RESEARCH CENTRE

2020
Rennes - Bretagne Atlantique ACTIVITY REPORT

IN PARTNERSHIP WITH:

Ecole Nationale Supérieure

Mines-Télécom Atlantique Bretagne Pays PrOJ €C t = Te am

de la Loire, Université Nantes GALLINETTE

Gallinette: developing a new generation of
proof assistants

IN COLLABORATION WITH: Laboratoire des Sciences du numerique de
Nantes

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Proofs and Verification

Contents

Project-Team GALLINETTE

1 Team members, visitors, external collaborators
2 Overall objectives

3 Research program
3.1 ScientificContext

3.2 Enhance the computational and logical power of proof assistants

3.2.1 A definitional proof-irrelevant version of Coq. . . .

3.2.2 Extend the Coq proof assistant with a computational version of univalence
3.2.3 Extend the logical power of type theory without axioms in a modularway
3.2.4 Methodology: Extending type theory with different compilation phases
3.3 Semantic and logical foundations for effects in proof assistants based on type theory

3.3.1 Models for integrating effects with dependent types
3.3.2 Intuitionistic depolarisation

3.3.3 Developing the rewriting theory of calculi with effects

3.3.4 Direct models and categorical coherence
3.3.5 Models of effects and resources
3.4 Language extensions for the scaling of proof assistants .
3.4.1 Gradual Certified Programming

3.4.2 TImperative features and object polymorphism in the Coq proof assistant
3.4.3 Robust tactics for proof engineering for the scaling of formalised libraries

3.5 Practical experiments
3.5.1 Certified Code Refactoring
3.5.2 Certified Constraint Programming
3.5.3 Certified Symbolic Computation

4 Application domains
5 Highlights of the year

6 New software and platforms
6.1 Newsoftware
6.1.1 Ltac2
6.1.2 Equations
6.1.3 Math-Components
6.1.4 math-comp-analysis
6.1.5 MetaCoq i
6.16 Coqo i i e
6.1.7 memprof-limits

7 Newresults
7.1 Logical Foundations of Programming Languages
7.1.1 Reasoning about equivalence of programs
7.1.2 ClassicalLogic.
7.1.3 Syntax and Rewriting Systems

7.2 Models of programming languages mixing effects and resources

7.3 Type Theory and Proof Assistants
73.1 TypeTheory
7.3.2 ProofAssistants

7.4 Program Certifications and Formalisation of Mathematics

8 Bilateral contracts and grants with industry

12

12

12
12
12
12
14
14
14
15
17

17
17
17
18
18
19
19
19
20
21

22

9 Partnerships and cooperations
9.1 International initiatives e e e
9.1.1 InrialInternationalLabs
9.2 International research visitors i i e e e
9.2.1 Visitstointernationalteams i e

9.3 European initiatives

9.3.1 FP7&H2020Projects. o v vt ittt e e e e e e e e e

9.4 Regional initiatives

10 Dissemination

10.1 Promoting Scientific Activities e
10.1.1 Scientific Events: Organisationttt
10.1.2 Scientific Events: Selection
10.1.3 Journal oL e e e
10.1.4 Invited Talks o o o i e e e e e e e e
10.1.5 Leadership within the Scientific Community
10.1.6 Scientific EXpertise v v v v v it i e e e e e e e e e e e e e

10.2 Teaching - Supervision - Juries e
10.2.1 Teaching o o e e e e e e e e
10.2.2 SUPETVISION o o i e e e
1023 JUIIES . . o v o e e e e e e e e e e e e e

10.3 Popularization v i v i e e e e e e e e e e e e e e e e e
10.3.1 Internal or external Inria responsibilities
10.3.2 Education e e e

11 Scientific production
11.1 Major publications

11.2 Publicationsof theyear e

11.3 Cited publications

23
23
23
24
24
24
24
25

25
25
25
25
26
26
26
26
26
26
28
28
29
29
29

Project GALLINETTE

Project-Team GALLINETTE

Creation of the Team: 2017 May 01, updated into Project-Team: 2018 June 01

Keywords

Computer sciences and digital sciences

A2.1.1. - Semantics of programming languages
A2.1.2. - Imperative programming

A2.1.3. - Object-oriented programming

A2.1.4. - Functional programming

A2.1.11. - Proof languages

A2.2.3. - Memory management

A2.4.3. —Proofs

A7.2.3. - Interactive Theorem Proving

A7.2.4. —Mechanized Formalization of Mathematics

A8.4. — Computer Algebra
Other research topics and application domains

B6.1. — Software industry

https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2020/static/keywords/OtherResearchTopicsandApplicationDomains.html

Inria Annual Report 2020

1 Team members, visitors, external collaborators
Research Scientists

¢ Nicolas Tabareau [Team leader, Inria, Senior Researcher, HDR]

¢ Assia Mahboubi [Inria, Researcher, HDR]

¢ Guillaume Munch [Inria, Researcher]

* Pierre-Marie Pédrot [Inria, Researcher]

e Matthieu Sozeau [Inria, Researcher]

Faculty Members

¢ Julien Cohen [Univ de Nantes, Associate Professor]
* Rémi Douence [IMT Atlantique, Associate Professor, HDR]
e Hervé Grall [IMT Atlantique, Associate Professor]

e Guilhem Jaber [Univ de Nantes, Associate Professor]

Post-Doctoral Fellows

e Marie Kerjean [Inria, until Feb 2020]
e Maxime Lucas [Inria, until Aug 2020]

* Kenji Maillard [Inria]

PhD Students

¢ Antoine Allioux [Inria]

e Martin Baillon [Inria, from Oct 2020]

¢ Meven Bertrand [Univ de Nantes]

¢ Enzo Crance [Mitsubishi Electric, from Nov 2020]
¢ Gaetan Gilbert [Inria, until Jan 2020]

¢ Pierre Giraud [Inria, from Dec 2020]

e Xavier Montillet [Univ de Nantes, until Nov 2020]
¢ Loic Pujet [Univ de Nantes]

¢ Theo Winterhalter [Univ de Nantes, until Sep 2020]

Technical Staff

e Simon Boulier [Inria, Engineer, until Sep 2020]
¢ Gaetan Gilbert [Inria, Engineer, from Feb 2020]

¢ Marie Kerjean [Inria, Engineer, from Mar 2020 until Sep 2020]

Project GALLINETTE 3

Interns and Apprentices
e Martin Baillon [Inria, from Mar 2020 until Aug 2020]
e Peio Borthelle [Ecole Normale Supérieure de Lyon, from Oct 2020]
* Guillaume Combette [Ecole Normale Supérieure de Lyon, until Feb 2020]
¢ Enzo Crance [Mitsubishi Electric, from Feb 2020 until Jul 2020]

¢ Theo Vignon [Ecole normale supérieure Paris-Saclay, from Jun 2020 until Jul 2020]

Administrative Assistant

¢ Anne-Claire Binétruy [Inria]

2 Overall objectives

The EPI Gallinette aims at developing a new generation of proof assistants, with the belief that practical
experiments must go in pair with foundational investigations:

¢ The goal is to advance proof assistants both as certified programming languages and mechanised
logical systems. Advanced programming and mathematical paradigms must be integrated, notably
dependent types and effects. The distinctive approach is to implement new programming and
logical paradigms on top of Coq by considering the latter as a target language for compilation.

¢ The aim of foundational investigations is to extend the boundaries of the Curry-Howard correspon-
dence. It is seen both as providing foundations for programming languages and logic, and as a
purveyor of techniques essential to the development of proof assistants. Under this perspective,
the development of proof assistants is seen as a total experiment using the correspondence in every
aspect: programming languages, type theory, proof theory, rewriting and algebra.

3 Research program

3.1 Scientific Context

Software quality is a requirement that is becoming more and more prevalent, by now far exceeding the
traditional scope of embedded systems. The development of tools to construct software that respects
a given specification is a major challenge facing computer science. Proof assistants such as Coq [54]
provide a formal method whose central innovation is to produce certified programs by transforming
the very activity of programming. Programming and proving are merged into a single development
activity, informed by an elegant but rigid mathematical theory inspired by the correspondence between
programming, logic and algebra: the Curry-Howard correspondence. For the certification of programs,
this approach has shown its efficiency in the development of important pieces of certified software such
as the C compiler of the CompCert project [84]. The extracted CompCert compiler is reliable and efficient,
running only 15% slower than GCC 4 at optimisation level 2 (gcc -02), a level of optimisation that was
considered before to be highly unreliable.

Proof assistants can also be used to formalise mathematical theories: they not only provide a means of
representing mathematical theories in a form amenable to computer processing, but their internal logic
provides a language for reasoning about such theories. In the last decade, proof assistants have been used
to verify extremely large and complicated proofs of recent mathematical results, sometimes requiring
either intensive computations [65, 70] or intricate combinations of a multitude of mathematical theories
[66]. But formalised mathematics is more than just proof checking and proof assistants can help with
organisation mathematical knowledge or even with the discovery of new constructions and proofs.

Unfortunately, the rigidity of the theory behind proof assistants impedes their expressiveness both as
programming languages and as logical systems. For instance, a program extracted from Coq only uses a
purely functional subset of OCaml, leaving behind important means of expression such as side-effects

4 Inria Annual Report 2020

and objects. Limitations also appear in the formalisation of advanced mathematics: proof assistants
do not cope well with classical axioms such as excluded middle and choice which are sometimes used
crucially. The fact of the matter is that the development of proof assistants cannot be dissociated from a
reflection on the nature of programs and proofs coming from the Curry-Howard correspondence. In the
EPC Gallinette, we propose to address several drawbacks of proof assistants by pushing the boundaries of
this correspondence.

In the 1970’s, the Curry-Howard correspondence was seen as a perfect match between functional
programs, intuitionistic logic, and Cartesian closed categories. It received several generalisations over
the decades, and now it is more widely understood as a fertile correspondence between computation,
logic, and algebra. Nowadays, the view of the Curry-Howard correspondence has evolved from a perfect
match to a collection of theories meant to explain similar structures at work in logic and computation,
underpinned by mathematical abstractions. By relaxing the requirement of a perfect match between
programs and proofs, and instead emphasising the common foundations of both, the insights of the
Curry-Howard correspondence may be extended to domains for which the requirements of programming
and mathematics may in fact be quite different.

Consider the following two major theories of the past decades, which were until recently thought to
be irreconcilable:

¢ (Martin-L6f) Type theory: introduced by Martin-L6fin 1971, this formalism [91] is both a program-
ming language and a logical system. The central ingredient is the use of dependent types to allow
fine-grained invariants to be expressed in program types. In 1985, Coquand and Huet developed a
similar system called the calculus of constructions, which served as logical foundation of the first
implementation of Coq. This kind of systems is still under active development, especially with the
recent advent of homotopy type theory (HoTT) [113] which gives a new point of view on types and
the notion of equality in type theory.

¢ The theory of effects: starting in the 1980’s, Moggi [96] and Girard [63] put forward monads and
co-monads as describing various compositional notions of computation. In this theory, programs
can have side-effects (state, exceptions, input-output), logics can be non-intuitionistic (linear,
classical), and different computational universes can interact (modal logics). Recently, the safe and
automatic management of resources has also seen a coming of age (Rust, Modern C++) confirming
the importance of linear logic for various programming concepts. It is now understood that the
characteristic feature of the theory of effects is sensitivity to evaluation order, in contrast with type
theory which is built around the assumption that evaluation order is irrelevant.

We now outline a series of scientific challenges aimed at understanding of type theory, effects, and their
combination.
More precisely, three key axes of improvement have been identified:

1. Making the notion of equality closer to what is usually assumed when doing proofs on black board,
with a balance between irrelevant equality for simple structures and equality up-to equivalences
for more complex ones (Section 3.2). Such a notion of equality should allow one to implement
traditional model transformations that enhance the logical power of the proof assistant using
distinct compilation phases.

2. Advancing the foundations of effects within the Curry-Howard approach. The objective is to
pave the way for the integration of effects in proof assistants and to prototype the corresponding
implementation. This integration should allow for not only certified programming with effects, but
also the expression of more powerful logics (Section 3.3).

3. Making more programming features (notably, object polymorphism) available in proof assistants, in
order to scale to practical-sized developments. The objective is to enable programming styles closer
to common practices. One of the key challenges here is to leverage gradual typing to dependent
programming (Section 3.4).

To validate the new paradigms, we propose in Section 3.5 three particular application fields in which
members of the team already have a strong expertise: code refactoring, constraint programming and
symbolic computation.

Project GALLINETTE 5

3.2 Enhance the computational and logical power of proof assistants

The democratisation of proof assistants based on type theory has likely been impeded by one central
problem: the mismatch between the conception of equality in mathematics and its formalisation in
type theory. Indeed, some basic principles that are used implicitly in mathematics—such as Church’s
principle of propositional extensionality, which says that two propositions are equal when they are
logically equivalent—are not derivable in type theory. Even more problematically, from a computer
science point of view, the basic concept of two functions being equal when they are equal at every
“point” of their domain is also not derivable: rather, it must be added as an additional axiom. Of course,
these principles are consistent with type theory so that working under the corresponding additional
assumptions is safe. But the use of these assumptions in a definition potentially clutters its computational
behaviour: since axioms are computational black boxes, computation gets stuck at the points of the code
where they have been used.

We propose to investigate how expressive logical transformations such as forcing [76] and sheaf
construction might be used to enhance the computational and logical power of proof assistants—with
a particular emphasis on their implementation in the Coq proof assistant by the means of effective
translations (or compilation phases). One of the main topics of this task, in connection to the ERC project
CoqHoTT, is the integration in Coq of new concepts inspired by homotopy type theory [113] such as the
univalence principle, and higher inductive types.

3.2.1 Adefinitional proof-irrelevant version of Cogq.

In the Coq proof assistant, the sort Prop stands for the universe of types which are propositions. That
is, when a term P has type Prop, the only relevant fact is whether P is inhabited (that is true) or not
(that is false). This property, known as proof irrelevance, can be expressed formally as: Vx y: Bx = y.
Originally, the raison d’étre of the sort Prop was to characterise types with no computational meaning
with the intention that terms of such types could be erased upon extraction. However, the assumption
that every element of Prop should be proof irrelevant has never been integrated to the system. Indeed, in
Coq, proof irrelevance for the sort Prop is not incorporated into the theory: it is only compatible with
it, in the sense that its assumption does not give rise to an inconsistent theory. In fact, the exact status
of the sort Prop in Coq has never been entirely clarified, which explains in part this lack of integration.
Homotopy type theory brings fresh thinking on this issue and suggests turning Prop into the collection of
terms that a certain static inference procedure tags as proof irrelevant. The goal of this task is to integrate
this insight in the Coq system and to implement a definitional proof-irrelevant version of the sort Prop.

3.2.2 Extend the Coq proof assistant with a computational version of univalence

The univalence principle is becoming widely accepted as a very promising avenue to provide new
foundations for mathematics and type theory. However, this principle has not yet been incorporated
into a proof assistant. Indeed, the very mathematical structures (known as co-groupoids) motivating the
theory remain to this day an active area of research. Moreover, a correct and decidable type checking
procedure for the whole theory raises both computational complexity and logical coherence issues.
Observational type theory [36], as implemented in Epigram, provides a first-stage approximation to
homotopy type theory, but only deals with functional extensionality and does not capture univalence.
Coquand and his collaborators have obtained significant results on the computational meaning of
univalence using cubical sets [44, 48]. Bickford has initiated a promising formalisation work l'in the
NuPRL system. However, a complete formalisation in intensional type theory remains an open problem.

Hence a major objective is to achieve a complete internalisation of univalence in intensional type
theory, including an integration to a new version of Coq. We will strive to keep compatibility with previous
versions, in particular from a performance point of view. Indeed, the additional complexity of homotopy
type theory should not induce an overhead in the type checking procedure used by the software if we
want our new framework to become rapidly adopted by the community. Concretely, we will make sure
that the compilation time of Coq’s Standard Library will be of the same order of magnitude.

