual Report 2020

Adjoint AD builds a very efficient program [21, Section 3.3], which computes the gradient in a time
independent from the number of parameters n. In contrast, computing the same gradient with the
tangent mode would require running the tangent differentiated program » times.

However, the X} are required in the inverse of their computation order. If the original program
overwrites a part of X, the differentiated program must restore X before it is used by fléil (Xx). Therefore,
the central research problem of adjoint AD is to make the X} available in reverse order at the cheapest
cost, using strategies that combine storage, repeated forward computation from available previous values,
or even inverted computation from available later values.

Another research issue is to make the AD model cope with the constant evolution of modern language
constructs. From the old days of Fortran77, novelties include pointers and dynamic allocation, modularity,
structured data types, objects, vectorial notation and parallel programming. We keep developing our
models and tools to handle these new constructs.

3.2 Static Analysis and Transformation of programs

Participants Laurent Hascoét, Valérie Pascual.

Glossary

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses,
or separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known as
basic blocks, each contain a sequence of instructions and whose arrows represent all possible
control jumps that can occur at run-time.

abstract interpretation Model that describes program static analysis as a special sort of execution,
in which all branches of control switches are taken concurrently, and where computed values
are replaced by abstract values from a given semantic domain. Each particular analysis gives
birth to a specific semantic domain.

data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analysis is static, therefore studying all possible run-time
behaviors and making conservative approximations. A typical data-flow analysis is to detect,
at any location in the source program, whether a variable is initialized or not.

The most obvious example of a program transformation tool is certainly a compiler. Other examples
are program translators, that go from one language or formalism to another, or optimizers, that transform
a program to make it run better. AD is just one such transformation. These tools share the technological
basis that lets them implement the sophisticated analyses [12] required. In particular there are common
mathematical models to specify these analyses and analyze their properties.

An important principle is abstraction: the core of a compiler should not bother about syntactic details
of the compiled program. The optimization and code generation phases must be independent from
the particular input programming language. This is generally achieved using language-specific front-
ends, language-independent middle-ends, and target-specific back-ends. In the middle-end, analysis
can concentrate on the semantics of a reduced set of constructs. This analysis operates on an abstract
representation of programs made of one call graph, whose nodes are themselves flow graphs whose
nodes (basic blocks) contain abstract syntax trees for the individual atomic instructions. To each level are
attached symbol tables, nested to capture scoping.

Static program analysis can be defined on this internal representation, which is largely language
independent. The simplest analyses on trees can be specified with inference rules [15, 22, 13]. But many

Project ECUADOR 5

data-flow analyses are more complex, and better defined on graphs than on trees. Since both call graphs
and flow graphs may be cyclic, these global analyses will be solved iteratively. Abstract Interpretation [16]
is a theoretical framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. At the call
graph level, they can run bottom-up or top-down, and they yield more accurate results when they take
into account the different call sites of each procedure, which is called context sensitivity. At the flow graph
level, they can run forwards or backwards, and yield more accurate results when they take into account
only the possible execution flows resulting from possible control, which is called flow sensitivity.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge
of actual run-time values. Far before reaching the very theoretical limit of undecidability, one reaches
practical limitations to how much information one can infer from programs that use arrays [28, 17] or
pointers. Therefore, conservative over-approximations must be made, leading to derivative code less
efficient than ideal.

3.3 Algorithmic Differentiation and Scientific Computing

Participants Alain Dervieux, Laurent Hascoét, Bruno Koobus, Matthieu Gschwend,
Stephen Wornom.

Glossary

linearization In Scientific Computing, the mathematical model often consists of Partial Differential
Equations, that are discretized and then solved by a computer program. Linearization of these
equations, or alternatively linearization of the computer program, predict the behavior of
the model when small perturbations are applied. This is useful when the perturbations are
effectively small, as in acoustics, or when one wants the sensitivity of the system with respect
to one parameter, as in optimization.

adjoint state Consider a system of Partial Differential Equations that define some characteristics of
a system with respect to some parameters. Consider one particular scalar characteristic. Its
sensitivity (or gradient) with respect to the parameters can be defined by means of adjoint
equations, deduced from the original equations through linearization and transposition. The
solution of the adjoint equations is known as the adjoint state.

