
2021
ACTIVITY REPORT

Project-Team

GALLINETTE

RESEARCH CENTRE

Rennes - Bretagne Atlantique

IN PARTNERSHIP WITH:

Université Nantes, Ecole Nationale
Supérieure Mines-Télécom Atlantique
Bretagne Pays de la Loire

Gallinette: developing a new generation of
proof assistants

IN COLLABORATION WITH: Laboratoire des Sciences du numerique de
Nantes

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Proofs and Verification

Contents

Project-Team GALLINETTE 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 3
3.1 Scientific Context . 3
3.2 Enhance the computational and logical power of proof assistants 4

3.2.1 A definitional proof-irrelevant version of Coq. 5
3.2.2 Extend the Coq proof assistant with a computational version of univalence 5
3.2.3 Extend the logical power of type theory without axioms in a modular way 5
3.2.4 Methodology: Extending type theory with different compilation phases 6

3.3 Semantic and logical foundations for effects in proof assistants based on type theory 6
3.3.1 Models for integrating effects with dependent types 7
3.3.2 Intuitionistic depolarisation . 7
3.3.3 Developing the rewriting theory of calculi with effects 7
3.3.4 Direct models and categorical coherence . 8
3.3.5 Models of effects and resources . 8

3.4 Language extensions for the scaling of proof assistants . 8
3.4.1 Gradual Certified Programming . 8
3.4.2 Imperative features and object polymorphism in the Coq proof assistant 9
3.4.3 Robust tactics for proof engineering for the scaling of formalised libraries 10

3.5 Practical experiments . 10
3.5.1 Certified Code Refactoring . 10
3.5.2 Certified Constraint Programming . 11
3.5.3 Certified Symbolic Computation . 11

4 Application domains 11

5 Highlights of the year 12

6 New software and platforms 12
6.1 New software . 12

6.1.1 Ltac2 . 12
6.1.2 Equations . 12
6.1.3 Math-Components . 14
6.1.4 Math-comp-analysis . 14
6.1.5 MetaCoq . 15
6.1.6 Coq . 16
6.1.7 memprof-limits . 17
6.1.8 ocaml-boxroot . 18

7 New results 18
7.1 Type Theory and Proof Assistants . 18

7.1.1 Type Theory . 18
7.1.2 Proof Assistants . 19

7.2 Logical Foundations of Programming Languages . 20
7.3 Program Certifications and Formalisation of Mathematics . 21

8 Bilateral contracts and grants with industry 22

9 Partnerships and cooperations 25
9.1 International initiatives . 25

9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework
of an Inria International Program . 25

9.1.2 Participation in other International Programs . 25
9.2 International research visitors . 25

9.2.1 Visits of international scientists . 25
9.3 European initiatives . 26

9.3.1 FP7 & H2020 projects . 26
9.4 National initiatives . 27
9.5 Regional initiatives . 28

10 Dissemination 28
10.1 Promoting scientific activities . 28

10.1.1 Scientific events: organisation . 28
10.1.2 Scientific events: selection . 29
10.1.3 Journal . 29
10.1.4 Invited talks . 29
10.1.5 Leadership within the scientific community . 29

10.2 Teaching - Supervision - Juries . 30
10.2.1 Teaching . 30
10.2.2 Supervision . 31

10.3 Popularization . 31
10.3.1 Interventions . 31

11 Scientific production 31
11.1 Major publications . 31
11.2 Publications of the year . 32
11.3 Cited publications . 34

Project GALLINETTE 1

Project-Team GALLINETTE

Creation of the Project-Team: 2018 June 01

Keywords

Computer sciences and digital sciences

A2.1.1. – Semantics of programming languages

A2.1.2. – Imperative programming

A2.1.3. – Object-oriented programming

A2.1.4. – Functional programming

A2.1.11. – Proof languages

A2.2.3. – Memory management

A2.4.3. – Proofs

A7.2.3. – Interactive Theorem Proving

A7.2.4. – Mechanized Formalization of Mathematics

A8.4. – Computer Algebra

Other research topics and application domains

B6.1. – Software industry

https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2021

1 Team members, visitors, external collaborators

Research Scientists

• Nicolas Tabareau [Team leader, Inria, Senior Researcher, HDR]

• Assia Mahboubi [Inria, Senior Researcher, HDR]

• Guillaume Munch [Inria, Researcher]

• Pierre-Marie Pedrot [Inria, Researcher]

• Matthieu Sozeau [Inria, Researcher]

Faculty Members

• Julien Cohen [Univ de Nantes, Associate Professor]

• Rémi Douence [IMT Atlantique, Associate Professor, HDR]

• Hervé Grall [IMT Atlantique, Associate Professor]

• Guilhem Jaber [Univ de Nantes, Associate Professor]

Post-Doctoral Fellows

• Yannick Forster [Inria, Dec 2021]

• Kenji Maillard [Inria, until May 2021]

PhD Students

• Antoine Allioux [Inria, until May 2021]

• Martin Baillon [Inria]

• Meven Bertrand [Univ de Nantes]

• Enzo Crance [Mitsubishi Electric]

• Pierre Giraud [Inria]

• Christopher Hughes [Inria, from Oct 2021]

• Hamza Jaafar [Inria, from Oct 2021]

• Loic Pujet [Univ de Nantes]

Technical Staff

• Gaetan Gilbert [Inria, Engineer]

• Kenji Maillard [Inria, Engineer, from Jun 2021]

Interns and Apprentices

• Peio Borthelle [École Normale Supérieure de Lyon, Jan 2021]

• Hamza Jaafar [Univ de Nantes, from Mar 2021 until Aug 2021]

• Thomas Lamiaux [Inria, from Jun 2021 until Jul 2021]

• Nicolas Margulies [Ecole normale supérieure Paris-Saclay, from Feb 2021 until Jul 2021]

Project GALLINETTE 3

Administrative Assistant

• Anne-Claire Binétruy [Inria]

2 Overall objectives

The EPI Gallinette aims at developing a new generation of proof assistants, with the belief that practical
experiments must go in pair with foundational investigations:

• The goal is to advance proof assistants both as certified programming languages and mechanised
logical systems. Advanced programming and mathematical paradigms must be integrated, notably
dependent types and effects. The distinctive approach is to implement new programming and
logical paradigms on top of Coq by considering the latter as a target language for compilation.

• The aim of foundational investigations is to extend the boundaries of the Curry-Howard correspon-
dence. It is seen both as providing foundations for programming languages and logic, and as a
purveyor of techniques essential to the development of proof assistants. Under this perspective,
the development of proof assistants is seen as a total experiment using the correspondence in every
aspect: programming languages, type theory, proof theory, rewriting and algebra.

3 Research program

3.1 Scientific Context

Software quality is a requirement that is becoming more and more prevalent, by now far exceeding the
traditional scope of embedded systems. The development of tools to construct software that respects
a given specification is a major challenge facing computer science. Proof assistants such as Coq [54]
provide a formal method whose central innovation is to produce certified programs by transforming
the very activity of programming. Programming and proving are merged into a single development
activity, informed by an elegant but rigid mathematical theory inspired by the correspondence between
programming, logic and algebra: the Curry-Howard correspondence. For the certification of programs,
this approach has shown its efficiency in the development of important pieces of certified software such
as the C compiler of the CompCert project [84]. The extracted CompCert compiler is reliable and efficient,
running only 15% slower than GCC 4 at optimisation level 2 (gcc -O2), a level of optimisation that was
considered before to be highly unreliable.

Proof assistants can also be used to formalise mathematical theories: they not only provide a means of
representing mathematical theories in a form amenable to computer processing, but their internal logic
provides a language for reasoning about such theories. In the last decade, proof assistants have been used
to verify extremely large and complicated proofs of recent mathematical results, sometimes requiring
either intensive computations [65, 70] or intricate combinations of a multitude of mathematical theories
[66]. But formalised mathematics is more than just proof checking and proof assistants can help with
organisation mathematical knowledge or even with the discovery of new constructions and proofs.

Unfortunately, the rigidity of the theory behind proof assistants impedes their expressiveness both as
programming languages and as logical systems. For instance, a program extracted from Coq only uses a
purely functional subset of OCaml, leaving behind important means of expression such as side-effects
and objects. Limitations also appear in the formalisation of advanced mathematics: proof assistants
do not cope well with classical axioms such as excluded middle and choice which are sometimes used
crucially. The fact of the matter is that the development of proof assistants cannot be dissociated from a
reflection on the nature of programs and proofs coming from the Curry-Howard correspondence. In the
EPC Gallinette, we propose to address several drawbacks of proof assistants by pushing the boundaries of
this correspondence.

In the 1970’s, the Curry-Howard correspondence was seen as a perfect match between functional
programs, intuitionistic logic, and Cartesian closed categories. It received several generalisations over
the decades, and now it is more widely understood as a fertile correspondence between computation,
logic, and algebra. Nowadays, the view of the Curry-Howard correspondence has evolved from a perfect

4 Inria Annual Report 2021

match to a collection of theories meant to explain similar structures at work in logic and computation,
underpinned by mathematical abstractions. By relaxing the requirement of a perfect match between
programs and proofs, and instead emphasising the common foundations of both, the insights of the
Curry-Howard correspondence may be extended to domains for which the requirements of programming
and mathematics may in fact be quite different.

Consider the following two major theories of the past decades, which were until recently thought to
be irreconcilable:

• (Martin-Löf) Type theory: introduced by Martin-Löf in 1971, this formalism [91] is both a program-
ming language and a logical system. The central ingredient is the use of dependent types to allow
fine-grained invariants to be expressed in program types. In 1985, Coquand and Huet developed a
similar system called the calculus of constructions, which served as logical foundation of the first
implementation of Coq. This kind of systems is still under active development, especially with the
recent advent of homotopy type theory (HoTT) [113] which gives a new point of view on types and
the notion of equality in type theory.