Ihttp://www.nuprl.org/wip/Mathematics/cubical!type!theory/index.html

http://www.nuprl.org/wip/Mathematics/cubical!type!theory/index.html

6 Inria Annual Report 2020

SEEEE—

w/o Axiom of w/o General

Full CogHoTT Choice Fixpoints

w/o Kripke w/o Classical
Semantics Logic

w/o Univalence

b

— N o

Kernel of Coq . Compiled Coq

Figure 1: Multiple compilation phases to increase the logical and computational power of Coq.

3.2.3 Extend the logical power of type theory without axioms in a modular way

Extending the power of a logic using model transformations (e.g., forcing transformation (77, 76] or the
sheaf construction [106]) is a classic topic of mathematical logic [52, 82]. However, these ideas have not
been much investigated in the setting of type theory, even though they may provide a useful framework
for extending the logical power of proof assistant in a modular way. There is a good reason for this: with a
syntactic notion of equality, the underlying structure of type theory does not conform to the structure
of topos used in mathematical logic. A direct incorporation of the standard techniques is therefore not
possible. However, a univalent notion of equality brings type theory closer to the required algebraic
structure, as it corresponds to the notion of co-topos recently studied by Lurie [89]. The goal of this task is
to revisit model transformations in the light of the univalence principle, and to obtain in this way new
internal transformations in type theory which can in turn be seen as compilation phases. The general
notion of an internal syntactical translation has already been investigated in the team [45].

3.2.4 Methodology: Extending type theory with different compilation phases

The Gallinette project advocates the use of distinct compilation phases as a methodology for the design
of a new generation of proof assistants featuring modular extensions of a core logic. The essence of
a compiler is the separation of the complexity of a translation process into modular stages, and the
organization of their re-composition. This idea finds a natural application in the design of complex proof
assistants (Figure 1). For instance, the definition of type classes in Coq follows this pattern, and is morally
given by the means of a translation into a type-class free kernel. More recently, a similar approach by
compilation stages, using the forcing transformation, was used to relax the strict positivity condition
guarding inductive types [77, 76]. We believe that this flavour of compilation-based strategies offers a
promising direction of investigation for the purpose of defining a decidable type checking algorithm for
HoTT.

3.3 Semantic and logical foundations for effects in proof assistants based on type
theory

We propose the incorporation of effects in the theory of proof assistants at a foundational level. Not only
would this allow for certified programming with effects, but it would moreover have implications for both
semantics and logic.

We mean effects in a broad sense that encompasses both Moggi’s monads [96] and Girard’s linear logic
[63]. These two seminal works have given rise to respective theories of effects (monads) and resources
(co-monads). Recent advances, however have unified these two lines of thought: it is now clear that the
defining feature of effects, in the broad sense, is sensitivity to evaluation order [85, 55].

Project GALLINETTE 7

In contrast, the type theory that forms the foundations of proof assistants is based on pure A-calculus
and is built on the assumption that evaluation order is irrelevant. Evaluation order is therefore the blind
spot of type theory. In Moggi [97], integrating the dependent types of type theory with monads is “the
next difficult step [...] currently under investigation”.

Any realistic program contains effects: state, exceptions, input-output. More generally, evaluation
order may simply be important for complexity reasons. With this in mind, many works have focused on
certified programming with effects: notably Ynot [101], and more recently F* [112] and Idris [46], which
propose various ways for encapsulating effects and restricting the dependency of types on effectful terms.
Effects are either specialised, such as the monads with Hoare-style pre- and post-conditions found in
Ynot or F*, or more general, such as the algebraic effects implemented in Idris. But whereas there are
several experiments and projects pursuing the certification of programs with effects, each making its own
choices on how effects and dependency should be merged, there is on the other hand a deficit of logical
and semantic investigations.

We propose to develop the foundations of a type theory with effects taking into account the logical
and semantic aspects, and to study their practical and theoretical consequences. A type theory that
integrates effects would have logical, algebraic and computational implications when viewed through
the Curry-Howard correspondence. For instance, effects such as control operators establish a link with
classical proof theory [68]. Indeed, control operators provide computational interpretations of type
isomorphisms such as A= = A and "VxA = 3dx— A (e.g. [98]), whereas the conventional wisdom of type
theory holds that such axioms are non-constructive (this is for instance the point of view that has been
advocated so far in homotopy type theory [113]). Another example of an effect with logical content is state
(more precisely memoization) which is used to provide constructive content to the classical dependent
axiom of choice [43, 80, 72]. In the long term, a whole body of literature on the constructive content of
classical proofs is to be explored and integrated, providing rich sources of inspiration: Kohlenbach’s proof
mining [79] and Simpson’s reverse mathematics [110], for instance, are certainly interesting to investigate
from the Curry-Howard perspective.

The goal is to develop a type theory with effects that accounts both for practical experiments in
certified programming, and for clues from denotational semantics and logical phenomena, in a unified
setting.

3.3.1 Models for integrating effects with dependent types

A crucial step is the integration of dependent types with effects, a topic which has remained “currently
under investigation” [97] ever since the beginning. The difficulty resides in expressing the dependency
of types on terms that can perform side-effects during the computation. On the side of denotational
semantics, several extensions of categorical models for effects with dependent types have been proposed
[33, 114] using axioms that should correspond to restrictions in terms of expressivity but whose practical
implications, however, are not immediately transparent. On the side of logical approaches [72, 73, 83, 95],
one first considers a drastic restriction to terms that do not compute, which is then relaxed by semantic
means. On the side of systems for certified programming such as F*, the type system ensures that types
only depend on pure and terminating terms.

Thus, the recurring idea is to introduce restrictions on the dependency in order to establish an
encapsulation of effects. In our approach, we seek a principled description of this idea by developing the
concept of semantic value (thunkables, linears) which arose from foundational considerations [62, 109,
99] and whose relevance was highlighted in recent works [86, 103]. The novel aspect of our approach is
to seek a proper extension of type theory which would provide foundations for a classical type theory
with axiom of choice in the style of Herbelin [72], but which moreover could be generalised to effects
other than just control by exploiting an abstract and adaptable notion of semantic value.

3.3.2 Intuitionistic depolarisation

In our view, the common idea that evaluation order does not matter for pure and terminating computa-
tions should serve as a bridge between our proposals for dependent types in the presence of effects and
traditional type theory. Building on the previous goal, we aim to study the relationship between semantic
values, purity, and parametricity theorems [108, 64]. Our goal is to characterise parametricity as a form of

8 Inria Annual Report 2020

intuitionistic depolarisation following the method by which the first game model of full linear logic was
given (Mellies [92, 93]). We have two expected outcomes in mind: enriching type theory with intensional
content without losing its properties, and giving an explanation of the dependent types in the style of
Idris and F* where purity- and termination-checking play a role.

3.3.3 Developing the rewriting theory of calculi with effects

Anintegrated type theory with effects requires an understanding of evaluation order from the point of view
of rewriting. For instance, rewriting properties can entail the decidability of some conversions, allowing
the automation of equational reasoning in types [31]. They can also provide proofs of computational
consistency (that terms are not all equivalent) by showing that extending calculi with new constructs is
conservative [111]. In our approach, the A-calculus is replaced by a calculus modelling the evaluation
in an abstract machine [56]. We have shown how this approach generalises the previous semantic and
proof-theoretic approaches [37, 85, 87], and overcomes their shortcomings [100].

One goal is to prove computational consistency or decidability of conversions purely using advanced
rewriting techniques following a technique introduced in [111]. Another goal is the characterisation
of weak reductions: extensions of the operational semantics to terms with free variables that preserve
termination, whose iteration is equivalent to strong reduction [32, 60]. We aim to show that such
properties derive from generic theorems of higher-order rewriting [107], so that weak reduction can easily
be generalised to richer systems with effects.

3.3.4 Direct models and categorical coherence

Proof theory and rewriting are a source of coherence theorems in category theory, which show how
calculations in a category can be simplified with an embedding into a structure with stronger properties
[90, 81]. We aim to explore such results for categorical models of effects [85, 55]. Our key insight is to
consider the reflection between indirect and direct models [62, 99] as a coherence theorem: it allows us
to embed the traditional models of effects into structures for which the rewriting and proof-theoretic
techniques from the previous section are effective.

Building on this, we are further interested in connecting operational semantics to 2-category theory, in
which a second dimension is traditionally considered for modelling conversions of programs rather than
equivalences. This idea has been successfully applied for the A-calculus [78, 74] but does not scale yet to
more realistic models of computation. In our approach, it has already been noticed that the expected
symmetries coming from categorical dualities are better represented, motivating a new investigation into
this long-standing question.

3.3.5 Models of effects and resources

The unified theory of effects and resources [55] prompts an investigation into the semantics of safe and
automatic resource management, in the style of Modern C++ and Rust. Our goal is to show how advanced
semantics of effects, resources, and their combination arise by assembling elementary blocks, pursuing
the methodology applied by Mellies and Tabareau in the context of continuations [94]. For instance,
combining control flow (exceptions, return) with linearity allows us to describe in a precise way the
“Resource Acquisition Is Initialisation” idiom in which the resource safety is ensured with scope-based
destructors. A further step would be to reconstruct uniqueness types and borrowing using similar ideas.

3.4 Language extensions for the scaling of proof assistants

The development of tools to construct software systems that respect a given specification is a major
challenge of current and future research in computer science. Certified programming with dependent
types has recently attracted a lot of interest, and Coq is the de facto standard for such endeavours, with an
increasing number of users, pedagogical resources, and large-scale projects. Nevertheless, significant
work remains to be done to make Coq more usable from a software engineering point of view. The
Gallinette team proposes to make progress on three lines of work: (i) the development of gradual certified
programming, (ii) the integration of imperative features and object polymorphism in Coq, and (iii) the
development of robust tactics for proof engineering for the scaling of formalised libraries.

Project GALLINETTE 9

3.4.1 Gradual Certified Programming

One of the main issues faced by a programmer starting to internalise in a proof assistant code written in a
more permissive world is that type theory is constrained by a strict type discipline which lacks flexibility.
Concretely, as soon as you start giving a more precise type/specification to a function, the rest of the code
interacting with this function needs to be more precise too. To address this issue, the Gallinette team will
put strong efforts into the development of gradual typing in type theory to allow progressive integration
of code that comes from a more permissive world.

Indeed, on the way to full verification, programmers can take advantage of a gradual approach in
which some properties are simply asserted instead of proven, subject to dynamic verification. Tabareau
and Tanter have made preliminary progress in this direction [58]. This work, however, suffers from a
number of limitations, the most important being the lack of a mechanism for handling the possibility
of runtime errors within Coq. Instead of relying on axioms, this project will explore the application of
Section 3.3 to embed effects in Coq. This way, instead of postulating axioms for parts of the development
that are too hard/marginal to be dealt with, the system adds dynamic checks. Then, after extraction, we
get a program that corresponds to the initial program but with dynamic checks for parts that have not
been proven, ensuring that the program will raise an error instead of going outside its specification.

This will yield new foundations of gradual certified programming, both more expressive and practical.
We will also study how to integrate previous techniques with the extraction mechanism of Coq programs
to OCaml, in order to exploit the exception mechanism of OCaml.

3.4.2 Imperative features and object polymorphism in the Coq proof assistant

Imperative features. Abstract data types (ADTs) become useful as the size of programs grows since they
provide for a modular approach, allowing abstractions about data to be expressed and then instantiated.
Moreover, ADTs are natural concepts in the calculus of inductive constructions. But while it is easy to
declare an ADT, it is often difficult to implement an efficient one. Compare this situation with, for example,
Okasaki’s purely functional data structures [102] which implement ADTs like queues in languages with
imperative features. Of course, Okasaki’s queues enforce some additional properties for free, such as
persistence, but the programmer may prefer to use and to study a simpler implementation without
those additional properties. Also in certified symbolic computation (see 3.5.3), an efficient functional
implementation of ADTs is often not available, and efficiency is a major challenge in this area. Relying on
the theoretical work done in 3.3, we will equip Coq with imperative features and we will demonstrate how
they can be used to provide efficient implementations of ADTs. However, it is also often the case that
imperative implementations are hard-to-reason-on, requiring for instance the use of separation logic.
But in that case, we benefit from recent works on integration of separation logic in the Coq proof assistant
and in particular the Iris project http://iris-project.org/.

Object polymorphism. Object-oriented programming has evolved since its foundation based on the
representation of computations as an exchange of messages between objects. In modern programming
languages like Scala, which aims at a synthesis between object-oriented and functional programming,
object-orientation concretely results in the use of hierarchies of interfaces ordered by the subtyping
relation and the definition of interface implementations that can interoperate. As observed by Cook and
Aldrich [53, 35], interoperability can be considered as the essential feature of objects and is a requirement
for many modern frameworks and ecosystems: it means that two different implementations of the same
interface can interoperate.

Our objective is to provide a representation of object-oriented programs, by focusing on subtyping
and interoperability.

For subtyping, the natural solution in type theory is coercive subtyping [88], as implemented in Coq,
with an explicit operator for coercions. This should lead to a shallow embedding, but has limitations:
indeed, while it allows subtyping to be faithfully represented, it does not provide a direct means to repre-
sent union and intersection types, which are often associated with subtyping (for instance intersection
types are present in Scala). A more ambitious solution would be to resort to subsumptive subtyping
(or semantic subtyping [61]): in its more general form, a type algebra is extended with boolean opera-
tions (union, intersection, complementing) to get a boolean algebra with operators (the original type

http://iris-project.org/

10 Inria Annual Report 2020

constructors). Subtyping is then interpreted as the natural partial order of the boolean algebra.

We propose to use the type class machinery of Coq to implement semantic subtyping for dependent
type theory. Using type class resolution, we can emulate inference rules of subsumptive subtyping without
modifying Coq internally. This has also another advantage. As subsumptive subtyping for dependent
types should be undecidable in general, using type class resolution allows for an incomplete yet extensible
decision procedure.

3.4.3 Robust tactics for proof engineering for the scaling of formalised libraries

When developing certified software, a major part of the effort is spent not only on writing proof scripts,
but on rewriting them, either for the purpose of code maintenance or because of more significant changes
in the base definitions. Regrettably, proof scripts suffer more often than not from a bad programming
style, and too many proof developers casually neglect the most elementary principles of well-behaved
programmers. As a result, many proof scripts are very brittle, user-defined tactics are often difficult to
extend, and sometimes even lack a clear specification. Formal libraries are thus generally very fragile
pieces of software. One reason for this unfortunate situation is that proof engineering is very badly served
by the tools currently available to the users of the Coq proof assistant, starting with its tactic language.
One objective of the Gallinette team is to develop better tools to write proof scripts.

Completing and maintaining a large corpus of formalised mathematics requires a well-designed tactic
language. This language should both accommodate the possible specific needs of the theories at stake,
and help with diagnostics at refactoring time. Coq’s tactic language is in fact two-leveled. First, it includes
a basic tactic language, to organise the deductive steps in a proof script and to perform the elementary
bureaucracy. Its second layer is a meta-programming language, which allows users to define their own
new tactics at toplevel. Our first direction of work consists in the investigation of the appropriate features
of the basic tactic language. For instance, the design of the Ssreflect tactic language, and its support
for the small scale reflection methodology [67], has been a key ingredient in at least two large scale
formalisation endeavours: the Four Colour Theorem [65] and of the Odd Order Theorem [66]. Building
on our experience with the Ssreflect tactic language, we will contribute to the ongoing work on the basic
tactic language for Coq. The second objective of this task is to contribute to the design of a typed tactic
language. In particular, we will build on the work of Ziliani and his collaborators [115], extending it
with reasoning about the effects that tactics have on the “state of a proof” (e.g. number of sub-goals,
metavariables in context). We will also develop a novel approach for incremental type checking of proof
scripts, so that programmers gain access to a richer discovery- engineering interaction with the proof
assistant.