Scientific Computing provides reliable simulations of complex systems. For example it is possible
to simulate the steady or unsteady 3D air flow around a plane that captures the physical phenomena
of shocks and turbulence. Next comes optimization, one degree higher in complexity because it re-
peatedly simulates and applies gradient-based optimization steps until an optimum is reached. The
next sophistication is robustness, that detects undesirable solutions which, although maybe optimal, are
very sensitive to uncertainty on design parameters or on manufacturing tolerances. This makes second
derivatives come into play. Similarly Uncertainty Quantification can use second derivatives to evaluate
how uncertainty on the simulation inputs imply uncertainty on its outputs.

To obtain this gradient and possibly higher derivatives, we advocate adjoint AD (cf3.1) of the pro-
gram that discretizes and solves the direct system. This gives the exact gradient of the discrete function
computed by the program, which is quicker and more sound than differentiating the original mathe-
matical equations [19]. Theoretical results [18] guarantee convergence of these derivatives when the
direct program converges. This approach is highly mechanizable. However, it requires careful study and
special developments of the AD model [23, 26] to master possibly heavy memory usage. Among these
additional developments, we promote in particular specialized AD models for Fixed-Point iterations [20,
14], efficient adjoints for linear algebra operators such as solvers, or exploitation of parallel properties of
the adjoint code.

6 Inria Annual Report 2020

4 Application domains

4.1 Algorithmic Differentiation
Algorithmic Differentiation of programs gives sensitivities or gradients, useful for instance for :

¢ optimum shape design under constraints, multidisciplinary optimization, and more generally any
algorithm based on local linearization,

* inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate
sciences (meteorology, oceanography),

e first-order linearization of complex systems, or higher-order simulations, yielding reduced models
for simulation of complex systems around a given state,

¢ adaptation of parameters for classification tools such as Machine Learning systems, in which
Adjoint Differentiation is also known as backpropagation.

¢ mesh adaptation and mesh optimization with gradients or adjoints,
¢ equation solving with the Newton method,

* sensitivity analysis, propagation of truncation errors.

4.2 Multidisciplinary optimization

A CFD program computes the flow around a shape, starting from a number of inputs that define the
shape and other parameters. On this flow one can define optimization criteria e.g. the lift of an aircraft.
To optimize a criterion by a gradient descent, one needs the gradient of the criterion with respect to all
inputs, and possibly additional gradients when there are constraints. Adjoint AD is the most efficient way
to compute these gradients.

4.3 Inverse problems and Data Assimilation

Inverse problems aim at estimating the value of hidden parameters from other measurable values, that
depend on the hidden parameters through a system of equations. For example, the hidden parameter
might be the shape of the ocean floor, and the measurable values of the altitude and velocities of the
surface. Figure 1 shows an example of an inverse problem using the glaciology code ALIF (a pure C
version of ISSM [24]) and its AD-adjoint produced by Tapenade.

One particular case of inverse problems is data assimilation [25] in weather forecasting or in oceanog-
raphy. The quality of the initial state of the simulation conditions the quality of the prediction. But this
initial state is not well known. Only some measurements at arbitrary places and times are available. A
good initial state is found by solving a least squares problem between the measurements and a guessed
initial state which itself must verify the equations of meteorology. This boils down to solving an adjoint
problem, which can be done though AD [27]. The special case of 4Dvar data assimilation is particularly
challenging. The 4'" dimension in “4D” is time, as available measurements are distributed over a given
assimilation period. Therefore the least squares mechanism must be applied to a simulation over time
that follows the time evolution model. This process gives a much better estimation of the initial state,
because both position and time of measurements are taken into account. On the other hand, the adjoint
problem involved is more complex, because it must run (backwards) over many time steps. This de-
manding application of AD justifies our efforts in reducing the runtime and memory costs of AD adjoint
codes.