• The theory of effects: starting in the 1980’s, Moggi [96] and Girard [63] put forward monads and
co-monads as describing various compositional notions of computation. In this theory, programs
can have side-effects (state, exceptions, input-output), logics can be non-intuitionistic (linear,
classical), and different computational universes can interact (modal logics). Recently, the safe and
automatic management of resources has also seen a coming of age (Rust, Modern C++) confirming
the importance of linear logic for various programming concepts. It is now understood that the
characteristic feature of the theory of effects is sensitivity to evaluation order, in contrast with type
theory which is built around the assumption that evaluation order is irrelevant.

We now outline a series of scientific challenges aimed at understanding of type theory, effects, and their
combination.

More precisely, three key axes of improvement have been identified:

1. Making the notion of equality closer to what is usually assumed when doing proofs on black board,
with a balance between irrelevant equality for simple structures and equality up-to equivalences
for more complex ones (Section 3.2). Such a notion of equality should allow one to implement
traditional model transformations that enhance the logical power of the proof assistant using
distinct compilation phases.

2. Advancing the foundations of effects within the Curry-Howard approach. The objective is to
pave the way for the integration of effects in proof assistants and to prototype the corresponding
implementation. This integration should allow for not only certified programming with effects, but
also the expression of more powerful logics (Section 3.3).

3. Making more programming features (notably, object polymorphism) available in proof assistants, in
order to scale to practical-sized developments. The objective is to enable programming styles closer
to common practices. One of the key challenges here is to leverage gradual typing to dependent
programming (Section 3.4).

To validate the new paradigms, we propose in Section 3.5 three particular application fields in which
members of the team already have a strong expertise: code refactoring, constraint programming and
symbolic computation.

3.2 Enhance the computational and logical power of proof assistants

The democratisation of proof assistants based on type theory has likely been impeded by one central
problem: the mismatch between the conception of equality in mathematics and its formalisation in
type theory. Indeed, some basic principles that are used implicitly in mathematics—such as Church’s
principle of propositional extensionality, which says that two propositions are equal when they are
logically equivalent—are not derivable in type theory. Even more problematically, from a computer
science point of view, the basic concept of two functions being equal when they are equal at every
“point” of their domain is also not derivable: rather, it must be added as an additional axiom. Of course,

Project GALLINETTE 5

these principles are consistent with type theory so that working under the corresponding additional
assumptions is safe. But the use of these assumptions in a definition potentially clutters its computational
behaviour: since axioms are computational black boxes, computation gets stuck at the points of the code
where they have been used.

We propose to investigate how expressive logical transformations such as forcing [76] and sheaf
construction might be used to enhance the computational and logical power of proof assistants—with
a particular emphasis on their implementation in the Coq proof assistant by the means of effective
translations (or compilation phases). One of the main topics of this task, in connection to the ERC project
CoqHoTT, is the integration in Coq of new concepts inspired by homotopy type theory [113] such as the
univalence principle, and higher inductive types.

3.2.1 A definitional proof-irrelevant version of Coq.

In the Coq proof assistant, the sort Prop stands for the universe of types which are propositions. That
is, when a term P has type Prop, the only relevant fact is whether P is inhabited (that is true) or not
(that is false). This property, known as proof irrelevance, can be expressed formally as: ∀x y : P, x = y .
Originally, the raison d’être of the sort Prop was to characterise types with no computational meaning
with the intention that terms of such types could be erased upon extraction. However, the assumption
that every element of Prop should be proof irrelevant has never been integrated to the system. Indeed, in
Coq, proof irrelevance for the sort Prop is not incorporated into the theory: it is only compatible with
it, in the sense that its assumption does not give rise to an inconsistent theory. In fact, the exact status
of the sort Prop in Coq has never been entirely clarified, which explains in part this lack of integration.
Homotopy type theory brings fresh thinking on this issue and suggests turning Prop into the collection of
terms that a certain static inference procedure tags as proof irrelevant. The goal of this task is to integrate
this insight in the Coq system and to implement a definitional proof-irrelevant version of the sort Prop.

3.2.2 Extend the Coq proof assistant with a computational version of univalence

The univalence principle is becoming widely accepted as a very promising avenue to provide new
foundations for mathematics and type theory. However, this principle has not yet been incorporated
into a proof assistant. Indeed, the very mathematical structures (known as ∞-groupoids) motivating the
theory remain to this day an active area of research. Moreover, a correct and decidable type checking
procedure for the whole theory raises both computational complexity and logical coherence issues.
Observational type theory [36], as implemented in Epigram, provides a first-stage approximation to
homotopy type theory, but only deals with functional extensionality and does not capture univalence.
Coquand and his collaborators have obtained significant results on the computational meaning of
univalence using cubical sets [44, 48]. Bickford has initiated a promising formalisation work 1 in the
NuPRL system. However, a complete formalisation in intensional type theory remains an open problem.

Hence a major objective is to achieve a complete internalisation of univalence in intensional type
theory, including an integration to a new version of Coq. We will strive to keep compatibility with previous
versions, in particular from a performance point of view. Indeed, the additional complexity of homotopy
type theory should not induce an overhead in the type checking procedure used by the software if we
want our new framework to become rapidly adopted by the community. Concretely, we will make sure
that the compilation time of Coq’s Standard Library will be of the same order of magnitude.

3.2.3 Extend the logical power of type theory without axioms in a modular way

Extending the power of a logic using model transformations (e.g., forcing transformation [77, 76] or the
sheaf construction [106]) is a classic topic of mathematical logic [52, 82]. However, these ideas have not
been much investigated in the setting of type theory, even though they may provide a useful framework
for extending the logical power of proof assistant in a modular way. There is a good reason for this: with a
syntactic notion of equality, the underlying structure of type theory does not conform to the structure
of topos used in mathematical logic. A direct incorporation of the standard techniques is therefore not
possible. However, a univalent notion of equality brings type theory closer to the required algebraic

1Cubical Type Theory

http://www.nuprl.org/wip/Mathematics/cubical!type!theory/index.html

6 Inria Annual Report 2021

w/o Kripke
Semantics!

Full CoqHoTT !
w/o Axiom of

Choice!
w/o General

Fixpoints!

Compiled Coq !

w/o Classical
Logic!

Kernel of Coq!

w/o Univalence!

Figure 1: Multiple compilation phases to increase the logical and computational power of Coq.

structure, as it corresponds to the notion of ∞-topos recently studied by Lurie [89]. The goal of this task is
to revisit model transformations in the light of the univalence principle, and to obtain in this way new
internal transformations in type theory which can in turn be seen as compilation phases. The general
notion of an internal syntactical translation has already been investigated in the team [45].

3.2.4 Methodology: Extending type theory with different compilation phases

The Gallinette project advocates the use of distinct compilation phases as a methodology for the design
of a new generation of proof assistants featuring modular extensions of a core logic. The essence of
a compiler is the separation of the complexity of a translation process into modular stages, and the
organization of their re-composition. This idea finds a natural application in the design of complex proof
assistants (Figure 1). For instance, the definition of type classes in Coq follows this pattern, and is morally
given by the means of a translation into a type-class free kernel. More recently, a similar approach by
compilation stages, using the forcing transformation, was used to relax the strict positivity condition
guarding inductive types [77, 76]. We believe that this flavour of compilation-based strategies offers a
promising direction of investigation for the purpose of defining a decidable type checking algorithm for
HoTT.

3.3 Semantic and logical foundations for effects in proof assistants based on type
theory

We propose the incorporation of effects in the theory of proof assistants at a foundational level. Not only
would this allow for certified programming with effects, but it would moreover have implications for both
semantics and logic.

We mean effects in a broad sense that encompasses both Moggi’s monads [96] and Girard’s linear logic
[63]. These two seminal works have given rise to respective theories of effects (monads) and resources
(co-monads). Recent advances, however have unified these two lines of thought: it is now clear that the
defining feature of effects, in the broad sense, is sensitivity to evaluation order [85, 55].

In contrast, the type theory that forms the foundations of proof assistants is based on pure λ-calculus
and is built on the assumption that evaluation order is irrelevant. Evaluation order is therefore the blind
spot of type theory. In Moggi [97], integrating the dependent types of type theory with monads is “the
next difficult step [...] currently under investigation”.

Any realistic program contains effects: state, exceptions, input-output. More generally, evaluation
order may simply be important for complexity reasons. With this in mind, many works have focused on
certified programming with effects: notably Ynot [101], and more recently F? [112] and Idris [46], which
propose various ways for encapsulating effects and restricting the dependency of types on effectful terms.
Effects are either specialised, such as the monads with Hoare-style pre- and post-conditions found in

Project GALLINETTE 7

Ynot or F?, or more general, such as the algebraic effects implemented in Idris. But whereas there are
several experiments and projects pursuing the certification of programs with effects, each making its own
choices on how effects and dependency should be merged, there is on the other hand a deficit of logical
and semantic investigations.

We propose to develop the foundations of a type theory with effects taking into account the logical
and semantic aspects, and to study their practical and theoretical consequences. A type theory that
integrates effects would have logical, algebraic and computational implications when viewed through
the Curry-Howard correspondence. For instance, effects such as control operators establish a link with
classical proof theory [68]. Indeed, control operators provide computational interpretations of type
isomorphisms such as A ∼=¬¬A and ¬∀x A ∼=∃x¬A (e.g. [98]), whereas the conventional wisdom of type
theory holds that such axioms are non-constructive (this is for instance the point of view that has been
advocated so far in homotopy type theory [113]). Another example of an effect with logical content is state
(more precisely memoization) which is used to provide constructive content to the classical dependent
axiom of choice [43, 80, 72]. In the long term, a whole body of literature on the constructive content of
classical proofs is to be explored and integrated, providing rich sources of inspiration: Kohlenbach’s proof
mining [79] and Simpson’s reverse mathematics [110], for instance, are certainly interesting to investigate
from the Curry-Howard perspective.