3.5 Practical experiments

The first three axes of the EPC Gallinette aim at developing a new generation of proof assistants. But
we strongly believe that foundational investigations must go hand in hand with practical experiments.
Therefore, we expect to benefit from existing expertise and collaborations in the team to experiment our
extensions of Coq on real world developments. It should be noticed that those practical experiments are
strongly guided by the deep history of research on software engineering of team members.

3.5.1 Certified Code Refactoring

In the context of refactoring of C programs, we intend to formalise program transformations that are
written in an imperative style to test the usability of our addition of effects in the proof assistant. This
subject has been chosen based on the competence of members of the team.

We are currently working on the formalisation of refactoring tools in Coq [50]. Automatic refactoring
of programs in industrial languages is difficult because of the large number of potential interactions
between language features that are difficult to predict and to test. Indeed, all available refactoring tools
suffer from bugs : they fail to ensure that the generated program has the same behaviour as the input
program. To cope with that difficulty, we have chosen to build a refactoring tool with Coq : a program
transformation is written in the Coq programming language, then proven correct on all possible inputs,
and then an OCaml executable program is generated by the platform. We rely on the CompCert C

Project GALLINETTE 11

formalisation of the C language. CompCert is currently the most complete formalisation of an industrial
language, which justifies that choice. We have three goals in that project :

¢ Build a refactoring tool that programmers can rely on and make it available in a popular platform
(such as Eclipse, Intelli] or Frama-C).

* Explore large, drastic program transformations such as replacing a design architecture for an other
one, by applying a sequence of small refactoring operations (as we have done for Java and Haskell
programs before [49, 51, 34]), while ensuring behaviour preservation.

¢ Explore the use of enhancements of proof systems on large developments. For instance, refactoring
tools are usually developed in the imperative/object paradigm, so the extension of Coq with side
effects or with object features proposed in the team can find a direct use-case here.

3.5.2 Certified Constraint Programming

We plan to make use of the internalisation of the object-oriented paradigm in the context of constraint
programming. Indeed, this domain is made of very complex algorithms that are often developed using
object-oriented programming (as it is the case for instance for CHOCO, which is developed in the Tasc
Group at IMT Atlantique, Nantes). We will in particular focus on filtering algorithms in constraint
solvers, for which research publications currently propose new algorithms with manual proofs. Their
formalisation in Coq is challenging. Another interesting part of constraint solving to formalise is the
part that deals with program generation (as opposed to extraction). However, when there are numerous
generated pieces of code, it is not realistic to prove their correctness manually, and it can be too difficult
to prove the correctness of a generator. So we intend to explore a middle path that consists in generating
a piece of code along with its corresponding proof (script or proof term). A target application could be
interval constraints (for instance Allen interval algebra or region connection calculus) that can generate
thousands of specialised filtering algorithms for a small number of variables [41].

Finally, Rémi Douence has already worked (articles publishing [69, 105, 59, 42, 40, 39], PhD Thesis
advising [104, 38]) with different members of the Tasc team. Currently, he supervises with Nicolas
Beldiceanu the PhD Thesis of Jovial Cheukam Ngouonou in the Tasc team. He studies graph invariants to
enhance learning algorithms. This work requires proofs, manually done for now, we would like to explore
when these proofs could be mechanized.

3.5.3 Certified Symbolic Computation

We will investigate how the addition of effects in the Coq proof assistant can facilitate the marriage of
computer algebra with formal proofs. Computer algebra systems on one hand, and proof assistants on
the other hand, are both designed for doing mathematics with the help of a computer, by the means of
symbolic computations. These two families of systems are however very different in nature: computer
algebra systems allow for implementations faithful to the theoretical complexity of the algorithms,
whereas proof assistants have the expressiveness to specify exactly the semantics of the data-structures
and computations.

Experiments have been run that link computer algebra systems with Coq [57, 47]. These bridges
rely on the implementation of formal proof-producing core algorithms like normalisation procedures.
Incidentally, they require non trivial maintenance work to survive the evolution of both systems. Other
proof assistants like the Isabelle/ HOL system make use of so-called reflection schemes: the proof assistant
can produce code in an external programming language like SML, but also allows to import the values
output by these extracted programs back inside the formal proofs. This feature extends the trusted base
of code quite significantly but it has been used for major achievements like a certified symbolic/numeric
ODE solver [75].

We would like to bring Coq closer to the efficiency and user-friendliness of computer algebra systems:
for now it is difficult to use the Coq programming language so that certified implementations of computer
algebra algorithms have the right, observable, complexity when they are executed inside Coq. We see the
addition of effects to the proof assistant as an opportunity to ease these implementations, for instance
by making use of caching mechanisms or of profiling facilities. Such enhancements should enable the

12 Inria Annual Report 2020

verification of computation-intensive mathematical proofs that are currently beyond reach, like the
validation of Helfgott’s proof of the weak Goldbach conjecture [71].

4 Application domains

Programming

¢ Correct and certified software engineering through the development and the advancement of Coq
(e.g. gradualizing type theory, MetaCoq) and practical experiments for its application.

* More general contributions to the programming languages: theoretical works advancing semantic
techniques (e.g. deciding equivalence between programs, abstract syntaxes and rewriting, models
of effects and resources), and practical works for functional programming (e.g. related to OCaml
and Rust).

Foundations of mathematics

¢ Formalisation of mathematics

¢ Contributions to mathematical logic: type theory (e.g. dependent types and univalence), proof
theory (e.g. constructive classical logic), categorical logic (e.g. higher algebra, models of focusing
and linear logic)

5 Highlights of the year

¢ The Gallinette team members have published 4 papers at POPL20.
¢ Assia Mahboubi defended her habilitation thesis [24], Jan 5th 2021.

¢ Assia Mahboubi got an ERC Considator Grant at the 2020 call.

6 New software and platforms

6.1 New software

6.1.1 Ltac2

Keywords: Coq, Proof assistant

Functional Description: A replacement for Ltac, the tactic language of Coq.

Contact: Pierre-Marie Pédrot

6.1.2 Equations
Keywords: Coq, Dependent Pattern-Matching, Proof assistant, Functional programming

Scientific Description: Equations is a tool designed to help with the definition of programs in the setting
of dependent type theory, as implemented in the Coq proof assistant. Equations provides a syntax
for defining programs by dependent pattern-matching and well-founded recursion and compiles
them down to the core type theory of Coq, using the primitive eliminators for inductive types,
accessibility and equality. In addition to the definitions of programs, it also automatically derives
useful reasoning principles in the form of propositional equations describing the functions, and an
elimination principle for calls to this function. It realizes this using a purely definitional translation
of high-level definitions to core terms, without changing the core calculus in any way, or using
axioms.

The main features of Equations include:

Project GALLINETTE 13

Dependent pattern-matching in the style of Agda/Epigram, with inaccessible patterns, with and
where clauses. The use of the K axiom or a proof of K is configurable, and it is able to solve
unification problems without resorting to the K rule if not necessary.

Support for well-founded and mutual recursion using measure/well-foundedness annotations,
even on indexed inductive types, using an automatic derivation of the subterm relation for inductive
families.

Support for mutual and nested structural recursion using with and where auxilliary definitions,
allowing to factor multiple uses of the same nested fixpoint definition. It proves the expected
elimination principles for mutual and nested definitions.

Automatic generation of the defining equations as rewrite rules for every definition.

Automatic generation of the unfolding lemma for well-founded definitions (requiring only func-
tional extensionality).

Automatic derivation of the graph of the function and its elimination principle. In case the automa-
tion fails to prove these principles, the user is asked to provide a proof.

A new dependent elimination tactic based on the same splitting tree compilation scheme that can
advantageously replace dependent destruction and sometimes inversion as well. The as clause of
dependent elimination allows to specify exactly the patterns and naming of new variables needed
for an elimination.

A set of Derive commands for automatic derivation of constructions from an inductive type: its
signature, no-confusion property, well-founded subterm relation and decidable equality proof, if
applicable.

Functional Description: Equations is a function definition plugin for Coq (supporting Coq 8.11 to 8.13,
with special support for the Coq-HoTT library), that allows the definition of functions by dependent
pattern-matching and well-founded, mutual or nested structural recursion and compiles them
into core terms. It automatically derives the clauses equations, the graph of the function and its
associated elimination principle.

Equations is based on a simplification engine for the dependent equalities appearing in dependent
eliminations that is also usable as a separate tactic, providing an axiom-free variant of dependent
destruction.

Release Contributions: This version of Equations is based on an improved simplification engine for the
dependent equalities appearing during dependent eliminations that is also usable as a separate
dependent elimination tactic, providing an axiom-free variant of dependent destruction and a
more powerful form of inversion.

This is a bugfix release of version 1.2 working with Coq 8.11 to Coq 8.13 See https://mattam82.github.io/Coq-
Equations/equations/2019/05/17/1.2.html for the 1.2 release notes. New in this version:

Fixed issue #297: dependent elimination simplification mistreated let-bindings Fixed issue #295:
discrepancy between the syntax in the manual and the implementation Ensure that NoConfusion
is derived before EqDec as it is necessary to solve the corresponding obligation.

News of the Year: Equations 1.2.3, released first in June 2020 brings bugfixes, a fixed grammar and more
robust proof automation tactics.

URL: http://mattam82.github.io/Coq-Equations/
Publications: hal-01671777, hal-01248807, inria-00628862
Authors: Cyprien Mangin, Matthieu Sozeau, Matthieu Sozeau
Contact: Matthieu Sozeau

Participants: Matthieu Sozeau, Cyprien Mangin

http://mattam82.github.io/Coq-Equations/
https://hal.inria.fr/hal-01671777
https://hal.inria.fr/hal-01248807
https://hal.inria.fr/inria-00628862

14 Inria Annual Report 2020

6.1.3 Math-Components
Name: Mathematical Components library
Keyword: Proof assistant

Functional Description: The Mathematical Components library is a set of Coq libraries that cover the
prerequiste for the mechanization of the proof of the Odd Order Theorem.

Release Contributions: This releases is compatible with Coq 8.10, 8.11 and Coq 8.12 The main changes
are: - support for Coq 8.7, 8.8 and 8.9 have been dropped, - a change of implementation of intervals
and the updated theory, - the addition of kernel lemmas for matrices, - generalized many lemmas
for path and sorted, - several lemma additions, name changes and bug fixes.

URL: http://math-comp.github.io/math-comp/
Contacts: Assia Mahboubi, Enrico Tassi, Georges Gonthier

Participants: Alexey Solovyev, Andrea Asperti, Assia Mahboubi, Cyril Cohen, Enrico Tassi, Francois
Garillot, Georges Gonthier, Ioana Pasca, Jeremy Avigad, Laurence Rideau, Laurent Théry, Russell
O’Connor, Sidi Ould Biha, Stéphane Le Roux, Yves Bertot

6.1.4 math-comp-analysis
Name: Mathematical Components Analysis
Keyword: Proof assistant

Functional Description: This library adds definitions and theorems for real numbers and their mathe-
matical structures

Release Contributions: Compatible with MathComp 1.12.0, and Coq 8.11 and 8.12.
News of the Year: In 2019, there were 3 releases.

URL: https://github.com/math-comp/analysis

Publication: hal-01719918

Contacts: Cyril Cohen, Georges Gonthier, Marie Kerjean, Assia Mahboubi, Damien Rouhling, Laurence
Rideau, Pierre-Yves Strub, Reynald Affeldt

Partners: Ecole Polytechnique, AIST Tsukuba

6.1.5 MetaCoq
Keyword: Coq

Scientific Description: The MetaCoq project aims to provide a certified meta-programming environ-
ment in Coq. It builds on Template-Coq, a plugin for Coq originally implemented by Malecha
(Extensible proof engineering in intensional type theory, Harvard University, 2014), which provided
areifier for Coq terms and global declarations, as represented in the Coq kernel, as well as a deno-
tation command. Recently, it was used in the CertiCoq certified compiler project (Anand et al., in:
CogPL, Paris, France, 2017), as its front-end language, to derive parametricity properties (Anand
and Morrisett, in: CoqPL'18, Los Angeles, CA, USA, 2018). However, the syntax lacked semantics,
be it typing semantics or operational semantics, which should reflect, as formal specifications
in Coq, the semantics of Coq ’s type theory itself. The tool was also rather bare bones, providing
only rudimentary quoting and unquoting commands. MetaCoq generalizes it to handle the entire
polymorphic calculus of cumulative inductive constructions, as implemented by Coq, including
the kernel’s declaration structures for definitions and inductives, and implement a monad for
general manipulation of Coq’s logical environment. The MetaCoq framework allows Coq users

http://math-comp.github.io/math-comp/
https://github.com/math-comp/analysis
https://hal.inria.fr/hal-01719918

Project GALLINETTE 15

to define many kinds of general purpose plugins, whose correctness can be readily proved in the
system itself, and that can be run efficiently after extraction. Examples of implemented plugins
include a parametricity translation and a certified extraction to call-by-value lambda-calculus. The
meta-theory of Coq itself is verified in MetaCoq along with verified conversion, type-checking and
erasure procedures providing higly trustable alternatives to the procedures in Coq’s OCaml kernel.
MetaCoq is hence a foundation for the development of higher-level certified tools on top of Coq’s
kernel. A meta-programming and proving framework for Coq.

MetaCoq is made of 4 main components: - The entry point of the project is the Template-Coq
quoting and unquoting library for Coq which allows quotation and denotation of terms between
three variants of the Coq AST: the OCaml one used by Coq’s kernel, the Coq one defined in MetaCoq
and the one defined by the extraction of the MetaCoq AST, allowing to extract OCaml plugins from
Coq implementations. - The PCUIC component is a full formalization of Coq’s typing and reduction
rules, along with proofs of important metatheoretic properties: weakening, substitution, validity,
subject reduction and principality. The PCUIC calculus differs slightly from the Template-Coq
one and verified translations between the two are provided. - The checker component contains
verified implementations of weak-head reduction, conversion and type inference for the PCUIC
calculus, along with a verified checker for Coq theories. - The erasure compoment contains a
verified implementation of erasure/extraction from PCUIC to untyped (call-by-value) lambda
calculus extended with a dummy value for erased terms.

Functional Description: MetaCoq is a framework containing a formalization and verified implementa-
tion of Coq’s kernel in Coq along with a verified erasure procedure. It provides tools for manipulating
Coq terms and developing certified plugins (i.e. translations, compilers or tactics) in Coq.

Release Contributions: This version is a beta-release including a fully-functional reification and denota-
tion support, and the verified type-checking and erasure procedures. The metatheory proofs are
not entirely completed.

News of the Year: The verification of Coq’s typechecking and conversion algorithm was completed,
resulting in a publication at POPL20. During this year we improved the erasure procedure, verified
completeness in addition to soundness of the conversion algorithm and completed the subject
reduction and principality proofs for the PCUIC calculus. MetaCoq was used to show the confluence
and subject reduction of an extension of Coq with rewrite rules, presented in an article at POPL21.