4.4 Linearization

Simulating a complex system often requires solving a system of Partial Differential Equations. This
can be too expensive, in particular for real-time simulations. When one wants to simulate the reaction
of this complex system to small perturbations around a fixed set of parameters, there is an efficient

Project ECUADOR 7

Initial velocity Final velocity Observed velocity
—n o 3000
2500
< 2000
E
2]1500
[$]
.o
g
o 1000
o
500
Initial d
nitial drag 200
B
_ |1 150
£
2
5
S 100
.
Q
o
S 50
8
C
0

Figure 1: Assimilation of the basal friction under Pine Island glacier, West Antarctica. The final simulated
surface velocity (b) is made to match the observed surface velocity (c), by estimation of the basal friction
(e). Areference basal friction (f) is obtained by another data assimilation using the hand-written adjoint
of ISSM

8 Inria Annual Report 2020

approximation: just suppose that the system is linear in a small neighborhood of the current set of
parameters. The reaction of the system is thus approximated by a simple product of the variation of
the parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD.
This is especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by
introducing higher-order derivatives, such as Taylor expansions, which can also be computed through
AD. The result is often called a reduced model.

4.5 Mesh adaptation

Some approximation errors can be expressed by an adjoint state. Mesh adaptation can benefit from this.
The classical optimization step can give an optimization direction not only for the control parameters,
but also for the approximation parameters, and in particular the mesh geometry. The ultimate goal is to
obtain optimal control parameters up to a precision prescribed in advance.

5 Social and environmental responsibility

5.1 Impact of research results

Our research has an impact on environmental questions through two of its application domains

¢ in CFD, we provide gradients that are used for design and shape optimization, and in many cases
the optimization criterion is to reduce fuel or energy consumption. This is the case in particular for
automotive or aircraft design.

¢ in Earth sciences, our gradients are used in inverse problems, to determine key properties in
oceanography, glaciology, or climate models. For instance they determine basal friction coefficients
of glaciers that are necessary to simulate their future evolution. Another example is to locate
sources and sinks of CO2 by coupling atmospheric models and remote measurements.

6 New software and platforms

6.1 New software
6.1.1 AIRONUM

Keywords: Computational Fluid Dynamics, Turbulence

Functional Description: Aironum is an experimental software that solves the unsteady compressible
Navier-Stokes equations with k-epsilon, LES-VMS and hybrid turbulence modelling on parallel
platforms, using MPIL. The mesh model is unstructured tetrahedrization, with possible mesh
motion.

URL: https://imag.umontpellier.fr/ koobus/norma.html
Contact: Alain Dervieux

Participant: Alain Dervieux

6.1.2 TAPENADE

Name: Tapenade Automatic Differentiation Engine
Keywords: Static analysis, Optimization, Compilation, Gradients

Scientific Description: Tapenade implements the results of our research about models and static analy-
ses for AD. Tapenade can be downloaded and installed on most architectures. Alternatively, it can
be used as a web server. Higher-order derivatives can be obtained through repeated application.

https://imag.umontpellier.fr/~koobus/norma.html

Project ECUADOR 9

Tapenade performs sophisticated data-flow analysis, flow-sensitive and context-sensitive, on the
complete source program to produce an efficient differentiated code. Analyses include Type-
Checking, Read-Write analysis, and Pointer analysis. AD-specific analyses include the so-called
Activity analysis, Adjoint Liveness analysis, and TBR analysis.

Functional Description: Tapenade is an Algorithmic Differentiation tool that transforms an original
program into a new program that computes derivatives of the original program. Algorithmic
Differentiation produces analytical derivatives, that are exact up to machine precision. Adjoint-
mode AD can compute gradients at a cost which is independent from the number of input variables.
Tapenade accepts source programs written in Fortran77, Fortran90, or C. It provides differentiation
in the following modes: tangent, vector tangent, adjoint, and vector adjoint.

News of the Year: - Continued development of multi-language capacity: AD of codes mixing Fortran and
C - Extension to a subset of OpenMP, including the most generally used primitives. - Continued
refactoring - Open-Source distribution, MIT license

URL: https://team.inria.fr/ecuador/en/tapenade/
Authors: Laurent Hascoét, Valérie Pascual
Contacts: Laurent Hascoét, Valérie Pascual

Participants: Laurent Hascoét, Valérie Pascual

7 New results

7.1 Algorithmic Differentiation of OpenMP

Participants Laurent Hascoét, Jan Hueckelheim (Argonne National Lab.).