The goal is to develop a type theory with effects that accounts both for practical experiments in
certified programming, and for clues from denotational semantics and logical phenomena, in a unified
setting.

3.3.1 Models for integrating effects with dependent types

A crucial step is the integration of dependent types with effects, a topic which has remained “currently
under investigation” [97] ever since the beginning. The difficulty resides in expressing the dependency
of types on terms that can perform side-effects during the computation. On the side of denotational
semantics, several extensions of categorical models for effects with dependent types have been proposed
[33, 114] using axioms that should correspond to restrictions in terms of expressivity but whose practical
implications, however, are not immediately transparent. On the side of logical approaches [72, 73, 83, 95],
one first considers a drastic restriction to terms that do not compute, which is then relaxed by semantic
means. On the side of systems for certified programming such as F?, the type system ensures that types
only depend on pure and terminating terms.

Thus, the recurring idea is to introduce restrictions on the dependency in order to establish an
encapsulation of effects. In our approach, we seek a principled description of this idea by developing the
concept of semantic value (thunkables, linears) which arose from foundational considerations [62, 109,
99] and whose relevance was highlighted in recent works [86, 103]. The novel aspect of our approach is
to seek a proper extension of type theory which would provide foundations for a classical type theory
with axiom of choice in the style of Herbelin [72], but which moreover could be generalised to effects
other than just control by exploiting an abstract and adaptable notion of semantic value.

3.3.2 Intuitionistic depolarisation

In our view, the common idea that evaluation order does not matter for pure and terminating computa-
tions should serve as a bridge between our proposals for dependent types in the presence of effects and
traditional type theory. Building on the previous goal, we aim to study the relationship between semantic
values, purity, and parametricity theorems [108, 64]. Our goal is to characterise parametricity as a form of
intuitionistic depolarisation following the method by which the first game model of full linear logic was
given (Melliès [92, 93]). We have two expected outcomes in mind: enriching type theory with intensional
content without losing its properties, and giving an explanation of the dependent types in the style of
Idris and F? where purity- and termination-checking play a role.

3.3.3 Developing the rewriting theory of calculi with effects

An integrated type theory with effects requires an understanding of evaluation order from the point of view
of rewriting. For instance, rewriting properties can entail the decidability of some conversions, allowing
the automation of equational reasoning in types [31]. They can also provide proofs of computational

8 Inria Annual Report 2021

consistency (that terms are not all equivalent) by showing that extending calculi with new constructs is
conservative [111]. In our approach, the λ-calculus is replaced by a calculus modelling the evaluation
in an abstract machine [56]. We have shown how this approach generalises the previous semantic and
proof-theoretic approaches [37, 85, 87], and overcomes their shortcomings [100].

One goal is to prove computational consistency or decidability of conversions purely using advanced
rewriting techniques following a technique introduced in [111]. Another goal is the characterisation
of weak reductions: extensions of the operational semantics to terms with free variables that preserve
termination, whose iteration is equivalent to strong reduction [32, 60]. We aim to show that such
properties derive from generic theorems of higher-order rewriting [107], so that weak reduction can easily
be generalised to richer systems with effects.

3.3.4 Direct models and categorical coherence

Proof theory and rewriting are a source of coherence theorems in category theory, which show how
calculations in a category can be simplified with an embedding into a structure with stronger properties
[90, 81]. We aim to explore such results for categorical models of effects [85, 55]. Our key insight is to
consider the reflection between indirect and direct models [62, 99] as a coherence theorem: it allows us
to embed the traditional models of effects into structures for which the rewriting and proof-theoretic
techniques from the previous section are effective.

Building on this, we are further interested in connecting operational semantics to 2-category theory, in
which a second dimension is traditionally considered for modelling conversions of programs rather than
equivalences. This idea has been successfully applied for the λ-calculus [78, 74] but does not scale yet to
more realistic models of computation. In our approach, it has already been noticed that the expected
symmetries coming from categorical dualities are better represented, motivating a new investigation into
this long-standing question.

3.3.5 Models of effects and resources

The unified theory of effects and resources [55] prompts an investigation into the semantics of safe and
automatic resource management, in the style of Modern C++ and Rust. Our goal is to show how advanced
semantics of effects, resources, and their combination arise by assembling elementary blocks, pursuing
the methodology applied by Melliès and Tabareau in the context of continuations [94]. For instance,
combining control flow (exceptions, return) with linearity allows us to describe in a precise way the
“Resource Acquisition Is Initialisation” idiom in which the resource safety is ensured with scope-based
destructors. A further step would be to reconstruct uniqueness types and borrowing using similar ideas.

3.4 Language extensions for the scaling of proof assistants

The development of tools to construct software systems that respect a given specification is a major
challenge of current and future research in computer science. Certified programming with dependent
types has recently attracted a lot of interest, and Coq is the de facto standard for such endeavours, with an
increasing number of users, pedagogical resources, and large-scale projects. Nevertheless, significant
work remains to be done to make Coq more usable from a software engineering point of view. The
Gallinette team proposes to make progress on three lines of work: (i) the development of gradual certified
programming, (ii) the integration of imperative features and object polymorphism in Coq, and (iii) the
development of robust tactics for proof engineering for the scaling of formalised libraries.

3.4.1 Gradual Certified Programming

One of the main issues faced by a programmer starting to internalise in a proof assistant code written in a
more permissive world is that type theory is constrained by a strict type discipline which lacks flexibility.
Concretely, as soon as you start giving a more precise type/specification to a function, the rest of the code
interacting with this function needs to be more precise too. To address this issue, the Gallinette team will
put strong efforts into the development of gradual typing in type theory to allow progressive integration
of code that comes from a more permissive world.

Project GALLINETTE 9

Indeed, on the way to full verification, programmers can take advantage of a gradual approach in
which some properties are simply asserted instead of proven, subject to dynamic verification. Tabareau
and Tanter have made preliminary progress in this direction [58]. This work, however, suffers from a
number of limitations, the most important being the lack of a mechanism for handling the possibility
of runtime errors within Coq. Instead of relying on axioms, this project will explore the application of
Section 3.3 to embed effects in Coq. This way, instead of postulating axioms for parts of the development
that are too hard/marginal to be dealt with, the system adds dynamic checks. Then, after extraction, we
get a program that corresponds to the initial program but with dynamic checks for parts that have not
been proven, ensuring that the program will raise an error instead of going outside its specification.

This will yield new foundations of gradual certified programming, both more expressive and practical.
We will also study how to integrate previous techniques with the extraction mechanism of Coq programs
to OCaml, in order to exploit the exception mechanism of OCaml.

3.4.2 Imperative features and object polymorphism in the Coq proof assistant

Imperative features. Abstract data types (ADTs) become useful as the size of programs grows since they
provide for a modular approach, allowing abstractions about data to be expressed and then instantiated.
Moreover, ADTs are natural concepts in the calculus of inductive constructions. But while it is easy to
declare an ADT, it is often difficult to implement an efficient one. Compare this situation with, for example,
Okasaki’s purely functional data structures [102] which implement ADTs like queues in languages with
imperative features. Of course, Okasaki’s queues enforce some additional properties for free, such as
persistence, but the programmer may prefer to use and to study a simpler implementation without
those additional properties. Also in certified symbolic computation (see 3.5.3), an efficient functional
implementation of ADTs is often not available, and efficiency is a major challenge in this area. Relying on
the theoretical work done in 3.3, we will equip Coq with imperative features and we will demonstrate how
they can be used to provide efficient implementations of ADTs. However, it is also often the case that
imperative implementations are hard-to-reason-on, requiring for instance the use of separation logic.
But in that case, we benefit from recent works on integration of separation logic in the Coq proof assistant
and in particular the Iris project.

Object polymorphism. Object-oriented programming has evolved since its foundation based on the
representation of computations as an exchange of messages between objects. In modern programming
languages like Scala, which aims at a synthesis between object-oriented and functional programming,
object-orientation concretely results in the use of hierarchies of interfaces ordered by the subtyping
relation and the definition of interface implementations that can interoperate. As observed by Cook and
Aldrich [53, 35], interoperability can be considered as the essential feature of objects and is a requirement
for many modern frameworks and ecosystems: it means that two different implementations of the same
interface can interoperate.

Our objective is to provide a representation of object-oriented programs, by focusing on subtyping
and interoperability.

For subtyping, the natural solution in type theory is coercive subtyping [88], as implemented in Coq,
with an explicit operator for coercions. This should lead to a shallow embedding, but has limitations:
indeed, while it allows subtyping to be faithfully represented, it does not provide a direct means to repre-
sent union and intersection types, which are often associated with subtyping (for instance intersection
types are present in Scala). A more ambitious solution would be to resort to subsumptive subtyping
(or semantic subtyping [61]): in its more general form, a type algebra is extended with boolean opera-
tions (union, intersection, complementing) to get a boolean algebra with operators (the original type
constructors). Subtyping is then interpreted as the natural partial order of the boolean algebra.

We propose to use the type class machinery of Coq to implement semantic subtyping for dependent
type theory. Using type class resolution, we can emulate inference rules of subsumptive subtyping without
modifying Coq internally. This has also another advantage. As subsumptive subtyping for dependent
types should be undecidable in general, using type class resolution allows for an incomplete yet extensible
decision procedure.

http://iris-project.org/

10 Inria Annual Report 2021

3.4.3 Robust tactics for proof engineering for the scaling of formalised libraries

When developing certified software, a major part of the effort is spent not only on writing proof scripts,
but on rewriting them, either for the purpose of code maintenance or because of more significant changes
in the base definitions. Regrettably, proof scripts suffer more often than not from a bad programming
style, and too many proof developers casually neglect the most elementary principles of well-behaved
programmers. As a result, many proof scripts are very brittle, user-defined tactics are often difficult to
extend, and sometimes even lack a clear specification. Formal libraries are thus generally very fragile
pieces of software. One reason for this unfortunate situation is that proof engineering is very badly served
by the tools currently available to the users of the Coq proof assistant, starting with its tactic language.
One objective of the Gallinette team is to develop better tools to write proof scripts.