URL: https://metacoq.github.io
Publications: hal-02901011, hal-02380196, hal-02167423, hal-01809681
Contact: Matthieu Sozeau

Participants: Abhishek Anand, Danil Annenkov, Meven Bertrand, Jakob Botsch Nielsen, Simon Boulier,
Cyril Cohen, Yannick Forster, Kenji Maillard, Gregory Malecha, Matthieu Sozeau, Nicolas Tabareau,
Theo Winterhalter

Partners: Concordium Blockchain Research Center, Aarhus University, Denmark, Saarland University

6.1.6 Coq

Name: The Coq Proof Assistant
Keywords: Proof, Certification, Formalisation

Scientific Description: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and
co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a
very expressive logic. The calculus allows to formalize both general mathematics and computer
programs, ranging from theories of finite structures to abstract algebra and categories to program-
ming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel

https://metacoq.github.io
https://hal.inria.fr/hal-02901011
https://hal.inria.fr/hal-02380196
https://hal.inria.fr/hal-02167423
https://hal.inria.fr/hal-01809681

16 Inria Annual Report 2020

including efficient conversion tests on which are built a set of higher-level layers: a powerful proof
engine and unification algorithm, various tactics/decision procedures, a transactional document
model and, at the very top an IDE.

Functional Description: Coq provides both a dependently-typed functional programming language
and a logical formalism, which, altogether, support the formalisation of mathematical theories
and the specification and certification of properties of programs. Coq also provides a large and
extensible set of automatic or semi-automatic proof methods. Coq’s programs are extractible to
OCaml, Haskell, Scheme, ...

Release Contributions: Some highlights from this release are:

- Introduction of primitive persistent arrays in the core language, implemented using imperative
persistent arrays. - Introduction of definitional proof irrelevance for the equality type defined in
the SProp sort. - Many improvements to the handling of notations, including number notations,
recursive notations and notations with bindings. A new algorithm chooses the most precise
notation available to print an expression, which might introduce changes in printing behavior.

See the Zenodo citation for more information on this release: https://zenodo.org/record/4501022#.YBOOr5NKjlw

News of the Year: Coq version 8.13 integrates many usability improvements, as well as extensions of the
core language. The main changes include: - Introduction of primitive persistent arrays in the core
language, implemented using imperative persistent arrays. - Introduction of definitional proof
irrelevance for the equality type defined in the SProp sort. - Cumulative record and inductive type
declarations can now specify the variance of their universes. - Various bugfixes and uniformization
of behavior with respect to the use of implicit arguments and the handling of existential variables
in declarations, unification and tactics. - New warning for unused variables in catch-all match
branches that match multiple distinct patterns. - New warning for Hint commands outside sections
without a locality attribute, whose goal is to eventually remove the fragile default behavior of
importing hints only when using Require. The recommended fix is to declare hints as export,
instead of the current default global, meaning that they are imported through Require Import
only, not Require. See the following rationale and guidelines for details. - General support for
boolean attributes. - Many improvements to the handling of notations, including number notations,
recursive notations and notations with bindings. A new algorithm chooses the most precise
notation available to print an expression, which might introduce changes in printing behavior. -
Tactic improvements in lia and its zify preprocessing step, now supporting reasoning on boolean
operators such as Z.leb and supporting primitive integers Int63. - Typing flags can now be specified
per-constant / inductive. - Improvements to the reference manual including updated syntax
descriptions that match Coq’s grammar in several chapters, and splitting parts of the tactics chapter
to independent sections.

See the changelog for an overview of the new features and changes, along with the full list of
contributors. https://coq.github.io/doc/v8.13/refman/changes.html#version-8-13

URL: http://coq.inria.fr/

Authors: Bruno Barras, Yves Bertot, Frédéric Besson, Pierre Corbineau, Cristina Cornes, Judicaél Courant,
Pierre Courtieu, Pierre Crégut, David Delahaye, Maxime Denes, Jean-Christophe Filliatre, Julien
Forest, Emilio Jesus Gallego Arias, Gaétan Gilbert, Georges Gonthier, Benjamin Grégoire, Hugo
Herbelin, Gérard Huet, Vincent Laporte, Pierre Letouzey, Assia Mahboubi, Pascal Manoury, Guil-
laume Melquiond, César Munoz, Chetan Murthy, Amokrane Saibi, Catherine Parent, Christine
Paulin Mohring, Pierre-Marie Pédrot, Loic Pottier, Matthieu Sozeau, Arnaud Spiwack, Enrico Tassi,
Laurent Théry, Benjamin Werner, Théo Zimmermann

Contacts: Hugo Herbelin, Matthieu Sozeau

Participants: Yves Bertot, Frédéric Besson, Tej Chajed, Cyril Cohen, Pierre Corbineau, Pierre Courtieu,
Maxime Denes, Jim Fehrle, Julien Forest, Emilio Jestis Gallego Arias, Gaétan Gilbert, Georges
Gonthier, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Vincent Laporte, Olivier Laurent, Assia

http://coq.inria.fr/

Project GALLINETTE 17

Mahboubi, Kenji Maillard, Frik Martin-Dorel, Guillaume Melquiond, Pierre-Marie Pédrot, ClEment
Pit-Claudel, Kazuhiko Sakaguchi, Vincent Semeria, Michael Soegtrop, Arnaud Spiwack, Matthieu
Sozeau, Enrico Tassi, Laurent Théry, Anton Trunov, Li-Yao Xia, Théo Zimmermann

Partners: CNRS, Université Paris-Sud, ENS Lyon, Université Paris-Diderot

6.1.7 memprof-limits
Keyword: Library

Scientific Description: Memprof-limits is an implementation of per-thread global memory limits, and
per-thread allocation limits a la Haskell, for OCaml, compatible with multiple threads.

Memprof-limits interrupts the execution by raising an asynchronous exception: an exception that
can arise at almost any location in the program. It is provided with a guide on how to recover
from asynchronous exceptions and other unexpected exceptions, thereby summarising practical
knowledge acquired in OCaml by the Coq proof assistant as well as in other programming languages,
to my knowledge told here for the first time.

Memprof-limits is probabilistic, as it is based on the statistical memory accountant memprof.
It is provided with a statistical analysis that the user can rely on to have guarantees about the
enforcement of limits.

Functional Description: Memprof-limits is a probabilistic implementation of per-thread global memory
limits, and per-thread allocation limits, for the OCaml language.

Per-thread global memory limits let you bound the memory consumption of specific parts of your
program, in terms of memory used by the whole program.

Per-thread allocation limits let you bound the execution of parts of the program measured in
number of allocation, analogous to the same feature in Haskell. Allocation limits count allocations
but not deallocations, and is therefore a measure of the work done which can be more suitable
than execution time.

Release Contributions: Initial version.
URL: https://gitlab.com/gadmm/memprof-limits
Author: Guillaume Munch

Contact: Guillaume Munch

7 New results

7.1 Logical Foundations of Programming Languages

Participants Esaie Bauer, Rémi Douence, Marie Kerjean, Ambroise Lafont,
Maxime Lucas, Etienne Miquey, Guillaume Munch-Maccagnoni, Nico-
las Tabareau.

7.1.1 Reasoning about equivalence of programs

Automating Contextual Equivalence for Higher-Order Programs with References In [12], we have
proposed a framework to study contextual equivalence of programs written in a call-by-value functional
language with local integer references. It reduces the problem of contextual equivalence to the problem
of non-reachability in a transition system of memory configurations. This reduction is complete for
recursion-free programs. Restricting to programs that do not allocate references inside the body of
functions, we have encoded this non-reachability problem as a set of constrained Horn clauses that
can then be checked for satisfiability automatically. Restricting furthermore to a language with finite
data-types, we also get a new decidability result for contextual equivalence at any type.

https://gitlab.com/gadmm/memprof-limits

18 Inria Annual Report 2020

7.1.2 Classical Logic

Dependent Type Theory in Polarised Sequent Calculus Thanks to several works on classical logic in
proof theory, it is now well-established that continuation-passing style (CPS) translations in call by
name and call by value correspond to different polarisations of formulae. Extending this observation and
building on Curien and Herbelin’s abstract-machine-like calculi, a term assignment has been proposed for
a polarised sequent calculus (where the polarities of formulae determine the evaluation order) in which
various calculi from the literature can be obtained with macros responsible for the choices of polarities. It
aims to explain several CPS translations from the literature by decomposing them through a single CPS
for sequent calculus. It has later proved to be a fruitful setting to study the addition of effects and resource
modalities, providing a categorical proof theory of Call By Push Value semantics. In [22], we propose to
bring together a dependently-typed theory (ECC) and polarised sequent calculus, by presenting a calculus
Ldep suitable as a vehicle for compilation and representation of effectful computations. As a first step in
that direction, we show that Ldep advantageously factorizes a dependently typed continuation-passing
style translation for ECC+call/cc. To avoid the inconsistency of type theory with control operators, we
restrict their interaction. Nonetheless, in the pure case, we obtain an unrestricted translation from ECC
to itself, thus opening the door to the definition of dependently typed compilation transformations.

Revisiting the duality of computation: an algebraic analysis of classical realizability models In an
impressive series of papers, Krivine showed at the edge of the last decade how classical realizability
provides a surprising technique to build models for classical theories. In particular, he proved that
classical realizability subsumes Cohen’s forcing, and even more, gives rise to unexpected models of
set theories. Pursuing the algebraic analysis of these models that was first undertaken by Streicher,
Miquel recently proposed to lay the algebraic foundation of classical realizability and forcing within
new structures which he called implicative algebras. These structures are a generalization of Boolean
algebras based on an internal law representing the implication. Notably, implicative algebras allow for
the adequate interpretation of both programs (i.e. proofs) and their types (i.e. formulas) in the same
structure. The very definition of implicative algebras takes position on a presentation of logic through
universal quantification and the implication and, computationally, relies on the call-by-name A-calculus.
In [19], we investigate the relevance of this choice, by introducing two similar structures. On the one hand,
we define disjunctive algebras, which rely on internal laws for the negation and the disjunction and which
we show to be particular cases of implicative algebras. On the other hand, we introduce conjunctive
algebras, which rather put the focus on conjunctions and on the call-by-value evaluation strategy. We
finally show how disjunctive and conjunctive algebras algebraically reflect the well-known duality of
computation between call-by-name and call-by-value.

7.1.3 Syntax and Rewriting Systems

Reduction Monads and Their Signatures In [8], we study reduction monads, which are essentially the
same as monads relative to the free functor from sets into multigraphs. Reduction monads account for
two aspects of the lambda calculus: on the one hand, in the monadic viewpoint, the lambda calculus
is an object equipped with a well-behaved substitution; on the other hand, in the graphical viewpoint,
itis an oriented multigraph whose vertices are terms and whose edges witness the reductions between
two terms. We study presentations of reduction monads. To this end, we propose a notion of reduction
signature. As usual, such a signature plays the role of a virtual presentation, and specifies arities for
generating operations-possibly subject to equations-together with arities for generating reduction rules.
For each such signature, we define a category of models; any model is, in particular, a reduction monad. If
the initial object of this category of models exists, we call it the reduction monad presented (or specified)
by the given reduction signature. Our main result identifies a class of reduction signatures which specify a
reduction monad in the above sense. We show in the examples that our approach covers several standard
variants of the lambda calculus.

Modules over monads and operational semantics [18] is a contribution to the search for efficient and
high-level mathematical tools to specify and reason about (abstract) programming languages or calculi.
Generalising the reduction monads of Ahrens et al., we introduce operational monads, thus covering

Project GALLINETTE 19

new applications such as the-calculus, Positive GSOS specifications, and the big-step, simply-typed,
call-by-value-calculus. Finally, we design a notion of signature for operational monads that covers all our
examples.

Chiralities in topological vector spaces Chiralities are categories introduced by Mellies to account for
a game semantics point of view on negation. In [29], we uncover instances of this structure in the theory
of topological vector spaces, thus constructing several new polarized models of Multiplicative Linear
Logic. These models improve previously known smooth models of Differential Linear Logic, showing the
relevance of chiralities to express topological properties of vector spaces. They are the first denotational
polarized models of Multiplicative Linear Logic, based on the pre-existing theory of topological vector
spaces, in which two distinct sets of formulas, two distinct negations, and two shifts appear naturally.

7.2 Models of programming languages mixing effects and resources

Resource managementin OCaml The current multicore OCaml implementation bans so-called "naked
pointers", pointers to outside the heap owned by the OCaml garbage collector, unless these pointers
follow drastic restrictions. A backwards-incompatible change has been proposed to make way for the
new multicore GC in OCaml. Building on our investigations for the design of a resource-management
extension for OCaml, we argued in [23] that out-of-heap pointers are not an anomaly, but are part
of a better mixing of systems and functional programming, and we designed an alternative approach
that would better preserve the backwards-compatiblity aims of OCaml multicore without affecting
performances.

7.3 Type Theory and Proof Assistants

Participants Simon Boulier, Gaétan Gilbert, Maxime Lucas, Pierre-Marie Pédrot,
Loic Pujet, Matthieu Sozeau, Nicolas Tabareau, Théo Winterhalter.

7.3.1 Type Theory

Effects in Type Theory. There is a critical tension between substitution, dependent elimination and
effects in type theory. In this paper, we crystallize this tension in the form of a no-go theorem that
constitutes the fire triangle of type theory. To release this tension, we propose in [13] DCBPYV, an extension
of call-by-push-value (CBPV)-a general calculus of effects-to dependent types. Then, by extending to
CBPV the well-known decompositions of call-by-name and call-by-value into CBPV, we show why, in
presence of effects, dependent elimination must be restricted in call-by-name, and substitution must be
restricted in call-by-value. To justify DCBPV and show that it is general enough to interpret many kinds
of effects, we define various effectful syntactic translations from DCBPV to Martin-L6f type theory: the
reader, weaning and forcing translations.

Gradualizing the Calculus of Inductive Constructions Acknowledging the ordeal of a fully formal
development in a proof assistant such as Coq, we have investigated in [27] gradual variations on the
Calculus of Inductive Construction (CIC) for swifter prototyping with imprecise types and terms. We
observe, with a no-go theorem, a crucial tradeoff between graduality and the key properties of canonicity,
decidability and closure of universes under dependent product that CIC enjoys. Beyond this Fire Triangle
of Graduality, we explore the gradualization of CIC with three different compromises, each relaxing one
edge of the Fire Triangle. We develop a parametrized presentation of Gradual CIC that encompasses all
three variations, and jointly develop their metatheory. We first present a bidirectional elaboration of
Gradual CIC to a dependently-typed cast calculus, which elucidates the interrelation between typing,
conversion, and graduality. We then establish the metatheory of this cast calculus through both a syntactic
model into CIC, which provides weak canonicity, confluence, and when applicable, normalization, and
a monotone model that purports the study of the graduality of two of the three variants. This work

20 Inria Annual Report 2020

informs and paves the way towards the development of malleable proof assistants and dependently-
typed programming languages.

The folk model category structure on strict w-categories is monoidal In [9], we prove that the folk
model category structure on the category of strict w-categories, introduced by Lafont, Métayer and
Worytkiewicz, is monoidal, first, for the Gray tensor product and, second, for the join of w-categories,
introduced by the first author and Maltsiniotis. We moreover show that the Gray tensor product induces,
by adjunction, a tensor product of strict (1, n)-categories and that this tensor product is also compatible
with the folk model category structure. In particular, we get a monoidal model category structure on
the category of strict w-groupoids. We prove that this monoidal model category structure satisfies the
monoid axiom, so that the category of Gray monoids, studied by the second author, bears a natural model
category structure.

Model structure on the universe of all types in interval type theory Model categories constitute the
major context for doing homotopy theory. More recently, Homotopy Type Theory has been introduced as
a context for doing synthetic homotopy theory. In [10], we show that a slight generalization of Homotopy
Type Theory, called Interval Type Theory, allows to define a model structure on the universe of all types,
which, through the model interpretation, corresponds to defining a model structure on the category of
cubical sets. This work generalizes previous works of Gambino, Garner and Lumsdaine from the universe
of fibrant types to the universe of all types. Our definition of Interval Type Theory comes from the work of
Orton and Pitts to define a syntactic approximation of the internal language of the category of cubical
sets. We extend the work of Orton and Pitts by introducing the notion of degenerate fibrancy, which
allows to define a fibrant replacement, at the heart of the model structure on the universe of all types. All
our definitions and propositions have been formalized using the Coq proof assistant.