For applications that are parallelized for multi-core CPUs or GPUs using OpenMBP it is desirable to also
compute the gradients in parallel. We extended the AD model of Tapenade (source transformation,
association by address, storage on tape of intermediate values) towards correct and efficient differen-
tiation of OpenMP parallel worksharing loops, one of the most commonly used OpenMP features, in
tangent-linear and adjoint mode. We built a framework to reason about the correctness of the generated
derivative code, from which we can justify our OpenMP extension to the adjoint differentiation model.
We implemented this model in Tapenade, and ran experiments on a few small to medium-size test cases,
testing performance on a multi-core CPU system.
An article has been written and is currently under review with ACM TOMS.

7.2 Application to large industrial codes

Participants Valérie Pascual, Laurent Hascoét, Hervé Guillard, Bruno Maugars (ON-
ERA), Sébastien Bourasseau (ONERA), Cédric Content (ONERA).

We support industrial or academic users with their first experiments of Algorithmic Differentiation of large
in-house codes. This year, we continued collaboration with Onera on their Elsa CFD platform, in view of
the design of its successor code. This is the continuation of a collaboration started in 2018. Both tangent
and adjoint models of the kernel of ElsA were built successfully with Tapenade. It is worth noticing
that this application was performed inside ONERA by ONERA engineers (Bruno Maugars, Sébastien
Bourasseau, Cédric Content) with no need for installation of ElsA inside INRIA. We take this as a sign of
maturity of Tapenade. Our contribution is driven by development meetings, in which we point out some
strategies and tool options to improve efficiency. We also help taking into account the constraints of AD
for the design of the new CFD platform (Sonice). A collaboration agreement is being finalized.

https://team.inria.fr/ecuador/en/tapenade/

10 Inria Annual Report 2020

On the academic side, we supported usage of Tapenade for adjoint differentiation of several large
codes:

¢ The plasma code SOLPS-ITER, differentiated by Stefano Carli at KU Leuven.

e The plasma code CTFEM, differentiated by Ali Elarif of the INRIA team Castor (Supervisor Hervé
Guillard)

¢ The glaciology code Sicopolis, differentiated by Shreyas Suni Gaikwad at U. Texas Austin (Supervisor
Patrick Heimbach)

7.3 Aeroacoustics

Participants Alain Dervieux, Matthieu Gschwend, Bruno Koobus, Florian Mi-
ralles (IMAG, U. of Montpellier), Stephen Wornom (IMAG, U. of Mont-
pellier), Tanya Kozubskaya (CAALAB, Moscow).

The progress in highly accurate schemes for compressible flows on unstructured meshes (together with

advances in massive parallelization of these schemes) allows us to solve problems previously out of reach.
The four-year program Norma associating IMAG of Montpellier university (B. Koobus, coordinator),

CAALAB of Keldysh Institute of Moscow (T. Kozubskaya) and our team Ecuador, is supported by ANR and

Russian Science Foundation.

Seehttps://imag.umontpellier.fr/ koobus/norma.html

Norma is a cooperation on the subject of the extension of these methods to simulate the noise emission

of rotating machines (helicopters, future aerial vehicles, unmanned aerial vehicles, wind turbines...).

7.4 Turbulence models

Participants Alain Dervieux, Bruno Koobus, Florian Miralles (IMAG, U. of Mont-
pellier), Stephen Wornom (IMAG, U. of Montpellier), Tanya Kozub-
skaya (CAALAB, Moscow).

Modeling turbulence is an essential aspect of CFD. The purpose of our work in hybrid RANS/LES (Reynolds
Averaged Navier-Stokes / Large Eddy Simulation) is to develop new approaches for industrial applications
of LES-based analyses. In the applications targetted (aeronautics, hydraulics), the Reynolds number can
be as high as several tens of millions, far too high for pure LES models. However, certain regions in the
flow can be predicted better with LES than with usual statistical RANS (Reynolds averaged Navier-Stokes)
models. These are mainly vortical separated regions as assumed in one of the most popular hybrid
models, the hybrid Detached Eddy Simulation (DES) model. Here, “hybrid” means that a blending is
applied between LES and RANS. An important difference between a real life flow and a wind tunnel or
basin is that the turbulence of the flow upstream of each body is not well known.