Completing and maintaining a large corpus of formalised mathematics requires a well-designed tactic
language. This language should both accommodate the possible specific needs of the theories at stake,
and help with diagnostics at refactoring time. Coq’s tactic language is in fact two-leveled. First, it includes
a basic tactic language, to organise the deductive steps in a proof script and to perform the elementary
bureaucracy. Its second layer is a meta-programming language, which allows users to define their own
new tactics at toplevel. Our first direction of work consists in the investigation of the appropriate features
of the basic tactic language. For instance, the design of the Ssreflect tactic language, and its support
for the small scale reflection methodology [67], has been a key ingredient in at least two large scale
formalisation endeavours: the Four Colour Theorem [65] and of the Odd Order Theorem [66]. Building
on our experience with the Ssreflect tactic language, we will contribute to the ongoing work on the basic
tactic language for Coq. The second objective of this task is to contribute to the design of a typed tactic
language. In particular, we will build on the work of Ziliani and his collaborators [115], extending it
with reasoning about the effects that tactics have on the “state of a proof” (e.g. number of sub-goals,
metavariables in context). We will also develop a novel approach for incremental type checking of proof
scripts, so that programmers gain access to a richer discovery—engineering interaction with the proof
assistant.

3.5 Practical experiments

The first three axes of the EPC Gallinette aim at developing a new generation of proof assistants. But
we strongly believe that foundational investigations must go hand in hand with practical experiments.
Therefore, we expect to benefit from existing expertise and collaborations in the team to experiment our
extensions of Coq on real world developments. It should be noticed that those practical experiments are
strongly guided by the deep history of research on software engineering of team members.

3.5.1 Certified Code Refactoring

In the context of refactoring of C programs, we intend to formalise program transformations that are
written in an imperative style to test the usability of our addition of effects in the proof assistant. This
subject has been chosen based on the competence of members of the team.

We are currently working on the formalisation of refactoring tools in Coq [50]. Automatic refactoring
of programs in industrial languages is difficult because of the large number of potential interactions
between language features that are difficult to predict and to test. Indeed, all available refactoring tools
suffer from bugs : they fail to ensure that the generated program has the same behaviour as the input
program. To cope with that difficulty, we have chosen to build a refactoring tool with Coq : a program
transformation is written in the Coq programming language, then proven correct on all possible inputs,
and then an OCaml executable program is generated by the platform. We rely on the CompCert C
formalisation of the C language. CompCert is currently the most complete formalisation of an industrial
language, which justifies that choice. We have three goals in that project :

• Build a refactoring tool that programmers can rely on and make it available in a popular platform
(such as Eclipse, IntelliJ or Frama-C).

• Explore large, drastic program transformations such as replacing a design architecture for an other
one, by applying a sequence of small refactoring operations (as we have done for Java and Haskell
programs before [49, 51, 34]), while ensuring behaviour preservation.

Project GALLINETTE 11

• Explore the use of enhancements of proof systems on large developments. For instance, refactoring
tools are usually developed in the imperative/object paradigm, so the extension of Coq with side
effects or with object features proposed in the team can find a direct use-case here.

3.5.2 Certified Constraint Programming

We plan to make use of the internalisation of the object-oriented paradigm in the context of constraint
programming. Indeed, this domain is made of very complex algorithms that are often developed using
object-oriented programming (as it is the case for instance for CHOCO, which is developed in the Tasc
Group at IMT Atlantique, Nantes). We will in particular focus on filtering algorithms in constraint
solvers, for which research publications currently propose new algorithms with manual proofs. Their
formalisation in Coq is challenging. Another interesting part of constraint solving to formalise is the
part that deals with program generation (as opposed to extraction). However, when there are numerous
generated pieces of code, it is not realistic to prove their correctness manually, and it can be too difficult
to prove the correctness of a generator. So we intend to explore a middle path that consists in generating
a piece of code along with its corresponding proof (script or proof term). A target application could be
interval constraints (for instance Allen interval algebra or region connection calculus) that can generate
thousands of specialised filtering algorithms for a small number of variables [41].

Finally, Rémi Douence has already worked (articles publishing [69, 105, 59, 42, 40, 39], PhD Thesis
advising [104, 38]) with different members of the Tasc team. Currently, he supervises with Nicolas
Beldiceanu the PhD Thesis of Jovial Cheukam Ngouonou in the Tasc team. He studies graph invariants to
enhance learning algorithms. This work requires proofs, manually done for now, we would like to explore
when these proofs could be mechanized.

3.5.3 Certified Symbolic Computation

We will investigate how the addition of effects in the Coq proof assistant can facilitate the marriage of
computer algebra with formal proofs. Computer algebra systems on one hand, and proof assistants on
the other hand, are both designed for doing mathematics with the help of a computer, by the means of
symbolic computations. These two families of systems are however very different in nature: computer
algebra systems allow for implementations faithful to the theoretical complexity of the algorithms,
whereas proof assistants have the expressiveness to specify exactly the semantics of the data-structures
and computations.

Experiments have been run that link computer algebra systems with Coq [57, 47]. These bridges
rely on the implementation of formal proof-producing core algorithms like normalisation procedures.
Incidentally, they require non trivial maintenance work to survive the evolution of both systems. Other
proof assistants like the Isabelle/HOL system make use of so-called reflection schemes: the proof assistant
can produce code in an external programming language like SML, but also allows to import the values
output by these extracted programs back inside the formal proofs. This feature extends the trusted base
of code quite significantly but it has been used for major achievements like a certified symbolic/numeric
ODE solver [75].

We would like to bring Coq closer to the efficiency and user-friendliness of computer algebra systems:
for now it is difficult to use the Coq programming language so that certified implementations of computer
algebra algorithms have the right, observable, complexity when they are executed inside Coq. We see the
addition of effects to the proof assistant as an opportunity to ease these implementations, for instance
by making use of caching mechanisms or of profiling facilities. Such enhancements should enable the
verification of computation-intensive mathematical proofs that are currently beyond reach, like the
validation of Helfgott’s proof of the weak Goldbach conjecture [71].

4 Application domains

Programming

• Correct and certified software engineering through the development and the advancement of Coq
(e.g. gradualizing type theory, MetaCoq) and practical experiments for its application.

12 Inria Annual Report 2021

• More general contributions to the programming languages: theoretical works advancing semantic
techniques (e.g. deciding equivalence between programs, abstract syntaxes and rewriting, models
of effects and resources), and practical works for functional programming (e.g. related to OCaml
and Rust).

Foundations of mathematics

• Formalisation of mathematics

• Contributions to mathematical logic: type theory (e.g. dependent types and univalence), proof
theory (e.g. constructive classical logic), categorical logic (e.g. higher algebra, models of focusing
and linear logic)

5 Highlights of the year

• Assia Mahboubi defended her habilitation thesis [26], Jan 5th 2021.

• ERC COG Fresco started on Nov 1st 2021.

• Yannick Forster has started a Marie Skłodowska-Curie individual fellowship on Dec 2021.

• The paper [10] has been selected as a distinguished paper of the ICFP’21 conference.

• The paper [7] has been selected as a distinguished paper of the POPL’22 conference.

6 New software and platforms

We now list the main pieces of software partially or totally developed in the team.

6.1 New software

6.1.1 Ltac2

Keywords: Coq, Proof assistant

Functional Description: A replacement for Ltac, the tactic language of Coq.

Contact: Pierre-Marie Pedrot

6.1.2 Equations

Keywords: Coq, Dependent Pattern-Matching, Proof assistant, Functional programming

Scientific Description: Equations is a tool designed to help with the definition of programs in the setting
of dependent type theory, as implemented in the Coq proof assistant. Equations provides a syntax
for defining programs by dependent pattern-matching and well-founded recursion and compiles
them down to the core type theory of Coq, using the primitive eliminators for inductive types,
accessibility and equality. In addition to the definitions of programs, it also automatically derives
useful reasoning principles in the form of propositional equations describing the functions, and an
elimination principle for calls to this function. It realizes this using a purely definitional translation
of high-level definitions to core terms, without changing the core calculus in any way, or using
axioms.

The main features of Equations include:

Dependent pattern-matching in the style of Agda/Epigram, with inaccessible patterns, with and
where clauses. The use of the K axiom or a proof of K is configurable, and it is able to solve
unification problems without resorting to the K rule if not necessary.

https://cordis.europa.eu/project/id/101001995

Project GALLINETTE 13

Support for well-founded and mutual recursion using measure/well-foundedness annotations,
even on indexed inductive types, using an automatic derivation of the subterm relation for inductive
families.

Support for mutual and nested structural recursion using with and where auxilliary definitions,
allowing to factor multiple uses of the same nested fixpoint definition. It proves the expected
elimination principles for mutual and nested definitions.

Automatic generation of the defining equations as rewrite rules for every definition.

Automatic generation of the unfolding lemma for well-founded definitions (requiring only func-
tional extensionality).

Automatic derivation of the graph of the function and its elimination principle. In case the automa-
tion fails to prove these principles, the user is asked to provide a proof.

A new dependent elimination tactic based on the same splitting tree compilation scheme that can
advantageously replace dependent destruction and sometimes inversion as well. The as clause of
dependent elimination allows to specify exactly the patterns and naming of new variables needed
for an elimination.

A set of Derive commands for automatic derivation of constructions from an inductive type: its
signature, no-confusion property, well-founded subterm relation and decidable equality proof, if
applicable.

Functional Description: Equations is a function definition plugin for Coq (supporting Coq 8.13 to 8.15,
with special support for the Coq-HoTT library), that allows the definition of functions by dependent
pattern-matching and well-founded, mutual or nested structural recursion and compiles them
into core terms. It automatically derives the clauses equations, the graph of the function and its
associated elimination principle.