Types are Internal co-groupoids An alternative to working with model structures is to pursue the idea
of pushing synthetic Homotopy Theory further, so as to deal with higher coherences directly inside
Type Theory. In [25] we show that, by extending univalent type theory with a universe of definitionally
associative and unital polynomial monads, we arrive at a coinductive definition of opetopic type which
is able to encode a number of fully coherent algebraic structures. In particular, our approach leads to
a definition of co-groupoid internal to type theory and we prove that the type of such co-groupoids is
equivalent to the universe of types. That is, every type admits the structure of an co-groupoid internally,
and this structure is unique.

Russian Constructivism in a Prefascist Theory In [21] we give two different results. First, we provide
a purely syntactic presheaf model of CIC. Contrarily to similar endeavours, this variant both preserves
conversion and interprets full dependent elimination. Then, using a particular instance of this model, we
show how to extend CIC with Markov’s principle, while preserving all good meta-theoretical properties
like canonicity and decidability of type-checking. The resulting construction can be seen as a synthetic
presentation of Coquand-Hofmann’s syntactic model of PRAw + MP as the composition of Pédrot-
Tabareau’s exceptional model with our presheaf interpretation.

7.3.2 Proof Assistants

Metacoq The MetaCoq project [14] aims to provide a certified meta-programming environment in
Cogq. It builds on Template-Coq, a plugin for Coq originally implemented by Malecha (2014), which
provided a reifier for Coq terms and global declarations, as represented in the Coq kernel, as well as
a denotation command. Recently, it was used in the CertiCoq certified compiler project (Anand et al.,
2017), as its front-end language, to derive parametricity properties (Anand and Morrisett, 2018). However,
the syntax lacked semantics, be it typing semantics or operational semantics, which should reflect, as
formal specifications in Coq, the semantics of Coq’s type theory itself. The tool was also rather bare
bones, providing only rudimentary quoting and unquoting commands. We generalize it to handle the
entire Polymorphic Calculus of Cumulative Inductive Constructions (pCUIC), as implemented by Coq,
including the kernel’s declaration structures for definitions and inductives, and implement a monad for

Project GALLINETTE 21

general manipulation of Coq’s logical environment. We demonstrate how this setup allows Coq users to
define many kinds of general purpose plugins, whose correctness can be readily proved in the system
itself, and that can be run efficiently after extraction. We give a few examples of implemented plugins,
including a parametricity translation and a certifying extraction to call-by-value A-calculus. We also
advocate the use of MetaCoq as a foundation for higher-level tools.

Verification of Type Checking and Erasure for Coq, in Coq Coq is built around a well-delimited kernel
that perfoms typechecking for definitions in a variant of the Calculus of Inductive Constructions (CIC).
Although the metatheory of CIC is very stable and reliable, the correctness of its implementation in
Coq is less clear. Indeed, implementing an efficient type checker for CIC is a rather complex task, and
many parts of the code rely on implicit invariants which can easily be broken by further evolution of
the code. Therefore, on average, one critical bug has been found every year in Coq. [15] presents the
first implementation of a type checker for the kernel of Coq (without the module system and template
polymorphism), which is proven correct in Coq with respect to its formal specification and axiomatisation
of part of its metatheory. Note that because of Godel’s incompleteness theorem, there is no hope to prove
completely the correctness of the specification of Coq inside Coq (in particular strong normalisation or
canonicity), but it is possible to prove the correctness of the implementation assuming the correctness of
the specification, thus moving from a trusted code base (TCB) to a trusted theory base (TTB) paradigm.
Our work is based on the MetaCoq project which provides metaprogramming facilities to work with terms
and declarations at the level of this kernel. Our type checker is based on the specification of the typing
relation of the Polymorphic, Cumulative Calculus of Inductive Constructions (pCUIC) at the basis of
Coq and the verification of a relatively efficient and sound type-checker for it. In addition to the kernel
implementation, an essential feature of Coq is the so-called extraction: the production of executable code
in functional languages from Coq definitions. We present a verified version of this subtle type-and-proof
erasure step, therefore enabling the verified extraction of a safe type-checker for Coq.

A Type Theory with Computational Assumptions Dependently typed programming languages and
proof assistants such as Agda and Coq rely on computation to automatically simplify expressions during
type checking. To overcome the lack of certain programming primitives or logical principles in those
systems, it is common to appeal to axioms to postulate their existence. However, one can only postulate
the bare existence of an axiom, not its computational behaviour. Instead, users are forced to postulate
equality proofs and appeal to them explicitly to simplify expressions, making axioms dramatically more
complicated to work with than built-in primitives. On the other hand, the equality reflection rule from
extensional type theory solves these problems by collapsing computation and equality, at the cost of
having no practical type checking algorithm. In [11], we introduce Rewriting Type Theory (RTT), a type
theory where it is possible to add computational assumptions in the form of rewrite rules. Rewrite rules
go beyond the computational capabilities of intensional type theory, but in contrast to extensional type
theory, they are applied automatically so type checking does not require input from the user. To ensure
type soundness of RTT-as well as effective type checking-we provide a framework where confluence of
user-defined rewrite rules can be checked modularly and automatically, and where adding new rewrite
rules is guaranteed to preserve subject reduction. The properties of RTT have been formally verified using
the MetaCoq framework and an implementation of rewrite rules is already available in the Agda proof
assistant.

7.4 Program Certifications and Formalisation of Mathematics

Cubical Synthetic Homotopy Theory Homotopy type theory is an extension of type theory that enables
synthetic reasoning about spaces and homotopy theory. This has led to elegant computer formalizations
of multiple classical results from homotopy theory. However, many proofs are still surprisingly compli-
cated to formalize. One reason for this is the axiomatic treatment of univalence and higher inductive
types which complicates synthetic reasoning as many intermediate steps, that could hold simply by
computation, require explicit arguments. Cubical type theory offers a solution to this in the form of a new
type theory with native support for both univalence and higher inductive types. In [20], we show how the
recent cubical extension of Agda can be used to formalize some of the major results of homotopy type
theory in a direct and elegant manner.

22 Inria Annual Report 2020

Competing inheritance paths in dependent type theory: a case study in functional analysis In [17],
we discuss the design of a hierarchy of structures which combine linear algebra with concepts related to
limits, like topology and norms, in dependent type theory. This hierarchy is the backbone of a new library
of formalized classical analysis, for the Coq proof assistant. It extends the Mathematical Components
library, geared towards algebra, with topics in analysis. Issues of a more general nature related to the
inheritance of poorer structures from richer ones arise due to this combination. We present and discuss a
solution, coined forgetful inheritance, based on packed classes and unification hints.

8 Bilateral contracts and grants with industry

CoqExtra

Title: A Formally Verified Extraction Mechanism using Precise Type Specifications
Duration: 2020 - 2022

Coordinator: Nicolas Tabareau

Partners:

¢ Inria

¢ Nomadic Labs
Inria contact: Nicolas Tabareau

Summary: The extraction mechanism from Coq to OCaml can be seen as a compilation phase, from
a functional language with dependent types to a functional language with a weaker type system.
It is very useful to be able to run and link critical pieces of code that have been certified with the
rest of a software system. For instance, for Tezos, it is important to certify the Michelson language
for smart contracts and then to be able to extract it to OCaml so that it interacts with the rest
of the code that has been developed. Unfortunately, the current extraction mechanism of Coq
suffers from two major flaws that prevent extraction from being used in complex situations—and in
particular for the Michelson language. First, the extraction mechanism does not make use of new
features of OCaml type system, such as Generalized Abstract Data Types (GADTSs). This prevents
code using indexed inductive types (Coq’s generalization of GADTS) to be extracted to code using
GADTs. Therefore, in the case of Michelson, the extracted code does not correspond at all to the
seminal implementation of Michelson in OCaml as it jeopardizes its type specification. The second
flaw comes from the fact that extraction sometimes produces ill-typed pieces of code (even if it
uses Obj.magic to cheat the type system), for instance when the arity of a function depends on
some value. Therefore, the extracted program fails to type-checked in OCaml and cannot be used.

Expected Impact: This project proposes to remedy to the situation so that the formalized Michelson
implementation can be extracted to OCaml in a satisfactory and certified way. But this project
is also of great interest outside Nomadic Labs as it will allow Coq users to use a better extraction
mechanism and, on a longer term, it will allow OCaml developers to prove their OCaml programs
using a formal semantics of (a fragment of) OCaml defined in Coq.

CIFRE PhD grant, funded by Mitsubishi Electric R&D Centre Europe (MERCE)

Title: Automated theorem proving and dependent types: automated reasoning for interactive proof
assistants

Duration: 2020 - 2023
Coordinator: Denis Cousineau (MERCE), Assia Mahboubi (Inria)

Partners:

Project GALLINETTE 23

¢ Inria

¢ Mitsubishi Electric R&D Centre Europe (MERCE)
Inria contact: Assia Mahboubi

Summary: The aim of this project is to vastly improve the automated reasoning skills of proof assistants
based on dependent type theory, and in particular of the Coq proof assistant. Automated provers,
like SAT solvers or SMT solvers, can provide fast decision answers on large formulas, typically
quantifier-free first order statements generated by code analysis instruments like static analyzers.
Modern provers are moreover able to produce additional data, called certificates, which contain
enough information for an a posteriori verification of their results, e.g., using a formal proof. In
this project, we would like use this feature to expand the automation available to users of proof
assistants. The main motivation here is thus to increase the class of goals that can be proved
formally and automatically by the interactive proof assistant, rather than to work on the formal
verification of specific albeit large decision problems. In this case, the central research problem is
to bridge the gap between the rich specification language of the proof assistant, and the restricted
fragment handled by the automated prover. This project will thus investigate the design, and the
implementation, of the corresponding translation phase. This translation transforms a logical
statement possibly featuring user-defined data structures and higher-order quantifications, into
another statement, logically stronger, than can be sent to the automated prover. We thus aim at
a triple objective: expressivity, extensibility and efficiency. This grant is funding the PhD of Enzo
Crance.

Expected Impact: Enhancing the automated reasoning skills of proof assistants based on dependent
type theory will be key to their wider usage in industry. As of today, they are considered a too
expensive to be used in the large outside of specific niches.

OCaml-Evolution The team received part of the Nomadic-Labs grant OCaml-Evolution (Coordinator
and Inria contact: Gabriel scherer) for G. Munch-Maccagnoni’s continued work on the OCaml compiler.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 InriaInternational Labs

GECO

Title: Gradual verification and robust proof Engineering for COq
Duration: 2018 - 2020

Coordinator: Nicolas Tabareau

Partners:

¢ Centrum Wiskunde & Informatica, Universidad de Chile (Chile)
Inria contact: Nicolas Tabareau

Summary: The development of tools to construct software systems that respect a given specification
is a major challenge of current and future research in computer science. Interactive theorem
provers based on type theory, such as Coq, have shown their effectiveness to prove correctness of
important pieces of software like the C compiler of the CompCert project. Certified programming
with dependent types is attracting a lot of attention recently, and Coq is the de facto standard
for such endeavors, with an increasing amount of users, pedagogical material, and large-scale
projects. Nevertheless, significant work remains to be done to make Coq more usable from a

24

Inria Annual Report 2020

software engineering point of view. This collaboration project gathers the expertise of researchers
from Chile (Inria Chile, Universidad de Chile, Universidad Catélica de Valparaiso) and France (Inria
Nantes, Inria Paris), in different areas that are crucial to develop the vision of certified software
engineering.

Outcome: One of the main achievements is the development of a library that mixes parametricity and

univalence (coming from homotopy type theory), in order to provide easier-to-use proof assistants
by supporting seamless programming and proving modulo equivalences (ICFP’18, extended version
accepted in Journal of the ACM). We have also proposed a new framework that is able to mix
gradual typing and dependent types, allowing the definition of gradual proof assistants, in which
it is possible to both program and prove theorems in a gradual way, that is by postponing part of
definitions and proofs, without blocking the development process. We hope that this work is the
first step toward a more massive use of proof assistants in the industry.

Informal international partners

¢ A. Mahboubi holds a part-time endowed professor position in the Department of Mathematics at

9.2

the Vrije Universiteit Amsterdam (the Netherlands).

International research visitors

9.2.1 Visits to international teams

¢ G. Munch-Maccagnoni visited E. Tanter and M. Toro (U. Chile) from Januray to March (visit ended

by the pandemic crisis).

¢ N. Tabareau visited E. Tanter (U. Chile) from Januray to March (visit ended by the pandemic crisis).

9.3
9.3.1

European initiatives

FP7 & H2020 Projects

CoqHoTT

Title: Coq for Homotopy Type Theory

Program: H2020

Type: ERC

Duration: June 2015 - May 2021 (1 year extension because of COVID-19 crisis)
Coordinator: Inria

Inria contact: Nicolas TABAREAU

Every year, software bugs cost hundreds of millions of euros to companies and administrations.
Hence, software quality is a prevalent notion and interactive theorem provers based on type
theory have shown their efficiency to prove correctness of important pieces of software like the
C compiler of the CompCert project. One main interest of such theorem provers is the ability
to extract directly the code from the proof. Unfortunately, their democratization suffers from
a major drawback, the mismatch between equality in mathematics and in type theory. Thus,
significant Coq developments have only been done by virtuosos playing with advanced concepts
of computer science and mathematics. Recently, an extension of type theory with homotopical
concepts such as univalence is gaining traction because it allows for the first time to marry together
expected principles of equality. But the univalence principle has been treated so far as a new
axiom which breaks one fundamental property of mechanized proofs: the ability to compute with
programs that make use of this axiom. The main goal of the CoqHoTT project is to provide a new
generation of proof assistants with a computational version of univalence and use them as a base

Project GALLINETTE 25

to implement effective logical model transformation so that the power of the internal logic of
the proof assistant needed to prove the correctness of a program can be decided and changed at
compile time—according to a trade-off between efficiency and logical expressivity. Our approach is
based on a radically new compilation phase technique into a core type theory to modularize the
difficulty of finding a decidable type checking algorithm for homotopy type theory. The impact of
the CoqHoTT project will be very strong. Even if Coq is already a success, this project will promote
it as a major proof assistant, for both computer scientists and mathematicians. CoqHoTT will
become an essential tool for program certification and formalization of mathematics.

9.4 Regional initiatives

¢ Vercoma (Atlanstic 2020/Attractivity grant)
¢ Goal: Verified computer mathematics.
¢ Coordinator: A. Mahboubi.

e Duration: 08/2018 - 08/2021.

10 Dissemination

10.1 Promoting Scientific Activities
10.1.1 Scientific Events: Organisation

CASS Andes summer school
¢ Jan 6-10, 2020

¢ The Coq Andes Summer School (CASS) was a one-week immersive summer school on type theory
in general, and on the Coq proof assistant in particular. CASS was open to advanced and motivated
undergraduate and postgraduate students, as well as young academics and professionals.

¢ We received 94 applications to CASS. Considering the housing capacity of Santuario del Rio (49
beds) and the number of speakers (7) and the local organizer, we were able to accept 41 participants.
Only two had to cancel at the last minute, leaving us with a total of 39 student participants. Most
participants are from Latin America (31), then Europe (6), and then North America (1) and Asia (1).

10.1.2 Scientific Events: Selection

Chair of Conference Program Committees

¢ A. Mahboubi has been co-chair of the workshop CoqPL20, satellite of POPL 2020.

Member of the Conference Program Committees
¢ N. Tabareau has been a member of the external research committee of ICFP’19.
e P-M. Pédrot has been a PC member of JFLA'20.
¢ A. Mahboubi has been a PC member of JCAR’20 and CPP’20.
¢ M. Sozeau has been a PC member of POPL21.