The development of hybrid models, in particular DES in the litterature, has raised the question of
the domain of validity of these models. According to theory, these models should not be applied to flow
involving laminar boundary layers (BL). But industrial flows are complex flows and often present regions
of laminar BL, regions of fully developed turbulent BL and regions of non-equilibrium vortical BL. It
is then mandatory for industrial use that the new hybrid models give a reasonable prediction for all
these types of flow. We concentrated on evaluating the behavior of hybrid models for laminar BL and
for vortical wakes. While less predictive than pure LES on laminar BL, some hybrid models still give
reasonable predictions for rather low Reynolds numbers.

During the first phase of Norma, Montpellier and Moscow are computing a series of initial test cases
in order to control the consistancy of the results produced by the two platforms of CFD, namely Noisette
for Moscow, and Aironum for Montpellier.

https://imag.umontpellier.fr/~koobus/norma.html

Project ECUADOR 11

7.5 Rotating machines

Participants Alain Dervieux, Didier Chargy (Lemma, Sophia-Antipolis),
Matthieu Gschwend, Bruno Koobus (IMAG, U. of Montpellier), Flo-
rian Miralles (IMAG, U. of Montpellier), Tanya Kozubskaya (CAALAB,
Moscow).

The physical problem addressed by Norma involves a computational domain made of (at least) two
components having different rotative motions. The numerical problem of their combination gave birth to
many specialized schemes, such as the so-called sliding method, chimera method, immersed boundary
method (IBM). In concertation with Moscow, Montpellier is introducing a novel IBM in the CFD code
Aironum. The Ecuador team is studying in cooperation with Lemma engineering (Sophia Antipolis) a
novel sliding/chimera method.

7.6 High order approximations

Participants Alain Dervieux, Matthieu Gschwend, Bruno Koobus, Stephen Wornom,
Tanya Kozubskaya (CAALAB, Moscow).

High order approximations for compressible flows on unstructured meshes are facing many constraints
that increase their complexity i.e. their computational cost. This is clear for the largest class of approxi-
mation, the class of k-exact schemes, which rely on a local polynomial representation of degree k. We are
investigating schemes which would solve as efficiently as possible the dilemma of choosing between an
approximation with a representation inside macro-elements which finally constrains the mesh, and a
representation around each individual cell, as in vertex formulations. For this purpose, we extend the
Central Essentially Non Oscillating (CENO) family of schemes. This is a cooperation with the Keldysh
Institute of Russian Academy with whom we have already developed several families of superconvergent
schemes. T. Kozubskaya, E Alauzet, A. Loseille and A. Dervieux are coorganizers of a mini-symposium
ECCOMAS 2020 MS286 on “High-accuracy Finite-Volume Methods on unstructured meshes for Aviation
applications”.

7.7 Control of approximation errors

Participants Alain Dervieux, Matthieu Gschwend, Bruno Koobus (IMAG, U.
of Montpellier), Adrien Loseille (Gamma3 team, INRIA-Saclay), ,
Frédéric Alauzet (Gamma3 team, INRIA-Saclay), .

Reducing approximation errors as much as possible is a particular kind of optimal control problem.
We formulate it exactly this way when we look for the optimal metric of the mesh, which minimizes a
user-specified functional (goal-oriented mesh adaptation). In that case, the usual methods of optimal
control apply, using adjoint states that can be produced by Algorithmic Differentiation.

This year, a novel a priori estimate has been developed for incompressible flows, in cooperation with
Lemma. We are also starting a new analysis for h-p anisotropic mesh adaptation. The monography
on mesh adaptation currently being written by Alauzet, Loseille, Koobus and Dervieux now has been
extended to 16 chapters.

12

Inria Annual Report 2020

8 Dissemination

8.1

Promoting scientific activities

8.1.1 Scientific events: organisation

Member of the organizing committees Laurent Hascoét is on the organizing commitee of the EuroAD
Workshops on Algorithmic Differentiation http://www.autodiff.org.