Equations is based on a simplification engine for the dependent equalities appearing in dependent
eliminations that is also usable as a separate tactic, providing an axiom-free variant of dependent
destruction.

Release Contributions: This is a new major release of Equations, working with Coq 8.13 and 8.14. This
version adds an improved syntax (less ,-separation), integration with the Coq-HoTT library and
numerous bug fixes. See the reference manual for details.

This version introduces minor breaking changes along with the following features:

Enhancements of pattern interpretation

No explicit shadowing of pattern variables is allowed anymore. This fixes numerous bugs where
generated implicit names introduced by the elaboration of patterns could shadow user-given
names, leading to incorrect names in right-hand sides and confusing environments.

Improved syntax for "concise" clauses separated by |, at top-level or inside with subprograms. We
no longer require to separate them by ,. For example, the following definition is now accepted:

Equations foo : nat -> nat := | 0 => 1 | S n => S (foo n). The old syntax is however still supported for
backwards compatibility.

Multiple patterns can be separated by , in addition to |, as in:

Equations trans {A} {x y z : A} (e : x = y) (e’ : y = z) : x = z := | 1, 1 => 1. Require Import Equa-
tions.Equations. does not work anymore. One has to use Require Import Equations.Prop.Equations
to load the plugin’s default instance where equality is in Prop. From Equations Require Import
Equations is unaffected.

Use Require Import Equations.HoTT.All to use the HoTT variant of the library compatible with
the Coq HoTT library The plugin then reuses the definition of paths from the HoTT library and
all its constructions are universe polymorphic. As for the HoTT library alone, coq must be passed
the arguments -noinit -indices-matter to use the library and plugin. The coq-equations opam
package depends optionally on coq-hott, so if coq-hott is installed before it, coq-equations will

14 Inria Annual Report 2021

automatically install the HoTT library variant in addition to the standard one. This variant of
Equations allows to write very concise dependent pattern-matchings on equality:

Require Import Equations.HoTT.All. Equations sym {A} {x y : A} (e : x = y) : y = x := | 1 => 1. New
attribute #[tactic=tac] to set locally the default tactic to solve remaining holes. The goals on which
the tactic applies are now always of the form Γ |- τ where Γ is the context where the hole was
introduced and τ the expected type, even when using the Obligation machinery to solve them,
resulting in a possible incompatibility if the obligation tactic treated the context differently than
the conclusion. By default, the program_simpl tactic performs a simpl call before introducing the
hypotheses, so you might need to add a simpl in * to your tactics.

New attributes #[derive(equations=yes,no, eliminator=yes|no)] can be used in place of the (noeqns,
noind) flags which are deprecated.

News of the Year: Equations 1.3, released first in September 2021 brings bugfixes, an improved grammar
and more robust proof automation tactics.

URL: http://mattam82.github.io/Coq-Equations/

Publications: hal-01671777, hal-01248807, inria-00628862

Contact: Matthieu Sozeau

Participants: Matthieu Sozeau, Cyprien Mangin

6.1.3 Math-Components

Name: Mathematical Components library

Keyword: Proof assistant

Functional Description: The Mathematical Components library is a set of Coq libraries that cover the
prerequiste for the mechanization of the proof of the Odd Order Theorem.

Release Contributions: This release is compatible with Coq 8.10, 8.11 and Coq 8.12. The main changes
are:

- support for Coq 8.7, 8.8 and 8.9 have been dropped,

- a change of implementation of intervals and the updated theory,

- the addition of kernel lemmas for matrices,

- generalized many lemmas for path and sorted,

- several lemma additions, name changes and bug fixes.

URL: http://math-comp.github.io/math-comp/

Contact: Assia Mahboubi

Participants: Alexey Solovyev, Andrea Asperti, Assia Mahboubi, Cyril Cohen, Enrico Tassi, François
Garillot, Georges Gonthier, Ioana Pasca, Jeremy Avigad, Laurence Rideau, Laurent Théry, Russell
O’Connor, Sidi Ould Biha, Stéphane Le Roux, Yves Bertot

6.1.4 Math-comp-analysis

Name: Mathematical Components Analysis

Keyword: Proof assistant

Functional Description: This library adds definitions and theorems for real numbers and their mathe-
matical structures

Release Contributions: Compatible with MathComp 1.12.0, and Coq 8.11, 8.12 and 8.13.

http://mattam82.github.io/Coq-Equations/
https://hal.inria.fr/hal-01671777
https://hal.inria.fr/hal-01248807
https://hal.inria.fr/inria-00628862
http://math-comp.github.io/math-comp/

Project GALLINETTE 15

News of the Year: In 2020, we unified norms and absolute values, added a topology and pseudo-metric
on the extended reals, and provided a more complete theory about sequences and measure theory.

URL: https://github.com/math-comp/analysis

Publication: hal-01719918

Contact: Cyril Cohen

Participants: Cyril Cohen, Georges Gonthier, Marie Kerjean, Assia Mahboubi, Damien Rouhling, Lau-
rence Rideau, Pierre-Yves Strub, Reynald Affeldt

Partners: Ecole Polytechnique, AIST Tsukuba

6.1.5 MetaCoq

Keyword: Coq

Scientific Description: The MetaCoq project aims to provide a certified meta-programming environ-
ment in Coq. It builds on Template-Coq, a plugin for Coq originally implemented by Malecha
(Extensible proof engineering in intensional type theory, Harvard University, 2014), which provided
a reifier for Coq terms and global declarations, as represented in the Coq kernel, as well as a deno-
tation command. Recently, it was used in the CertiCoq certified compiler project (Anand et al., in:
CoqPL, Paris, France, 2017), as its front-end language, to derive parametricity properties (Anand
and Morrisett, in: CoqPL’18, Los Angeles, CA, USA, 2018). However, the syntax lacked semantics,
be it typing semantics or operational semantics, which should reflect, as formal specifications
in Coq, the semantics of Coq ’s type theory itself. The tool was also rather bare bones, providing
only rudimentary quoting and unquoting commands. MetaCoq generalizes it to handle the entire
polymorphic calculus of cumulative inductive constructions, as implemented by Coq, including
the kernel’s declaration structures for definitions and inductives, and implement a monad for
general manipulation of Coq’s logical environment. The MetaCoq framework allows Coq users
to define many kinds of general purpose plugins, whose correctness can be readily proved in the
system itself, and that can be run efficiently after extraction. Examples of implemented plugins
include a parametricity translation and a certified extraction to call-by-value lambda-calculus. The
meta-theory of Coq itself is verified in MetaCoq along with verified conversion, type-checking and
erasure procedures providing higly trustable alternatives to the procedures in Coq’s OCaml kernel.
MetaCoq is hence a foundation for the development of higher-level certified tools on top of Coq’s
kernel. A meta-programming and proving framework for Coq.

MetaCoq is made of 4 main components: - The entry point of the project is the Template-Coq
quoting and unquoting library for Coq which allows quotation and denotation of terms between
three variants of the Coq AST: the OCaml one used by Coq’s kernel, the Coq one defined in MetaCoq
and the one defined by the extraction of the MetaCoq AST, allowing to extract OCaml plugins from
Coq implementations. - The PCUIC component is a full formalization of Coq’s typing and reduction
rules, along with proofs of important metatheoretic properties: weakening, substitution, validity,
subject reduction and principality. The PCUIC calculus differs slightly from the Template-Coq
one and verified translations between the two are provided. - The checker component contains
verified implementations of weak-head reduction, conversion and type inference for the PCUIC
calculus, along with a verified checker for Coq theories. - The erasure compoment contains a
verified implementation of erasure/extraction from PCUIC to untyped (call-by-value) lambda
calculus extended with a dummy value for erased terms.

Functional Description: MetaCoq is a framework containing a formalization and verified implementa-
tion of Coq’s kernel in Coq along with a verified erasure procedure. It provides tools for manipulating
Coq terms and developing certified plugins (i.e. translations, compilers or tactics) in Coq.

Release Contributions: This version is a beta-release including a fully-functional reification and denota-
tion support, and the verified type-checking and erasure procedures. The metatheory proofs are
not entirely completed.

https://github.com/math-comp/analysis
https://hal.inria.fr/hal-01719918

16 Inria Annual Report 2021

News of the Year: The verification of Coq’s typechecking and conversion algorithm was completed,
resulting in a publication at POPL’20. During this year we improved the erasure procedure, verified
completeness in addition to soundness of the conversion algorithm and completed the subject
reduction and principality proofs for the PCUIC calculus. MetaCoq was used to show the confluence
and subject reduction of an extension of Coq with rewrite rules, presented in an article at POPL’21.

URL: https://metacoq.github.io

Publications: hal-02901011, hal-02380196, hal-02167423, hal-01809681

Contact: Matthieu Sozeau

Participants: Abhishek Anand, Danil Annenkov, Meven Bertrand, Jakob Botsch Nielsen, Simon Boulier,
Cyril Cohen, Yannick Forster, Kenji Maillard, Gregory Malecha, Matthieu Sozeau, Nicolas Tabareau,
Theo Winterhalter

Partners: Concordium Blockchain Research Center, Aarhus University, Denmark, Saarland University

6.1.6 Coq

Name: The Coq Proof Assistant

Keywords: Proof, Certification, Formalisation

Scientific Description: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and
co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a
very expressive logic. The calculus allows to formalize both general mathematics and computer
programs, ranging from theories of finite structures to abstract algebra and categories to program-
ming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel
including efficient conversion tests on which are built a set of higher-level layers: a powerful proof
engine and unification algorithm, various tactics/decision procedures, a transactional document
model and, at the very top an IDE.

Functional Description: Coq provides both a dependently-typed functional programming language
and a logical formalism, which, altogether, support the formalisation of mathematical theories
and the specification and certification of properties of programs. Coq also provides a large and
extensible set of automatic or semi-automatic proof methods. Coq’s programs are extractible to
OCaml, Haskell, Scheme, ...