¢ G. Munch-Maccagnoni has been a PC member of IWACO’20.

https://cass.pleiad.cl

26 Inria Annual Report 2020

Reviewer

e P-M. Pédrot acted as a reviewer for PPDP’20 and a special Festschrift issue of the Journal of
Functional Programming.

¢ A. Mahboubi acted as a reviewer for ISSAC’20 and LPAR’20.

¢ G. Munch-Maccagnoni acted as a reviewer for the post-proceedings of TYPES’20.

10.1.3 Journal
Member of the Editorial Boards

¢ A. Mahboubi is a member of the editorial board of the Journal of Automated Reasoning.

Reviewer - Reviewing Activities
* M. Sozeau acted as a reviewer for the Journal of Functional Programming.

¢ G. Munch-Maccagnoni acted as a reviewer for LMCS.

10.1.4 Invited Talks

¢ P-M. Pédrot was planned to give an invited talk at TYPES’20 (cancelled at the last minute due to
COVID outbreak).

¢ P-M. Pédrot gave an invited talk at MSFP’20.
e P-M. Pédrot gave a talk at the Birmingham Computer Science Seminar.

¢ A. Mahboubi gave an invited talk at Colloquium of Mathematics of the University of Ljubljana.

A. Mahboubi gave a talk at the CRM - Computer Assisted Mathematical Proofs Seminar.

10.1.5 Leadership within the Scientific Community

¢ N. Tabareau is a member of the scientific committee of the GdR of Algebraic Topology.

¢ A. Mahboubi is a member of the core managment group of the EUTypes project, and leader of the
“Tools” working group.

¢ A.Mahboubi is a member of the steering committee of the ITP conference.

¢ A. Mahboubi is a member of the steering committee of the CPP conference.

A. Mahboubi is a member of the scientific committee of the GdR “Informatique Mathématique”.

10.1.6 Scientific Expertise

G. Munch-Maccagnoni acted as an expert for Nomadic Labs on OCaml-Rust bindings.

10.2 Teaching - Supervision - Juries
10.2.1 Teaching
e Licence : Julien Cohen, Discrete Mathematics, 48h, L1 (IUT), IUT Nantes, France

e Licence : Julien Cohen, Introduction to proof assistants (Coq), 8h, L2 (PEIP : IUT/Engineering
school), Polytech Nantes, France

¢ Licence : Julien Cohen, Functional Programming (Scala), 22h, L2 (IUT), IUT Nantes, France

Project GALLINETTE 27

¢ Master : Julien Cohen, Object oriented programming (Java), 32h, M1 (Engineering school), Polytech
Nantes, France

¢ Master : Julien Cohen, Functional programming (OCaml), 18h, M1 (Engineering school), Polytech
Nantes, France

¢ Master : Julien Cohen, Tools for softaware engineering (proof with Frama-C, test, code manage-
ment), 20h, M1 (Engineering school), Polytech Nantes, France

¢ Licence : Rémi Douence, Object Oriented Design and Programming, 45h, L1 (engineers), IMT-
Atlantique, Nantes, France

¢ Licence : Rémi Douence, Object Oriented Design and Programming Project, 30h, L1 (apprentice-
ship), IMT-Atlantique, Nantes, France

¢ Master : RéEmi Douence, Functional Programming with Haskell, 45h, M1 (engineers), IMT-Atlantique,
Nantes, France

e Master : Rémi Douence, Functional Programming with Haskell, 20h, M1 (apprenticeship), IMT-
Atlantique, Nantes, France

¢ Master : Rémi Douence, Formal Methods: Model checking with Alloy and from Haskell to Coq, 11h,
M1 (apprenticeship), IMT-Atlantique, Nantes, France

e Master : Rémi Douence, Introduction to scientific research in computer science (Project: compila-
tion in Java of Haskell Class Types), 45h, M2 (apprenticeship), IMT-Atlantique, Nantes, France

¢ Licence : Hervé Grall, Algorithms and Discrete Mathematics, 25h , L3 (engineers), IMT-Atlantique,
Nantes, France

e Licence : Hervé Grall, Object Oriented Design and Programming, 25h , L3 (engineers), IMT-
Atlantique, Nantes, France

¢ Licence, Master : Hervé Grall, Modularity and Typing, 40h, L3 and M1, IMT-Atlantique, Nantes,
France

* Master : Hervé Grall, Service-oriented Computing, 40h, M1 and M2, IMT-Atlantique, Nantes, France

¢ Master : Hervé Grall, Research Project - (Linear) Logic Programming in Coq, 90h (1/3 supervised),
M1 and M2, IMT-Atlantique, Nantes, France

¢ Licence : Guilhem Jaber, Computer Tools for Science, 36h, L1, Université de Nantes France
e Master : Guilhem Jaber, Verification and Formal Proofs, 18h, M1, Université de Nantes, France
¢ Master : Nicolas Tabareau, Homotopy Type Theory, 24h, M2 LMF]I, Université Paris Diderot, France

e Master: Assia Mahboubi, Machine-Checked Mathematics, 22.5h, M2, Vrije Universiteit Amsterdam,
the Netherlands

e Master : Matthieu Sozeau, Proof Assistants, 24h, M2 MPRI, Université Paris Diderot, France

¢ Master : Guillaume Munch-Maccagnoni, Initiation to safe systems programming with Rust, 7h, M1
(apprenticeship), IMT-Atlantique, Nantes, France

28

Inria Annual Report 2020

10.2.2 Supervision

PhD defended on Sept 20: Théo Winterhalter, Formalisation and Meta-Theory of Type Theory, Univ
Nantes, advisors: Matthieu Sozeau and Nicolas Tabareau

PhD in progress: Xavier Montillet, Rewriting and solvability for Call-by-push-value, Univ Nantes,
advisors: Guillaume Munch-Maccagnoni and Nicolas Tabareau

PhD in progress: Joachim Hotonnier, Deep Specification for Domain-Specific Modelling, advisors:
Gerson Sunye (Naomod team), Massimo Tisi (Naomod team), Hervé Grall.

PhD in progress: Loic Pujet, Giving meaning to cubical type theory using forcing, Univ Nantes,
advisors: Nicolas Tabareau

PhD in progress: Meven Bertrand, Gradualizing the calculus of constructions, Univ Nantes, advisors:
Nicolas Tabareau

PhD in progress: Martin Baillon, Syntactic Models of Type Theory and Continuity Principles, Univ
Nantes, advisors: Assia Mahboubi and Pierre-Marie Pédrot

PhD in progress: Pierre Benjamin Giraud, Formalizing extraction of Coq to OCaml, Univ Nantes,
advisors: Pierre-Marie Pédrot, Matthieu Sozeau and Nicolas Tabareau

PhD in progress: Enzo Crance, Automated theorem proving and dependent types: automated
reasoning for interactive proof assistants, Univ Nantes, advisors: Denis Cousineau and Assia
Mahboubi

PhD in progress: Antoine Allioux, Coherent Higher Structures in Homotopy Type Theory, Univ Paris
Diderot, advisors: Pierre-Louis Curien (Univ. Paris Diderot), Eric Finster (Univ. Birmingham) and
Matthieu Sozeau

Supervision of interns

M2 intern, March-August 2020: Martin Baillon, Syntactic Models of Type Theory and Continuity
Principles, advisors: Assia Mahboubi and Pierre-Marie Pédrot

M2 intern, February-July 2020: Enzo Crance, Automated theorem proving and dependent types,
advisors: Denis Cousineau and Assia Mahboubi

M2 intern, October 2019-February 2020: Guillaume Combette, Axiomatic denotational semantics
for resource management in systems programming, advisor: Guillaume Munch-Maccagnoni.

L3 (ENS de Lyon) intern, June - July 2020: Théo Vignon, Banach - Steinhaus Theorem formalized in
Coq, advisors: Marie Kerjean and Assia Mahboubi

10.2.3 Juries

N. Tabareau has served as examiner for the PhD of Ambre Williams defended December 14th at
Inria Paris.

N. Tabareau has served as examiner for the PhD of Thibaut Benjamin defended November 5th at
Ecole Polythecnique / Institut Polytechnique de Paris.

N. Tabareau has served as external member on the PhD jury of Houssem Hachmaoui defended
October 16th at Université Paris Saclay.

A. Mahboubi has served as member in the jury of the 2020 Gilles Kahn PhD prize.

A. Mahboubi has served as external member on the PhD jury of Théo Winterhalter defended on
September 18th at Nantes University.

Project GALLINETTE 29

10.3 Popularization

10.3.1 Internal or external Inria responsibilities

A. Mahboubi participates to the Irisa/Inria mentoring program.

10.3.2 Education

11

11.1
(1]

Hervé Grall has contributed to the project Merite, which aims to promote science learning in middle
and high schools. He is the main contributor to the theme "Communication between machines".
The project is coordinated by IMT-Atlantique in partnership with 7 other french higher education
institutions, the rectorates of the Nantes and Rennes academies, and financed by the "Investments
in the Future" and the fund FEDER Pays-de-la-Loire.

Scientific production

Major publications

R. Affeldt, C. Cohen, M. Kerjean, A. Mahboubi, D. Rouhling and K. Sakaguchi. ‘Competing in-
heritance paths in dependent type theory: a case study in functional analysis’. In: [JCAR 2020 -
International Joint Conference on Automated Reasoning. Paris, France, June 2020, pp. 1-19. URL:
https://hal.inria.fr/hal-02463336.

B. Ahrens, A. Hirschowitz, A. Lafont and M. Maggesi. ‘Reduction Monads and Their Signatures’. In:
Proceedings of the ACM on Programming Languages (Jan. 2020), pp. 1-29. DOI: 10.1145/3371099.
URL: https://hal.inria.fr/hal-02380682.

J. Cockx, N. Tabareau and T. Winterhalter. ‘The Taming of the Rew: A Type Theory with Computa-
tional Assumptions’. In: Proceedings of the ACM on Programming Languages. POPL 2021 (2020).
URL: https://hal.archives-ouvertes.fr/hal-02901011.

G. Jaber. ‘SyTeCi: Automating Contextual Equivalence for Higher-Order Programs with References’.
In: Proceedings of the ACM on Programming Languages 28 (2020), pp. 1-28. boI1: 10.1145/33711
27.URL:https://hal.archives-ouvertes.fr/hal-02388621.

P-M. Pédrot. ‘Russian Constructivism in a Prefascist Theory’. In: LICS 2020 - Thirty-Fifth Annual
ACM/IEEE Symposium on Logic in Computer Science. Saarbriicken, Germany: IEEE, July 2020,
pp. 1-14. DOI: 10.1145/3373718.3394740. URL: https://hal.inria.fr/hal-02548315.

P-M. Pédrot and N. Tabareau. ‘The Fire Triangle’. In: Proceedings of the ACM on Programming
Languages (Jan. 2020), pp. 1-28. DOI: 10.1145/3371126. URL: https://hal.archives-ouvert
es.fr/hal-02383109.

M. Sozeau, S. Boulier, Y. Forster, N. Tabareau and T. Winterhalter. ‘Coq Coq Correct! Verification
of Type Checking and Erasure for Coq, in Coq’. In: Proceedings of the ACM on Programming
Languages (Jan. 2020), pp. 1-28. DOI: 10.1145/3371076. URL: https://hal.archives-ouvert
es.fr/hal-02380196.

11.2 Publications of the year

International journals

(8]

B. Ahrens, A. Hirschowitz, A. Lafont and M. Maggesi. ‘Reduction Monads and Their Signatures’.
In: Proceedings of the ACM on Programming Languages (19th Jan. 2020), pp. 1-29. DO1: 10. 1145
/3371099. URL: https://hal.inria.fr/hal-02380682.

D. Ara and M. Lucas. ‘The folk model category structure on strict w-categories is monoidal’. In:
Theory and Applications of Categories 35.21 (20th May 2020), pp. 745-808. URL: https://hal.ar
chives-ouvertes.fr/hal-02386617.

https://www.imt-atlantique.fr/fr/formation/innovations-pedagogiques/merite
https://hal.inria.fr/hal-02463336
https://doi.org/10.1145/3371099
https://hal.inria.fr/hal-02380682
https://hal.archives-ouvertes.fr/hal-02901011
https://doi.org/10.1145/3371127
https://doi.org/10.1145/3371127
https://hal.archives-ouvertes.fr/hal-02388621
https://doi.org/10.1145/3373718.3394740
https://hal.inria.fr/hal-02548315
https://doi.org/10.1145/3371126
https://hal.archives-ouvertes.fr/hal-02383109
https://hal.archives-ouvertes.fr/hal-02383109
https://doi.org/10.1145/3371076
https://hal.archives-ouvertes.fr/hal-02380196
https://hal.archives-ouvertes.fr/hal-02380196
https://doi.org/10.1145/3371099
https://doi.org/10.1145/3371099
https://hal.inria.fr/hal-02380682
https://hal.archives-ouvertes.fr/hal-02386617
https://hal.archives-ouvertes.fr/hal-02386617

30

Inria Annual Report 2020

(10]

(11]

S. Boulier and N. Tabareau. ‘Model structure on the universe of all types in interval type theory’.
In: Mathematical Structures in Computer Science (14th Oct. 2020), pp. 1-32. bo1: 10.1017/50960
129520000213. URL: https://hal.inria.fr/hal-02966633.

J. Cockx, N. Tabareau and T. Winterhalter. ‘The Taming of the Rew: A Type Theory with Computa-
tional Assumptions’. In: Proceedings of the ACM on Programming Languages. POPL 2021 (2020).
URL: https://hal.archives-ouvertes.fr/hal-02901011.

G. Jaber. ‘SyTeCi: Automating Contextual Equivalence for Higher-Order Programs with References’.
In: Proceedings of the ACM on Programming Languages 28 (2020), pp. 1-28. boI: 10.1145/33711
27.URL:https://hal.archives-ouvertes.fr/hal-02388621.

P-M. Pédrot and N. Tabareau. ‘The Fire Triangle: How to Mix Substitution, Dependent Elimination,
and Effects’. In: Proceedings of the ACM on Programming Languages (22nd Jan. 2020), pp. 1-28.
DOI: 10.1145/3371126. URL: https://hal.archives-ouvertes.fr/hal-02383109.

M. Sozeau, A. Anand, S. Boulier, C. Cohen, Y. Forster, E Kunze, G. Malecha, N. Tabareau and
T. Winterhalter. ‘The MetaCoq Project’. In: Journal of Automated Reasoning (Feb. 2020). DOTI:
10.1007/s10817-019-09540-0. URL: https://hal.inria.fr/hal-02167423.

M. Sozeau, S. Boulier, Y. Forster, N. Tabareau and T. Winterhalter. ‘Coq Coq Correct! Verification
of Type Checking and Erasure for Coq, in Coq’. In: Proceedings of the ACM on Programming
Languages (19th Jan. 2020), pp. 1-28. DO1: 10.1145/3371076. URL: https://hal.archives-ou
vertes.fr/hal-02380196.

N. Tabareau, E. Tanter and M. Sozeau. ‘The Marriage of Univalence and Parametricity’. In: Journal
of the ACM (JACM) 68.1 (15th Jan. 2021), pp. 1-44. DOI: 10.1145/3429979. URL: https://hal.i
nria.fr/hal-03120580.

International peer-reviewed conferences

(17]

R. Affeldt, C. Cohen, M. Kerjean, A. Mahboubi, D. Rouhling and K. Sakaguchi. ‘Competing in-
heritance paths in dependent type theory: a case study in functional analysis’. In: JCAR 2020 -
International Joint Conference on Automated Reasoning. Paris, France, 29th June 2020, pp. 1-19.
URL:https://hal.inria.fr/hal-02463336.