8.1.2 Scientific expertise

Alain Dervieux is Scientific Director for the LEMMA company.

9 Scientific production

9.1
(1]

(10]

9.2

Major publications

E Courty, A. Dervieux, B. Koobus and L. Hascoét. ‘Reverse automatic differentiation for optimum
design: from adjoint state assembly to gradient computation’. In: Optimization Methods and
Software 18.5 (2003), pp. 615-627.

B. Dauvergne and L. Hascoét. ‘The Data-Flow Equations of Checkpointing in reverse Automatic
Differentiation’. In: International Conference on Computational Science, ICCS 2006, Reading, UK.
2006.

D. Goldberg, S. H. K. Narayanan, L. Hascoét and J. Utke. ‘An optimized treatment for algorith-
mic differentiation of an important glaciological fixed-point problem’. In: Geoscientific Model
Development 9.5 (2016), p. 27. URL: https://hal.inria.fr/hal-01413295.

L. Hascoét. ‘Adjoints by Automatic Differentiation’. In: Advanced data assimilation for geosciences.
Oxford University Press, 2014. URL: https://hal.inria.fr/hal-01109881.

L. Hascoét, U. Naumann and V. Pascual. ‘““To Be Recorded” Analysis in Reverse-Mode Automatic
Differentiation’. In: Future Generation Computer Systems 21.8 (2004).

L. Hascoét and V. Pascual. ‘The Tapenade Automatic Differentiation tool: Principles, Model, and
Specification’. In: ACM Transactions On Mathematical Software 39.3 (2013). URL: http://dx.doi
.org/10.1145/2450153.2450158.

L. Hascoét, J. Utke and U. Naumann. ‘Cheaper Adjoints by Reversing Address Computations’. In:
Scientific Programming 16.1 (2008), pp. 81-92.

L. Hascoét, M. Vazquez, B. Koobus and A. Dervieux. ‘A Framework for Adjoint-based Shape Design
and Error Control’. In: Computational Fluid Dynamics Journal 16.4 (2008), pp. 454-464.

L. Hascoét and J. Utke. ‘Programming language features, usage patterns, and the efficiency of
generated adjoint code’. In: Optimization Methods and Software 31 (2016), pp. 885-903. DOTI:
10.1080/10556788.2016.1146269. URL: https://hal.inria.fr/hal-01413332.

J. C. Hueckelheim, L. Hascoét and J.-D. Miiller. ‘Algorithmic differentiation of code with multiple
context-specific activities’. In: ACM Transactions on Mathematical Software (2016). URL: https:
//hal.inria.fr/hal-01413321.

Publications of the year

International journals

(11]

J. I. Cardesa, L. Hascoét and C. Airiau. ‘Adjoint computations by algorithmic differentiation of a
parallel solver for time-dependent PDEs’. In: Journal of computational science 45 (23rd June 2020),
p- 101155. pOI: 10.1016/j. jocs.2020.101155. URL: https://hal.archives-ouvertes. fr
/hal-03033123.

http://www.autodiff.org
https://hal.inria.fr/hal-01413295
https://hal.inria.fr/hal-01109881
http://dx.doi.org/10.1145/2450153.2450158
http://dx.doi.org/10.1145/2450153.2450158
https://doi.org/10.1080/10556788.2016.1146269
https://hal.inria.fr/hal-01413332
https://hal.inria.fr/hal-01413321
https://hal.inria.fr/hal-01413321
https://doi.org/10.1016/j.jocs.2020.101155
https://hal.archives-ouvertes.fr/hal-03033123
https://hal.archives-ouvertes.fr/hal-03033123

Project ECUADOR 13

9.3 Cited publications

(12]
(13]

(14]

(15]

(16]
(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(23]

(26]

(27]

(28]

A. Aho, R. Sethi and J. Ullman. Compilers: Principles, Techniques and Tools. Addison-Wesley, 1986.

L. Attali, V. Pascual and C. Roudet. A language and an integrated environment for program transfor-
mations. research report 3313. INRIA, 1997. URL: http://hal.inria.fr/inria-00073376.