Release Contributions: Coq version 8.14 integrates many usability improvements, as well as an impor-
tant change in the core language. The main changes include:

- The internal representation of match has changed to a more space-efficient and cleaner structure,
allowing the fix of a completeness issue with cumulative inductive types in the type-checker. The
internal representation is now closer to the user-level view of match, where the argument context
of branches and the inductive binders in and as do not carry type annotations.

- A new coqnative binary performs separate native compilation of libraries, starting from a .vo file.
It is supported by coq_makefile.

- Improvements to typeclasses and canonical structure resolution, allowing more terms to be
considered as classes or keys.

- More control over notations declarations and support for primitive types in string and number
notations.

- Removal of deprecated tactics, notably omega, which has been replaced by a greatly improved lia,
along with many bug fixes.

- New Ltac2 APIs for interaction with Ltac1, manipulation of inductive types and printing.

Many changes and additions to the standard library in the numbers, vectors and lists libraries. A
new signed primitive integers library Sint63 is available in addition to the unsigned Uint63 library.

https://metacoq.github.io
https://hal.inria.fr/hal-02901011
https://hal.inria.fr/hal-02380196
https://hal.inria.fr/hal-02167423
https://hal.inria.fr/hal-01809681

Project GALLINETTE 17

News of the Year: Coq version 8.14 integrates many usability improvements, as well as an important
change in the core language. See the changelog at https://coq.inria.fr/refman/changes.html#version-
8-14 for an overview of the new features and changes, along with the full list of contributors.

URL: http://coq.inria.fr/

Contact: Matthieu Sozeau

Participants: Yves Bertot, Frederic Besson, Tej Chajed, Cyril Cohen, Pierre Corbineau, Pierre Courtieu,
Maxime Denes, Jim Fehrle, Julien Forest, Emilio Jesús Gallego Arias, Gaetan Gilbert, Georges
Gonthier, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Vincent Laporte, Olivier Laurent, Assia
Mahboubi, Kenji Maillard, Érik Martin-Dorel, Guillaume Melquiond, Pierre-Marie Pedrot, Clément
Pit-Claudel, Kazuhiko Sakaguchi, Vincent Semeria, Michael Soegtrop, Arnaud Spiwack, Matthieu
Sozeau, Enrico Tassi, Laurent Théry, Anton Trunov, Li-Yao Xia, Théo Zimmermann

Partners: CNRS, Université Paris-Sud, ENS Lyon, Université Paris-Diderot

6.1.7 memprof-limits

Keyword: Library

Scientific Description: Memprof-limits is an implementation of per-thread global memory limits, and
per-thread allocation limits à la Haskell, and CPU-bound thread cancellation, for OCaml, compati-
ble with multiple threads.

Memprof-limits interrupts the execution by raising an asynchronous exception: an exception that
can arise at almost any location in the program. It is provided with a guide on how to recover
from asynchronous exceptions and other unexpected exceptions, summarising for the first time
practical knowledge acquired in OCaml by the Coq proof assistant as well as in other programming
languages.

Memprof-limits is probabilistic, as it is based on the statistical memory accountant memprof.
It is provided with a statistical analysis that the user can rely on to have guarantees about the
enforcement of limits.

Functional Description: Memprof-limits is an implementation of (per-thread) global memory limits,
(per-thread) allocation limits, and cancellation of CPU-bound threads, for OCaml. Memprof-limits
interrupts a computation by raising an exception asynchronously and offers features to recover
from them such as interrupt-safe resources.

It is provided with an extensive documentation with examples which explains what must be done
to ensure one recovers from an interrupt. This documentation summarises for the first time the
experience acquired in OCaml in the Coq proof assistant, as well as in other situations in other
programming languages.

Release Contributions: Initial version.

News of the Year: Version 0.2.0, first official and supported (non-prototype) release.

URL: https://gitlab.com/gadmm/memprof-limits

Publication: hal-03517592

Author: Guillaume Munch

Contact: Guillaume Munch

http://coq.inria.fr/
https://gitlab.com/gadmm/memprof-limits
https://hal.inria.fr/hal-03517592

18 Inria Annual Report 2021

6.1.8 ocaml-boxroot

Keywords: Interoperability, Library, Ocaml, Rust

Scientific Description: Boxroot is an implementation of roots for the OCaml GC based on concurrent
allocation techniques. These roots are designed to support a calling convention to interface
between Rust and OCaml code that reconciles the latter’s foreign function interface with the idioms
from the former.

Functional Description: Boxroot implements fast movable roots for OCaml in C. A root is a data type
which contains an OCaml value, and interfaces with the OCaml GC to ensure that this value and its
transitive children are kept alive while the root exists. This can be used to write programs in other
languages that interface with programs written in OCaml.

URL: https://gitlab.com/ocaml-rust/ocaml-boxroot

Contact: Guillaume Munch

Participants: Guillaume Munch, Gabriel Scherer

7 New results

7.1 Type Theory and Proof Assistants

Participants: Antoine Ailloux, Martin Baillon, Gaëtan Gilbert, Meven Lennon-
Bertand, Assia Mahboubi, Kenji Maillard, Pierre-Marie Pédrot, Loïc Pu-
jet, Matthieu Sozeau, Nicolas Tabareau.

7.1.1 Type Theory

Gradualizing the Calculus of Inductive Constructions. Acknowledging the ordeal of a fully formal
development in a proof assistant such as Coq, we have investigated in [12] gradual variations on the
Calculus of Inductive Construction (CIC) for swifter prototyping with imprecise types and terms. We
observe, with a no-go theorem, a crucial tradeoff between graduality and the key properties of canonicity,
decidability and closure of universes under dependent product that CIC enjoys. Beyond this Fire Triangle
of Graduality, we explore the gradualization of CIC with three different compromises, each relaxing one
edge of the Fire Triangle. We develop a parametrized presentation of Gradual CIC that encompasses all
three variations, and jointly develop their metatheory. We first present a bidirectional elaboration of
Gradual CIC to a dependently-typed cast calculus, which elucidates the interrelation between typing,
conversion, and graduality. We then establish the metatheory of this cast calculus through both a syntactic
model into CIC, which provides weak canonicity, confluence, and when applicable, normalization, and
a monotone model that purports the study of the graduality of two of the three variants. This work
informs and paves the way towards the development of malleable proof assistants and dependently-
typed programming languages.

Observational Equality: Now For Good. Building on the recent extension of dependent type theory
with a universe of definitionally proof-irrelevant types, we introduce in [7] T T obs , a new type theory
based on the setoidal interpretation of dependent type theory. T T obs equips every type with an identity
relation that satisfies function extensionality, propositional extensionality, and definitional uniqueness of
identity proofs (UIP). Compared to other existing proposals to enrich dependent type theory with these
principles, our theory features a notion of reduction that is normalizing and provides an algorithmic
canonicity result, which we formally prove in Agda using the logical relation framework of Abel et al.
Our paper thoroughly develops the meta-theoretical properties of T T obs , such as the decidability of the
conversion and of the type checking, as well as consistency. We also explain how to extend our theory
with quotient types, and we introduce a setoidal version of Swan’s Id types that turn it into a proper
extension of MLTT with inductive equality.

https://gitlab.com/ocaml-rust/ocaml-boxroot

Project GALLINETTE 19

Types are Internal ∞-groupoids. An alternative to working with model structures is to pursue the idea
of pushing synthetic Homotopy Theory further, so as to deal with higher coherences directly inside
Type Theory. In [18] we show that, by extending univalent type theory with a universe of definitionally
associative and unital polynomial monads, we arrive at a coinductive definition of opetopic type which
is able to encode a number of fully coherent algebraic structures. In particular, our approach leads to
a definition of ∞-groupoid internal to type theory and we prove that the type of such ∞-groupoids is
equivalent to the universe of types. That is, every type admits the structure of an ∞-groupoid internally,
and this structure is unique.

The Multiverse: Logical Modularity for Proof Assistants. Proof assistants play a dual role as program-
ming languages and logical systems. As programming languages, proof assistants offer standard modu-
larity mechanisms such as first-class functions, type polymorphism and modules. As logical systems,
however, modularity is lacking, and understandably so: incompatible reasoning principles-such as uni-
valence and uniqueness of identity proofs-can indirectly lead to logical inconsistency when used in a
given development, even when they appear to be confined to different modules. The lack of logical
modularity in proof assistants also hinders the adoption of richer programming constructs, such as
effects. In [29], we propose the multiverse, a general type-theoretic approach to endow proof assistants
with logical modularity. The multiverse consists of multiple universe hierarchies that statically describe
the reasoning principles and effects available to define a term at a given type. We identify sufficient
conditions for this structuring to modularly ensure that incompatible principles do not interfere, and to
locally restrict the power of dependent elimination when necessary. This extensible approach generalizes
the ad-hoc treatment of the sort of propositions in the Coq proof assistant. We illustrate the power of the
multiverse by describing the inclusion of Coq-style propositions, the strict propositions of Gilbert et al.,
the exceptional type theory of Pédrot and Tabareau, and general axiomatic extensions of the logic.

Gardening with the Pythia A model of continuity in a dependent setting. In [16],we generalize to a
rich dependent type theory a proof originally developed by Escardó that all System T functionals are
continuous. It relies on the definition of a syntactic model of Baclofen Type Theory, a type theory
where dependent elimination must be strict, into the Calculus of Inductive Constructions. The model
is given by three translations: the axiom translation, that adds an oracle to the context; the branching
translation, based on the dialogue monad, turning every type into a tree; and finally, a layer of algebraic
binary parametricity, binding together the two translations. In the resulting type theory, every function
f : (N→N) →N is externally continuous.

7.1.2 Proof Assistants

Many of our work on proof assistants are based on the MetaCoq project [23].