A. Hirschowitz, T. Hirschowitz and A. Lafont. ‘Modules over monads and operational semantics’.
In: 5th International Conference on Formal Structures for Computation and Deduction (FSCD
2020). 5th International Conference on Formal Structures for Computation and Deduction (FSCD
2020). Vol. 167. Leibniz International Proceedings in Informatics (LIPIcs). Paris, France, 2020,
12:1-12:23. DOI: 10.4230/LIPIcs.FSCD.2020.12. URL: https://hal.archives-ouvertes.f
r/hal-02338144.

E. Miquey. ‘Revisiting the duality of computation: an algebraic analysis of classical realizabil-
ity models’. In: CSL 2020 - Conference on Computer Science Logic. Vol. 152. LIPIcs, CSL 2020.
Barcelone, Spain, 13th Jan. 2020, pp. 1-52. DOI: 10.4230/LIPIcs.CSL.2020.30. URL: https:
//hal.archives-ouvertes.fr/hal-02305560.

A. Mértberg and L. Pujet. ‘Cubical Synthetic Homotopy Theory’. In: CPP 2020 - 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs. New Orleans, United States: https:
//popl20.sigplan.org/home/CPP-2020, 20th Jan. 2020, pp. 1-14. DOI: 10.1145/3372885. 3
373825. URL: https://hal.archives-ouvertes.fr/hal-02394145.

P-M. Pédrot. ‘Russian Constructivism in a Prefascist Theory’. In: LICS 2020 - Thirty-Fifth Annual
ACM/IEEE Symposium on Logic in Computer Science. Saarbriicken, Germany, Nov. 2020, pp. 1-14.
DOI: 10.1145/3373718.3394740. URL: https://hal.inria.fr/hal-02548315.

Conferences without proceedings

(22]

E. Miquey, X. Montillet and G. Munch-Maccagnoni. ‘Dependent Type Theory in Polarised Sequent
Calculus (abstract)’. In: TYPES 2020 - 26th International Conference on Types for Proofs and
Programs. Torino, Italy: https://types2020.di.unito.it/, 2nd Mar. 2020, pp. 1-3. URL:
https://hal.inria.fr/hal-02505671.

https://doi.org/10.1017/S0960129520000213
https://doi.org/10.1017/S0960129520000213
https://hal.inria.fr/hal-02966633
https://hal.archives-ouvertes.fr/hal-02901011
https://doi.org/10.1145/3371127
https://doi.org/10.1145/3371127
https://hal.archives-ouvertes.fr/hal-02388621
https://doi.org/10.1145/3371126
https://hal.archives-ouvertes.fr/hal-02383109
https://doi.org/10.1007/s10817-019-09540-0
https://hal.inria.fr/hal-02167423
https://doi.org/10.1145/3371076
https://hal.archives-ouvertes.fr/hal-02380196
https://hal.archives-ouvertes.fr/hal-02380196
https://doi.org/10.1145/3429979
https://hal.inria.fr/hal-03120580
https://hal.inria.fr/hal-03120580
https://hal.inria.fr/hal-02463336
https://doi.org/10.4230/LIPIcs.FSCD.2020.12
https://hal.archives-ouvertes.fr/hal-02338144
https://hal.archives-ouvertes.fr/hal-02338144
https://doi.org/10.4230/LIPIcs.CSL.2020.30
https://hal.archives-ouvertes.fr/hal-02305560
https://hal.archives-ouvertes.fr/hal-02305560
https://popl20.sigplan.org/home/CPP-2020
https://popl20.sigplan.org/home/CPP-2020
https://doi.org/10.1145/3372885.3373825
https://doi.org/10.1145/3372885.3373825
https://hal.archives-ouvertes.fr/hal-02394145
https://doi.org/10.1145/3373718.3394740
https://hal.inria.fr/hal-02548315
https://types2020.di.unito.it/
https://hal.inria.fr/hal-02505671

Project GALLINETTE 31

(23]

G. Munch-Maccagnoni. ‘Towards better systems programming in OCaml with out-of-heap alloca-
tion’. In: ML Workshop. Jersey City, United States, 27th Aug. 2020. URL: https://hal.inria.fr
/hal-03142386.

Doctoral dissertations and habilitation theses

(24]

A. Mahboubi. ‘Machine-checked computer-aided mathematics’. Université de Nantes (UN),
Nantes, FRA,, 5th Jan. 2021. URL: https://tel.archives-ouvertes.fr/tel-03107626.

Reports & preprints

(25]

(26]

[27]

(28]

(29]

(30]

A. Allioux, E. Finster and M. Sozeau. Types are internal infinity-groupoids. 25th Jan. 2021. URL:
https://hal.inria.fr/hal-03133144.

S. Bernard, C. Cohen, A. Mahboubi and P-Y. Strub. Unsolvability of the Quintic Formalized in
Dependent Type Theory. 9th Feb. 2021. URL: https://hal.inria.fr/hal-03136002.

M. Bertrand, K. Maillard, N. Tabareau and E. Tanter. Gradualizing the Calculus of Inductive
Constructions. 20th Nov. 2020. URL: https://hal.archives-ouvertes.fr/hal-02896776.

G. Jaber and A. S. Murawski. Complete trace models of state and control. 20th Jan. 2021. URL:
https://hal.archives-ouvertes.fr/hal-03116698.

M. Kerjean. Chiralities in topological vector spaces. 13th Feb. 2020. DOI: 10.4230/LIPIcs. URL:
https://hal.inria.fr/hal-02334917.

M. Lennon-Bertrand. Complete Bidirectional Typing for the Calculus of Inductive Constructions.
12th Feb. 2021. URL: https://hal.archives-ouvertes.fr/hal-03139924.

Cited publications

A. Abel and T. Coquand. ‘Untyped Algorithmic Equality for Martin-Lof’s Logical Framework
with Surjective Pairs’. English. In: Typed Lambda Calculi and Applications. Ed. by P. Urzyczyn.
Vol. 3461. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005, pp. 23-38. DOI:
10.1007/11417170_4. URL: http://dx.doi.org/10.1007/11417170_4.

B. Accattoli and G. Guerrieri. ‘Open Call-by-Value’. In: Programming Languages and Systems
(1stJan. 2016). DOI: 10.1007/978-3-319-47958-3_12. URL: http://dx.doi.org/10.1007
/978-3-319-47958-3_12.

D. Ahman, N. Ghani and G. D. Plotkin. ‘Dependent Types and Fibred Computational Effects’. In:
Proc. FoSSaCs. 2015.

A. Ajouli, J. Cohen and J.-C. Royer. ‘Transformations between Composite and Visitor Implementa-
tions in Java'. In: Software Engineering and Advanced Applications (SEAA), 2013 39th EUROMICRO
Conference on. Sept. 2013, pp. 25-32. DOI: 10.1109/SEAA.2013.53. URL: http://dx.doi.org
/10.1109/SEAA.2013.53.

J. Aldrich. ‘The power of interoperability: why objects are inevitable’. In: ACM Symposium on New
Ideas in Programming and Reflections on Software, Onward! 2013, part of SPLASH '13, Indianapolis,
IN, USA, October 26-31, 2013. Ed. by A. L. Hosking, P. T. Eugster and R. Hirschfeld. ACM, 2013,
pp. 101-116.

T. Altenkirch, C. McBride and W. Swierstra. ‘Observational equality, now!’ In: Proceedings of the
ACM Workshop on Programming Languages meets Program Verification (PLPV 2007). Freiburg,
Germany, Oct. 2007, pp. 57-68.

J.-M. Andreoli. ‘Logic Programming with Focusing Proof in Linear Logic’. In: Journal of Logic and
Computation 2.3 (1992), pp. 297-347.

E. Arafailova. ‘Functional description of sequence constraints and synthesis of combinatorial
objects’. Theses. Ecole nationale supérieure Mines-Télécom Atlantique, Sept. 2018. URL: https:
//tel.archives-ouvertes.fr/tel-01962957.

https://hal.inria.fr/hal-03142386
https://hal.inria.fr/hal-03142386
https://tel.archives-ouvertes.fr/tel-03107626
https://hal.inria.fr/hal-03133144
https://hal.inria.fr/hal-03136002
https://hal.archives-ouvertes.fr/hal-02896776
https://hal.archives-ouvertes.fr/hal-03116698
https://doi.org/10.4230/LIPIcs
https://hal.inria.fr/hal-02334917
https://hal.archives-ouvertes.fr/hal-03139924
https://doi.org/10.1007/11417170_4
http://dx.doi.org/10.1007/11417170_4
https://doi.org/10.1007/978-3-319-47958-3_12
http://dx.doi.org/10.1007/978-3-319-47958-3_12
http://dx.doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1109/SEAA.2013.53
http://dx.doi.org/10.1109/SEAA.2013.53
http://dx.doi.org/10.1109/SEAA.2013.53
https://tel.archives-ouvertes.fr/tel-01962957
https://tel.archives-ouvertes.fr/tel-01962957

32

Inria Annual Report 2020

(39]

(40]

(41]

[51]

(52]

E. Arafailova, N. Beldiceanu, R. Douence, M. Carlsson, P. Flener, M. A. E Rodriguez, J. Pear-
son and H. Simonis. ‘Global Constraint Catalog, Volume II, Time-Series Constraints’. In: CoRR
abs/1609.08925 (2016). URL: http://arxiv.org/abs/1609.08925.

E. Arafailova, N. Beldiceanu, R. Douence, P. Flener, M. A. E Rodriguez, J. Pearson and H. Simonis.
‘Time-Series Constraints: Improvements and Application in CP and MIP Contexts’. In: Integration
of Al and OR Techniques in Constraint Programming - 13th International Conference, CPAIOR 2016,
Banff, AB, Canada, May 29 - June 1, 2016, Proceedings. Ed. by C.-G. Quimper. Vol. 9676. Lecture
Notes in Computer Science. Springer, 2016, pp. 18-34. DOI: 10.1007/978-3-319-33954-2_2.
URL: https://doi.org/10.1007/978-3-319-33954-2_2.

A. E Barco, J.-G. Fages, E. Vareilles, M. Aldanondo and P. Gaborit. ‘Open Packing for Facade-Layout
Synthesis Under a General Purpose Solver’. In: Principles and Practice of Constraint Programming
- 21st International Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings.
Ed. by G. Pesant. Vol. 9255. Lecture Notes in Computer Science. Springer, 2015, pp. 508-523. DOI:
10.1007/978-3-319-23219-5_36. URL: http://dx.doi.org/10.1007/978-3-319-23219
-5%5C_36.

N. Beldiceanu, M. Carlsson, R. Douence and H. Simonis. ‘Using finite transducers for describing
and synthesising structural time-series constraints’. In: Constraints 21.1 (2016), pp. 22-40. DOIL:
10.1007/s10601-015-9200-3. URL: http://dx.doi.org/10.1007/s10601-015-9200-3.

S. Berardi, M. Bezem and T. Coquand. ‘On the computational content of the axiom of choice’. In:
The Journal of Symbolic Logic 63.02 (1998), pp. 600-622.

M. Bezem, T. Coquand and S. Huber. ‘A model of type theory in cubical sets’. In: Preprint, Septem-
ber (2013).

S. Boulier, P-M. Pédrot and N. Tabareau. ‘The next 700 syntactical models of type theory’. In:
Certified Programs and Proofs (CPP 2017). Paris, France, Jan. 2017, pp. 182-194. po1: 10.1145/30
18610.3018620. URL: https://hal.inria.fr/hal-01445835.

E. Brady. ‘Idris, a general-purpose dependently typed programming language: Design and imple-
mentation’. In: J. Funct. Program. 23.5 (2013), pp. 552-593. DOI: 10.1017/S095679681300018X.
URL: https://doi.org/10.1017/5095679681300018X.

E Chyzak, A. Mahboubi, T. Sibut-Pinote and E. Tassi. ‘A Computer-Algebra-Based Formal Proof
of the Irrationality of {(3)’. In: Interactive Theorem Proving. Ed. by R. G. Gerwin Klein. Vol. 8558.
Lecture Notes in Computer Science. Springer, 2014.

C. Cohen, T. Coquand, S. Huber and A. Mortberg. Cubical Type Theory: a constructive interpretation
of the univalence axiom. To appear in post-proceedings of Types for Proofs and Programs (TYPES
2015). 2016.

J. Cohen, R. Douence and A. Ajouli. ‘Invertible Program Restructurings for Continuing Modular
Maintenance’. In: Software Maintenance and Reengineering (CSMR), 2012 16th European Confer-
ence on. Mar. 2012, pp. 347-352. DOI: 10.1109/CSMR.2012.42. URL: http://dx.doi.org/10.1
109/CSMR.2012.42.

J. Cohen. ‘Renaming Global Variables in C Mechanically Proved Correct’. In: Proceedings of the
Fourth International Workshop on Verification and Program Transformation, Eindhoven, The
Netherlands, 2nd April 2016. Ed. by G. Hamilton, A. Lisitsa and A. P. Nemytykh. Vol. 216. Electronic
Proceedings in Theoretical Computer Science. Open Publishing Association, 2016, pp. 50-64. DOI:
10.4204/EPTCS.216.3. URL: http://dx.doi.org/10.4204/EPTCS.216.3.

J. Cohen and A. Ajouli. ‘Practical Use of Static Composition of Refactoring Operations’. In: Pro-
ceedings of the 28th Annual ACM Symposium on Applied Computing. SAC ’13. Coimbra, Portugal:
ACM, 2013, pp. 1700-1705. DOI1: 10.1145/2480362.2480684. URL: http://dx.doi.org/10.11
45/2480362.2480684.

P. Cohen and M. Davis. Set theory and the continuum hypothesis. WA Benjamin New York, 1966.

http://arxiv.org/abs/1609.08925
https://doi.org/10.1007/978-3-319-33954-2_2
https://doi.org/10.1007/978-3-319-33954-2_2
https://doi.org/10.1007/978-3-319-23219-5_36
http://dx.doi.org/10.1007/978-3-319-23219-5%5C_36
http://dx.doi.org/10.1007/978-3-319-23219-5%5C_36
https://doi.org/10.1007/s10601-015-9200-3
http://dx.doi.org/10.1007/s10601-015-9200-3
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3018610.3018620
https://hal.inria.fr/hal-01445835
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1109/CSMR.2012.42
http://dx.doi.org/10.1109/CSMR.2012.42
http://dx.doi.org/10.1109/CSMR.2012.42
https://doi.org/10.4204/EPTCS.216.3
http://dx.doi.org/10.4204/EPTCS.216.3
https://doi.org/10.1145/2480362.2480684
http://dx.doi.org/10.1145/2480362.2480684
http://dx.doi.org/10.1145/2480362.2480684

Project GALLINETTE 33

(53]

(59]

W. R. Cook. ‘On understanding data abstraction, revisited’. In: Proceedings of the 24th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA. Ed. by S. Arora and G. T. Leavens. ACM,
2009, pp. 557-572. DOI: 10.1145/1640089.1640133. URL: http://doi.acm.org/10.1145/16
40089.1640133.

Coq Development Team, The. The Coq proof assistant reference manual. Version 8.5. 2015. URL:
http://coq.inria.fr.

P-L. Curien, M. Fiore and G. Munch-Maccagnoni. ‘A Theory of Effects and Resources: Adjunction
Models and Polarised Calculi’. In: Proc. POPL. 2016. DOI: 10 . 1145/2837614 . 2837652. URL:
http://dx.doi.org/10.1145/2837614.2837652.

P-L. Curien and H. Herbelin. ‘The duality of computation’. In: ACM SIGPLAN Notices 35 (2000),
pp. 233-243.

D. Delahaye and M. Mayero. ‘Dealing with algebraic expressions over a field in Coq using Maple’.
In: J. Symbolic Comput. 39.5 (2005). Special issue on the integration of automated reasoning and
computer algebra systems, pp. 569-592. DOI: 10.1016/j. jsc.2004.12.004. URL: http://dx
.doi.org/10.1016/j.jsc.2004.12.004.