B. Christianson. ‘Reverse accumulation and implicit functions’. In: Optimization Methods and
Software 9.4 (1998), pp. 307-322.

D. Clément, J. Despeyroux, L. Hascoét and G. Kahn. ‘Natural semantics on the computer’. In:
Proceedings, France-Japan Al and CS Symposium, ICOT (1986). Ed. by K. Fuchi and M. Nivat. Also,
Information Processing Society of Japan, Technical Memorandum PL-86-6. Also INRIA research
report # 416, pp. 49-89. URL: http://hal.inria.fr/inria-00076140.

P. Cousot. ‘Abstract Interpretation’. In: ACM Computing Surveys 28.1 (1996), pp. 324-328.

B. Creusillet and E Irigoin. ‘Interprocedural Array Region Analyses’. In: International Journal of
Parallel Programming 24.6 (1996), pp. 513-546.

J. Gilbert. ‘Automatic differentiation and iterative processes’. In: Optimization Methods and Soft-
ware 1 (1992), pp. 13-21.

M.-B. Giles. ‘Adjoint methods for aeronautical design’. In: Proceedings of the ECCOMAS CFD
Conference. Swansea, U.K., 2001.

A. Griewank and C. Faure. ‘Reduced Gradients and Hessians from Fixed Point Iteration for State
Equations’. In: Numerical Algorithms 30(2) (2002), pp. 113-139.

A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. 2nd. SIAM, Other Titles in Applied Mathematics, 2008.

L. Hascoét. ‘Transformations automatiques de spécifications sémantiques: application: Un vérifi-
cateur de types incremental’. PhD thesis. Université de Nice Sophia-Antipolis, 1987.

P. Hovland, B. Mohammadi and C. Bischof. Automatic Differentiation of Navier-Stokes computations.
Tech. rep. MCS-P687-0997. Argonne National Laboratory, 1997.

E. Larour, J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morlighem, E. Rignot, N. Schlegel and
A. Khazendar. ‘Inferred basal friction and surface mass balance of the Northeast Greenland Ice
Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry
and ISSM (Ice Sheet System Model)’. In: Cryosphere 8.6 (2014), pp. 2335-2351. DO1: 10.5194/tc-8
-2335-2014. URL: http://www.the-cryosphere.net/8/2335/2014/.

E-X. Le Dimet and O. Talagrand. ‘Variational algorithms for analysis and assimilation of meteoro-
logical observations: theoretical aspects’. In: Tellus 38A (1986), pp. 97-110.

B. Mohammadi. ‘Practical application to fluid flows of automatic differentiation for design prob-
lems’. In: Von Karman Lecture Series (1997).

N. Rostaing. ‘Différentiation Automatique: application a un probleme d’optimisation en météorolo-
gie’. PhD thesis. université de Nice Sophia-Antipolis, 1993.

R. Rugina and M. Rinard. ‘Symbolic Bounds Analysis of Pointers, Array Indices, and Accessed
Memory Regions’. In: Proceedings of the ACM SIGPLAN’00 Conference on Programming Language
Design and Implementation. ACM, 2000.

http://hal.inria.fr/inria-00073376
http://hal.inria.fr/inria-00076140
https://doi.org/10.5194/tc-8-2335-2014
https://doi.org/10.5194/tc-8-2335-2014
http://www.the-cryosphere.net/8/2335/2014/

	Project-Team ECUADOR
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Algorithmic Differentiation
	Static Analysis and Transformation of programs
	Algorithmic Differentiation and Scientific Computing

	Application domains
	Algorithmic Differentiation
	Multidisciplinary optimization
	Inverse problems and Data Assimilation
	Linearization
	Mesh adaptation

	Social and environmental responsibility
	Impact of research results

	New software and platforms
	New software
	AIRONUM
	TAPENADE

	New results
	Algorithmic Differentiation of OpenMP
	Application to large industrial codes
	Aeroacoustics
	Turbulence models
	Rotating machines
	High order approximations
	Control of approximation errors

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific expertise

	Scientific production
	Major publications
	Publications of the year
	Cited publications