A Type Theory with Computational Assumptions. Dependently typed programming languages and
proof assistants such as Agda and Coq rely on computation to automatically simplify expressions during
type checking. To overcome the lack of certain programming primitives or logical principles in those
systems, it is common to appeal to axioms to postulate their existence. However, one can only postulate
the bare existence of an axiom, not its computational behaviour. Instead, users are forced to postulate
equality proofs and appeal to them explicitly to simplify expressions, making axioms dramatically more
complicated to work with than built-in primitives. On the other hand, the equality reflection rule from
extensional type theory solves these problems by collapsing computation and equality, at the cost of
having no practical type checking algorithm. In [3], we introduce Rewriting Type Theory (RTT), a type
theory where it is possible to add computational assumptions in the form of rewrite rules. Rewrite rules
go beyond the computational capabilities of intensional type theory, but in contrast to extensional type
theory, they are applied automatically so type checking does not require input from the user. To ensure
type soundness of RTT—as well as effective type checking—we provide a framework where confluence of
user-defined rewrite rules can be checked modularly and automatically, and where adding new rewrite
rules is guaranteed to preserve subject reduction. The properties of RTT have been formally verified using
the MetaCoq framework and an implementation of rewrite rules is already available in the Agda proof
assistant.

https://metacoq.github.io/

20 Inria Annual Report 2021

The Marriage of Univalence and Parametricity. Reasoning modulo equivalences is natural for every-
one, including mathematicians. Unfortunately, in proof assistants based on type theory, which are
frequently used to mechanize mathematical results and carry out program verification efforts, equality is
appallingly syntactic and, as a result, exploiting equivalences is cumbersome at best. Parametricity and
univalence are two major concepts that have been explored in the literature to transport programs and
proofs across type equivalences, but they fall short of achieving seamless, automatic transport. This work
developed in [9] first clarifies the limitations of these two concepts when considered in isolation, and
then devises a fruitful marriage between both. The resulting concept, called univalent parametricity, is
an extension of parametricity strengthened with univalence that fully realizes programming and proving
modulo equivalences. Our approach handles both type and term dependency, as well as type-level
computation. In addition to the theory of univalent parametricity, we present a lightweight framework
implemented in the Coq proof assistant that allows the user to transparently transfer definitions and
theorems for a type to an equivalent one, as if they were equal. For instance, this makes it possible to
conveniently switch between an easy-to-reason-about representation and a computationally-efficient
representation, as soon as they are proven equivalent. The combination of parametricity and univalence
supports transport à la carte: basic univalent transport, which stems from a type equivalence, can be
complemented with additional proofs of equivalences between functions over these types, in order to be
able to transport more programs and proofs, as well as to yield more efficient terms. We illustrate the
use of univalent parametricity on several examples, including a recent integration of native integers in
Coq. This work paves the way to easier-to-use proof assistants by supporting seamless programming and
proving modulo equivalences.

Complete Bidirectional Typing for the Calculus of Inductive Constructions. In [22], we present a
bidirectional type system for the Calculus of Inductive Constructions (CIC). It introduces a new judgement
intermediate between the usual inference and checking, dubbed constrained inference, to handle the
presence of computation in types. The key property of the system is its completeness with respect to the
usual undirected one, which has been formally proven in Coq as a part of the MetaCoq project. Although
it plays an important role in an ongoing completeness proof for a realistic typing algorithm, the interest
of bidirectionality is wider, as it gives insights and structure when trying to prove properties on CIC or
design variations and extensions. In particular, we put forward constrained inference, an intermediate
between the usual inference and checking judgements, to handle the presence of computation in types.

Extending the team with a project-specific bot. While every other software team is adopting off-the-
shelf bots to automate everyday tasks, the Coq team has made a different choice by developing and
maintaining a project-specific bot from the ground up. In [30], we describe the reasons for this choice,
what kind of automation this has allowed us to implement, how the many features of this custom bot
have evolved based on internal feedback, and the technology and architecture choices that have made it
possible.

7.2 Logical Foundations of Programming Languages

Participants: Rémi Douence, Hamza Jaafar, Guillhem Jaber, Guillaume Munch-
Maccagnoni.

Games, mobile processes, and functions. In [21], we establish a tight connection between two models
of the λ-calculus, namely Milner’s encoding into the π-calculus (precisely, the Internal π-calculus), and
operational game semantics (OGS). We first investigate the operational correspondence between the
behaviours of the encoding provided by π and OGS. We do so for various LTSs: the standard LTS for π and
a new ’concurrent’ LTS for OGS; an ’output-prioritised’ LTS for π and the standard alternating LTS for OGS.
We then show that the equivalences induced on λ-terms by all these LTSs (for π and OGS) coincide. These
connections allow us to transfer results and techniques between π and OGS. In particular we import
up-to techniques from π onto OGS and we derive congruence and compositionality results for OGS from
those of π. The study is illustrated for call-by-value; similar results hold for call-by-name.

Project GALLINETTE 21

Complete trace models of state and control. In [20], we consider a hierarchy of four typed call-by-value
languages with either higher-order or ground-type references and with either callcc or no control operator.
Our first result is a fully abstract trace model for the most expressive setting, featuring both higher-
order references and callcc, constructed in the spirit of operational game semantics. Next we examine
the impact of suppressing higher-order references and callcc in contexts and provide an operational
explanation for the game-semantic conditions known as visibility and bracketing respectively. This allows
us to refine the original model to provide fully abstract trace models of interaction with contexts that
need not use higher-order references or callcc. Along the way, we discuss the relationship between error-
and termination-based contextual testing in each case, and relate the two to trace and complete trace
equivalence respectively. Overall, the paper provides a systematic development of operational game
semantics for all four cases, which represent the state-based face of the so-called semantic cube.

Compositional relational reasoning via operational game semantics. In [19, 27], we show how to
use operational game semantics as a guide to develop relational techniques for establishing contextual
equivalences with respect to contexts drawn from a hierarchy of four call-by-value higher-order languages:
with either general or ground-type references and with either call/cc or no control operator. In game
semantics, differences between the contexts can be captured by the absence or presence of the O-visibility
and O-bracketing conditions.The proposed technique, which we call Kripke normal-form bisimulations,
combines insights from normal-form bisimulation and Kripke logical relations with game semantics. In
particular, the role of the heap and the name history is abstracted away using Kripke-style world transition
systems. The differences between the four kinds of contexts manifest themselves through simple local
conditions that can be shown to correspond to O-visibility and O-bracketing, as applicable.The technique
is sound and complete by virtue of correspondence with operational game semantics. Moreover, it sheds
a new light on other related developments, such as backtracking and private transitions in Kripke logical
relations, which can be related to specific phenomena in game models.

Theorems for free from separation logic specifications. Separation logic specifications with abstract
predicates intuitively enforce a discipline that constrains when and how calls may be made between a
client and a library. Thus a separation logic specification of a library intuitively enforces a protocol on the
trace of interactions between a client and the library. In [10], we show how to formalize this intuition and
demonstrate how to derive free theorems about such interaction traces from abstract separation logic
specifications. We present several examples of free theorems. In particular, we prove that a so-called
logically atomic concurrent separation logic specification of a concurrent module operation implies that
the operation is linearizable. All the results presented in this paper have been mechanized and formally
proved in the Coq proof assistant using the Iris higher-order concurrent separation logic framework.

Temporal Refinements for Guarded Recursive Types. In [24, 28], we propose a logic for temporal
properties of higher-order programs that handle infinite objects like streams or infinite trees, represented
via coinductive types. Specifications of programs use safety and liveness properties. Programs can then
be proven to satisfy their specification in a compositional way, our logic being based on a type system.
The logic is presented as a refinement type system over the guarded λ-calculus, a λ-calculus with guarded
recursive types. The refinements are formulae of a modal µ-calculus which embeds usual temporal modal
logics. The semantics of our system is given within a rich structure, the topos of trees, in which we build a
realizability model of the temporal refinement type system.

Models of programming languages mixing effects and resources: Resource management in OCaml.
One goal of resource management is to ensure the correctness of programs in the face of failures and
interruptions. We have proposed a model for asynchronous interrupt-safety in OCaml and developed a
library based on this model that implements resource limits and thread cancellation for OCaml [25].

7.3 Program Certifications and Formalisation of Mathematics

22 Inria Annual Report 2021

Participants: Chrisopher Hughes, Assia Mahboubi.

A Formal Proof of the Irrationality of ζ(3). In [13], we present a complete formal verification of a proof
that the evaluation of the Riemann zeta function at 3 is irrational, using the Coq proof assistant. This
result was first presented by Apéry in 1978, and the proof we have formalized essentially follows the path
of his original presentation. The crux of this proof is to establish that some sequences satisfy a common
recurrence. We formally prove this result by an a posteriori verification of calculations performed by
computer algebra algorithms in a Maple session. The rest of the proof combines arithmetical ingredients
and asymptotic analysis, which we conduct by extending the Mathematical Components libraries.

Unsolvability of the Quintic Formalized in Dependent Type Theory. In [17], we describe an axiom-free
Coq formalization that there does not exist a general method for solving by radicals polynomial equations
of degree greater than 4. This development includes a proof of Galois’ Theorem of the equivalence
between solvable extensions and extensions solvable by radicals. The unsolvability of the general quintic
follows from applying this theorem to a well chosen polynomial with unsolvable Galois group.

Machine-checked computer-aided mathematics. Proof assistants are pieces of software designed for
the realization of digital libraries of formalized mathematics. The latter libraries contain definitions,
statements, and proofs, all formalized in a fixed variant of logic. In particular, the verification of the
well-formedness of statements, and of the correctness of proofs, boils down to a mechanical process, as-
sociated with the underlying logical formalism. The kernel of a proof assistant is the software component
which performs this verification, while the actual proof assistant implements a collection of automation
techniques, which allow users to conduct in practice the formalization of arbitrarily sophisticated mathe-
matical definitions and theories. The memoir [26] presents an overview of three main contributions to the
formal verification of mathematical theories in dependent type theory. The first of these contributions
deals with the realization of a library of digitized mathematics covering the standard undergraduate
background in algebra, as well as some more advanced chapters in finite group theory. The two other con-
tributions are related to the issues pertaining to the formal verification of computational mathematical
proofs, by the means of symbolic algorithms and of rigorous numerical methods respectively.