E. Tanter and N. Tabareau. ‘Gradual Certified Programming in Coq’. In: Proceedings of the 11th
ACM Dynamic Languages Symposium (DLS 2015). Pittsburgh, PA, USA: ACM Press, Oct. 2015,
pp- 26-40.

R. Douence, X. Lorca and N. Loriant. ‘Lazy Composition of Representations in Java’. In: Software
Composition, 8th International Conference, SC 2009, Zurich, Switzerland, July 2-3, 2009. Proceed-
ings. Ed. by A. Bergel and J. Fabry. Vol. 5634. Lecture Notes in Computer Science. Springer, 2009,
pp- 55-71. DOI1: 10.1007/978-3-642-02655-3_6. URL: https://doi.org/10.1007/978-3-
642-02655-3_6.

T. Ehrhard. ‘Call-by-push-value from a linear logic point of view’. In: European Symposium on
Programming Languages and Systems. Springer. 2016, pp. 202-228.

A. Frisch, G. Castagna and V. Benzaken. ‘Semantic Subtyping: Dealing Set-theoretically with
Function, Union, Intersection, and Negation Types’. In: J. ACM 55.4 (Sept. 2008), 19:1-19:64.

C. Fihrmann. ‘Direct Models for the Computational Lambda Calculus’. In: Electr. Notes Theor.
Comput. Sci. 20 (1999), pp. 245-292.

J.-Y. Girard. ‘Linear Logic’. In: Theoretical Computer Science 50 (1987), pp. 1-102.

J.-Y. Girard, A. Scedrov and P. J. Scott. ‘Normal Forms and Cut-Free Proofs as Natural Transforma-
tions’. In: in : Logic From Computer Science, Mathematical Science Research Institute Publications
21. Springer-Verlag, 1992, pp. 217-241.

G. Gonthier. ‘Formal proofs—the four-colour theorem’. In: Notices of the AMS 55.11 (2008),
pp. 1382-1393.

G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, E Garillot, S. Roux, A. Mahboubi, R. O’Connor,
S. Ould Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi and L. Théry. ‘A Machine-Checked Proof
of the Odd Order Theorem'’. In: Interactive Theorem Proving. Ed. by S. Blazy, C. Paulin-Mohring
and D. Pichardie. Vol. 7998. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pp. 163-179. DOI: 10.1007/978-3-642-39634-2_14. URL: http://dx.doi.org/10.1007/9
78-3-642-39634-2_14.

G. Gonthier, A. Mahboubi and E. Tassi. A Small Scale Reflection Extension for the Coq system.
Research Report RR-6455. The Reference Manual of the Ssreflect extension to the Coq tactic language,
availableathttp : //hal.inria. fr/inria-0025838/.INRIA, 2008.

T. G. Griffin. ‘A Formulae-as-Types Notion of Control’. In: Seventeenth Annual ACM Symposium
on Principles of Programming Languages. ACM Press, 1990, pp. 47-58.

Y.-G. Guéhéneuc, R. Douence and N. Jussien. ‘No Java without Caffeine: A Tool for Dynamic Anal-
ysis of Java Programs’. In: 17th IEEE International Conference on Automated Software Engineering
(ASE 2002), 23-27 September 2002, Edinburgh, Scotland, UK. IEEE Computer Society, 2002, p. 117.
DOI: 10.1109/ASE.2002.1115000. URL: https://doi.org/10.1109/ASE.2002.1115000.

https://doi.org/10.1145/1640089.1640133
http://doi.acm.org/10.1145/1640089.1640133
http://doi.acm.org/10.1145/1640089.1640133
http://coq.inria.fr
https://doi.org/10.1145/2837614.2837652
http://dx.doi.org/10.1145/2837614.2837652
https://doi.org/10.1016/j.jsc.2004.12.004
http://dx.doi.org/10.1016/j.jsc.2004.12.004
http://dx.doi.org/10.1016/j.jsc.2004.12.004
https://doi.org/10.1007/978-3-642-02655-3_6
https://doi.org/10.1007/978-3-642-02655-3_6
https://doi.org/10.1007/978-3-642-02655-3_6
https://doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://hal.inria.fr/inria-00258384
https://doi.org/10.1109/ASE.2002.1115000
https://doi.org/10.1109/ASE.2002.1115000

34

Inria Annual Report 2020

[70]

[90]

T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, T. L. Hoang, C. Kaliszyk, V. Magron, S.
McLaughlin, T. T. Nguyen, T. Q. Nguyen, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, A. H. T. Ta,
T.N. Tran, D. T. Trieu, J. Urban, K. K. Vu and R. Zumbkeller. ‘A formal proof of the Kepler conjecture’.
In: CoRR abs/1501.02155 (2015). URL: http://arxiv.org/abs/1501.02155.

H. A. Helfgott. ‘The ternary Goldbach conjecture is true’. In: ArXiv e-prints (Dec. 2013). arXiv:
1312.7748 [math.NT].

H. Herbelin. ‘A Constructive Proof of Dependent Choice, Compatible with Classical Logic’. In:
LICS 2012 - 27th Annual ACM/IEEE Symposium on Logic in Computer Science. Dubrovnik, Croatia:
IEEE Computer Society, June 2012, pp. 365-374. URL: https://hal.inria.fr/hal-00697240.

H. Herbelin and E. Miquey. ‘Toward dependent choice: a classical sequent calculus with depen-
dent types’. In: TYPES 2015. 2015.

T. Hirschowitz. ‘Cartesian closed 2-categories and permutation equivalence in higher-order
rewriting’. In: Logical Methods in Computer Science 9.3 (2013). 19 pages, p. 10. DOI: 10.2168
/LMCS-9(3:10)2013. URL: https://hal.archives-ouvertes.fr/hal-00540205.

E Immler. ‘Verified Reachability Analysis of Continuous Systems’. In: Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings. Ed. by C. Baier and C. Tinelli. Vol. 9035. Lecture Notes in Computer
Science. Springer, 2015, pp. 37-51.

G. Jaber, G. Lewertowski, P-M. Pédrot, M. Sozeau and N. Tabareau. ‘The Definitional Side of the
Forcing’. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 16, New York, NY, USA, July 5-8, 2016. 2016, pp. 367-376.

G. Jaber, N. Tabareau and M. Sozeau. ‘Extending type theory with forcing’. In: Logic in Computer
Science (LICS), 2012. IEEE. 2012, pp. 395-404.

C. B. Jay and N. Ghani. ‘The Virtues of Eta-Expansion’. In: J. Funct. Program. 5.2 (1995), pp. 135—
154.

U. Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics. Springer
Science & Business Media, 2008.

J.-L. Krivine. ‘Realizability algebras II : new models of ZF + DC’. In: Logical Methods in Computer
Science 8.1 (2012).

J. Lambek and P. J. Scott. Introduction to higher order categorical logic. New York, NY, USA: Cam-
bridge University Press, 1986.

S. M. Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer-Verlag, 1992.

R. Lepigre. ‘A classical realizability model for a semantical value restriction’. In: European Sympo-
sium on Programming Languages and Systems. Springer. 2016, pp. 476-502.

X. Leroy. ‘Formal certification of a compiler back-end or: programming a compiler with a proof
assistant’. In: ACM SIGPLAN Notices 41.1 (2006), pp. 42-54.

P. B. Levy. Call-By-Push-Value: A Functional/lmperative Synthesis. Vol. 2. Semantic Structures in
Computation. Springer, 2004.

P. B. Levy. ‘Contextual isomorphisms’. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages. ACM. 2017, pp. 400-414.

C. Liang and D. Miller. ‘Focusing and polarization in linear, intuitionistic, and classical logics’. In:
Theor. Comput. Sci. 410.46 (2009), pp. 4747-4768.

Z.Luo, S. Soloviev and T. Xue. ‘Coercive subtyping: Theory and implementation’. In: Inf. Comput.
223 (2013), pp. 18-42.

J. Lurie. Higher topos theory. Annals of mathematics studies. Princeton, N.J., Oxford: Princeton
University Press, 2009.

S. Mac Lane. ‘Natural associativity and commutativity’. In: Selected Papers (1979), pp. 415-433.

http://arxiv.org/abs/1501.02155
https://arxiv.org/abs/1312.7748
https://hal.inria.fr/hal-00697240
https://doi.org/10.2168/LMCS-9(3:10)2013
https://doi.org/10.2168/LMCS-9(3:10)2013
https://hal.archives-ouvertes.fr/hal-00540205

Project GALLINETTE 35

[100]

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

P Martin-Lof. ‘An intuitionistic theory of types: predicative part’. In: Logic Colloquium ’73 Studies
in Logic and the Foundations of Mathematics.80 (1975), pp. 73-118.

P-A. Mellies. ‘Asynchronous Games 3 An Innocent Model of Linear Logic’. In: Electr. Notes Theor:
Comput. Sci. 122 (2005), pp. 171-192.

P-A. Mellies. ‘Asynchronous Games 4: A Fully Complete Model of Propositional Linear Logic’. In:
LICS. 2005, pp. 386-395.

P-A. Melliés and N. Tabareau. ‘Resource modalities in tensor logic’. In: Ann. Pure Appl. Logic 161.5
(2010), pp. 632-653.

E. Miquey. ‘A classical sequent calculus with dependent types’. In: European Symposium on
Programming. Springer. 2017, pp. 777-803.

E. Moggi. ‘Computational lambda-calculus and monads’. In: Proceedings of the Fourth Annual
IEEE Symposium on Logic in Computer Science (LICS 1989). Pacific Grove, CA, USA: IEEE Computer
Society Press, June 1989, pp. 14-23.

E. Moggi. ‘Notions of computation and monads’. In: Inf. Comput. 93.1 (July 1991), pp. 55-92. DOI:
10.1016/0890-5401(91)90052-4. URL: http://dx.doi.org/10.1016/0890-5401(91)900
52-4.

G. Munch-Maccagnoni. ‘Formulae-as-Types for an Involutive Negation’. In: Proceedings of the
joint meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (CSL-LICS). 2014.

G. Munch-Maccagnoni. ‘Models of a Non-Associative Composition’. In: Proc. FoSSaCS. Ed. by
A. Muscholl. Vol. 8412. LNCS. Springer, 2014, pp. 397-412.

G. Munch-Maccagnoni. ‘Note on Curry’s style for Linear Call-by-Push-Value’. Manuscript. 3rd May
2017. URL: https://hal.inria.fr/hal-01528857.

A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau and L. Birkedal. Ynot: Reasoning with the
awkward squad. 2008.

C. Okasaki. Purely functional data structures. Cambridge University Press, 1999.

P-M. Pédrot and N. Tabareau. ‘An Effectful Way to Eliminate Addiction to Dependence’. Jan. 2017.
URL: https://hal.inria.fr/hal-01441829.

C. Prud’homme. ‘Controdle de la propagation et de la recherche dans un solveur de contraintes.
(Controlling propagation and search within a constraint solver)’. PhD thesis. Ecole des mines de
Nantes, France, 2014. URL: https://tel.archives-ouvertes.fr/tel-01060921.

C. Prud’homme, X. Lorca, R. Douence and N. Jussien. ‘Propagation engine prototyping with a
domain specific language’. In: Constraints 19.1 (2014), pp. 57-76. DOI: 10.1007/s10601-013-91
51-5. URL: https://doi.org/10.1007/s10601-013-9151-5.

K. Quirin and N. Tabareau. ‘Lawvere-Tierney sheafification in Homotopy Type Theory’. In: Journal
of Formalized Reasoning 9.2 (2016). DOI: 10.6092/issn.1972-5787/6232. URL: https://hal
.inria.fr/hal-01451710.

E van Raamsdonk. ‘Higher-order Rewriting’. In: Proc. Rewrit. Tech. App. Vol. 1631. LNCS. Springer,
1999, pp. 220-239.

J. C. Reynolds. ‘Types, Abstraction and Parametric Polymorphism’. In: IFIP Congress. 1983, pp. 513—
523.

P. Selinger. ‘Control Categories and Duality: On the Categorical Semantics of the Lambda-Mu
Calculus’. In: Math. Struct in Comp. Sci. 11.2 (2001), pp. 207-260.

S. G. Simpson. Subsystems of Second Order Arithmetic. Second. Cambridge Books Online. Cam-
bridge University Press, 2009. URL: http://dx.doi.org/10.1017/CB09780511581007.

K. Stevring. ‘Extending the Extensional Lambda Calculus with Surjective Pairing is Conservative’.
In: Logical Methods in Computer Science 2.2 (2006).

https://doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
https://hal.inria.fr/hal-01528857
https://hal.inria.fr/hal-01441829
https://tel.archives-ouvertes.fr/tel-01060921
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.6092/issn.1972-5787/6232
https://hal.inria.fr/hal-01451710
https://hal.inria.fr/hal-01451710
http://dx.doi.org/10.1017/CBO9780511581007

36

Inria Annual Report 2020

[112]

[113]

[114]

[115]

N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet,
P-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue and S. Zanella-Béguelin. ‘Dependent Types and Multi-
Monadic Effects in F*'. In: 43nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, Jan. 2016, pp. 256-270. URL: https://www.fstar-lang.org/papers
/mumon/.

Univalent Foundations Project. Homotopy Type Theory: Univalent Foundations for Mathematics.
http://homotopytypetheory.org/book, 2013.

M. Vékar. ‘A Framework for Dependent Types and Effects’. In: arXiv preprint arXiv:1512.08009
(2015).

B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis. ‘Mtac: A monad for typed
tactic programming in Coq’. In: Journal of Functional Programming 25 (2015). DOI: 10.1017/S09
56796815000118. URL: http://dx.doi.org/10.1017/S0956796815000118.

https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
http://homotopytypetheory.org/book
https://doi.org/10.1017/S0956796815000118
https://doi.org/10.1017/S0956796815000118
http://dx.doi.org/10.1017/S0956796815000118

	Project-Team GALLINETTE
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Scientific Context
	Enhance the computational and logical power of proof assistants
	A definitional proof-irrelevant version of Coq.
	Extend the Coq proof assistant with a computational version of univalence
	Extend the logical power of type theory without axioms in a modular way
	Methodology: Extending type theory with different compilation phases

	Semantic and logical foundations for effects in proof assistants based on type theory
	Models for integrating effects with dependent types
	Intuitionistic depolarisation
	Developing the rewriting theory of calculi with effects
	Direct models and categorical coherence
	Models of effects and resources

	Language extensions for the scaling of proof assistants
	Gradual Certified Programming
	Imperative features and object polymorphism in the Coq proof assistant
	Robust tactics for proof engineering for the scaling of formalised libraries

	Practical experiments
	Certified Code Refactoring
	Certified Constraint Programming
	Certified Symbolic Computation

	Application domains
	Highlights of the year
	New software and platforms
	New software
	Ltac2
	Equations
	Math-Components
	math-comp-analysis
	MetaCoq
	Coq
	memprof-limits

	New results
	Logical Foundations of Programming Languages
	Reasoning about equivalence of programs
	Classical Logic
	Syntax and Rewriting Systems

	Models of programming languages mixing effects and resources
	Type Theory and Proof Assistants
	Type Theory
	Proof Assistants

	Program Certifications and Formalisation of Mathematics

	Bilateral contracts and grants with industry
	Partnerships and cooperations
	International initiatives
	Inria International Labs

	International research visitors
	Visits to international teams

	European initiatives
	FP7 & H2020 Projects

	Regional initiatives

	Dissemination
	Promoting Scientific Activities
	Scientific Events: Organisation
	Scientific Events: Selection
	Journal
	Invited Talks
	Leadership within the Scientific Community
	Scientific Expertise

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Internal or external Inria responsibilities
	Education

	Scientific production
	Major publications
	Publications of the year
	Cited publications