8 Bilateral contracts and grants with industry

Participants: Guilhem Jaber, Assia Mahboubi, Guillaume Munch-Maccagnoni,
Pierre-Marie Pédrot, Matthieu Sozeau, Nicolas Tabareau.

CoqExtra

Title: A Formally Verified Extraction Mechanism using Precise Type Specifications

Duration: 2020 - 2023

Coordinator: Nicolas Tabareau

Partners:

• Inria

• Nomadic Labs

Inria contact: Nicolas Tabareau

Project GALLINETTE 23

Summary: The extraction mechanism from Coq to OCaml can be seen as a compilation phase, from
a functional language with dependent types to a functional language with a weaker type system.
It is very useful to be able to run and link critical pieces of code that have been certified with the
rest of a software system. For instance, for Tezos, it is important to certify the Michelson language
for smart contracts and then to be able to extract it to OCaml so that it interacts with the rest
of the code that has been developed. Unfortunately, the current extraction mechanism of Coq
suffers from two major flaws that prevent extraction from being used in complex situations—and in
particular for the Michelson language. First, the extraction mechanism does not make use of new
features of OCaml type system, such as Generalized Abstract Data Types (GADTs). This prevents
code using indexed inductive types (Coq’s generalization of GADTs) to be extracted to code using
GADTs. Therefore, in the case of Michelson, the extracted code does not correspond at all to the
seminal implementation of Michelson in OCaml as it jeopardizes its type specification. The second
flaw comes from the fact that extraction sometimes produces ill-typed pieces of code (even if it
uses Obj.magic to cheat the type system), for instance when the arity of a function depends on
some value. Therefore, the extracted program fails to type-checked in OCaml and cannot be used.

Expected Impact: This project proposes to remedy to the situation so that the formalized Michelson
implementation can be extracted to OCaml in a satisfactory and certified way. But this project
is also of great interest outside Nomadic Labs as it will allow Coq users to use a better extraction
mechanism and, on a longer term, it will allow OCaml developers to prove their OCaml programs
using a formal semantics of (a fragment of) OCaml defined in Coq.

CIFRE PhD grant, funded by Mitsubishi Electric R&D Centre Europe (MERCE)

Title: Automated theorem proving and dependent types: automated reasoning for interactive proof
assistants

Duration: 2020 - 2023

Coordinator: Denis Cousineau (MERCE), Assia Mahboubi (Inria)

Partners:

• Inria

• Mitsubishi Electric R&D Centre Europe (MERCE)

Inria contact: Assia Mahboubi

Summary: The aim of this project is to vastly improve the automated reasoning skills of proof assistants
based on dependent type theory, and in particular of the Coq proof assistant. Automated provers,
like SAT solvers or SMT solvers, can provide fast decision answers on large formulas, typically
quantifier-free first order statements generated by code analysis instruments like static analyzers.
Modern provers are moreover able to produce additional data, called certificates, which contain
enough information for an a posteriori verification of their results, e.g., using a formal proof. In
this project, we would like to use this feature to expand the automation available to users of proof
assistants. The main motivation here is thus to increase the class of goals that can be proved
formally and automatically by the interactive proof assistant, rather than to work on the formal
verification of specific albeit large decision problems. In this case, the central research problem is
to bridge the gap between the rich specification language of the proof assistant, and the restricted
fragment handled by the automated prover. This project will thus investigate the design, and the
implementation, of the corresponding translation phase. This translation transforms a logical
statement possibly featuring user-defined data structures and higher-order quantifications, into
another statement, logically stronger, than can be sent to the automated prover. We thus aim at
a triple objective: expressivity, extensibility and efficiency. This grant is funding the PhD of Enzo
Crance.

24 Inria Annual Report 2021

Expected Impact: Enhancing the automated reasoning skills of proof assistants based on dependent
type theory will be key to their wider usage in industry. As of today, they are considered too
expensive to be used in the large outside of specific niches.

OCaml-Rust

Title: OCaml/Rust bindings

Duration: 2021-2023

Coordinator: Gabriel Scherer (INRIA Saclay, EPI Partout)

Participants: Guillaume Munch-Maccagnoni (INRIA Rennes, EPI Gallinette), Jacques-Henri Jourdan
(CNRS, LRI)

Partners: Inria, Nomadic Labs

Inria contact: Gabriel Scherer

Summary: We often want to write programs with components in several different programming lan-
guages. Interfacing two languages typically goes through low-level, unsafe interfaces. The OCaml/Rust
project studies safer interfaces between OCaml and Rust.

Expected Impact: We investigated safe low-level representations of OCaml values on the Rust side,
representing GC ownership, and developed a calling convention that reconciles the OCaml FFI
idioms with Rust idioms. We also developed Boxroot, a new API to register values with the OCaml
GC, for use when interfacing with Rust (and other programming languages) and possibly when
writing concurrent programs. This resulted in novel techniques which can benefit other pairs of
languages in the future. These works are now integrated in the ocaml-rs interface between OCaml
and Rust used in the industry.

CAVOC

Title: Compositional Automated Verification for OCaml

Duration: 2021-2024

Coordinator: Guilhem Jaber

Partners:

• Inria

• Nomadic Labs

Inria contact: Guilhem Jaber

Summary: This project aims to develop a sound and precise static analyzer for OCaml, that can catch
large classes of bugs represented by uncaught exceptions. It will deal with both user-defined
exceptions, and built-in ones used to represent error behaviors, like the ones triggered by failwith,
assert, or a match failure. Via “assert-failure” detection, it will thus be able to check that invariants
annotated by users hold. The analyzer will reason compositionally on programs, in order to analyze
them at the granularity of a function or of a module. It will be sound in a strong way: if an OCaml
module is considered to be correct by the analyzer, then one will have the guarantee that no OCaml
code interacting with this module can trigger uncaught exceptions coming from the code of this
module. In order to be precise, it will take into account the abstraction properties provided by
the type system and the module system of the language: local values, abstracted definition of
types, parametric polymorphism. The goal being that most of the interactions taken into account
correspond to typeable OCaml code (that do not use unsafe features of the Obj Module, or the
Foreign Function Interface to some external code).

Project GALLINETTE 25

Expected Impact: Being modular the analyzer should be able to automatically check the absence of
bugs of a large base of code written in the considered subset of OCaml. This subset will include
most of the codebase developed by Nomadic Labs, which is an heavy user of GADT, for example
to enforce subject reduction in the implementation of Michelson. We would then be able to get a
higher degree of trust in its codebase, and possibly to find undetected bugs in it. The impact of this
project could be large for the OCaml ecosystem in general, where automated analysis of programs
to check soundness properties of the code could be really useful (for example for the Coq proof
assistant, whose full analysis would be nonetheless too ambitious for this project).

9 Partnerships and cooperations

Participants: Yannick Forster, Guilhem Jaber, Assia Mahboubi, Guillaume Munch-
Maccagnoni, Pierre-Marie Pédrot, Matthieu Sozeau, Nicolas Tabareau.

9.1 International initiatives

9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an Inria
International Program

GECO

Title: Gradual verification and robust proof Engineering for COq

Duration: 2018 -> 2021

Coordinator: Éric Tanter (etanter@dcc.uchile.cl)

Partners:

• Universidad de Chile

Inria contact: Nicolas Tabareau

9.1.2 Participation in other International Programs

A. Mahboubi holds a part-time endowed professor position in the Department of Mathematics at the
Vrije Universiteit Amsterdam (the Netherlands).

9.2 International research visitors

9.2.1 Visits of international scientists

Other international visits to the team

Éric Tanter

Status Full Professor

Institution of origin: Universidad de Chile

Country: Chile

Dates: Oct 2021

Context of the visit: Inria GECO associate team

Mobility program/type of mobility: research stay

26 Inria Annual Report 2021

9.3 European initiatives

9.3.1 FP7 & H2020 projects

Fresco

Title: Fast and Reliable Symbolic Computation

Program: H2O2O

Type: ERC COG

Duration: Nov 2021 - Oct 2026

Coordinator: Inria

Inria Contact: Assia Mahboubi

Summary: Using computers to formulate conjectures and consolidate proof steps pervades all mathe-
matics fields, even the most abstract. Most computer proofs are produced by symbolic computa-
tions, using computer algebra systems. However, these systems suffer from severe, intrinsic flaws,
rendering computational correction and verification challenging. The EU-funded FRESCO project
aims to shed light on whether computer algebra could be both reliable and fast. Researchers will
disrupt the architecture of proof assistants, which serve as the best tools for representing mathe-
matics in silico, enriching their programming features while preserving their compatibility with
their logical foundations. They will also design novel mathematical software that should feature a
high-level, performance-oriented programming environment for writing efficient code to boost
computational mathematics.

Coqaml

Title: Verified Extraction from Coq to OCaml with GADTs

Program: H2O2O

Type: Marie Skłodowska-Curie individual followship

Duration: Dec 2021 - Nov 2023

Coordinator: Inria

Inria Contact: Nicolas Tabareau

Summary: The Coq proof assistant is a popular tool to verify the correctness of security-critical soft-
ware. The CompCert C compiler, some implementations of blockchain languages, and the im-
plementation of the P-256 elliptic curve in Google’s BoringSSL library are all OCaml programs
obtained by extraction from Coq functions. While a type checker for Coq has recently been veri-
fied via a machine-checked mathematical proof based on the MetaCoq project for verified meta-
programming, the extraction process from Coq to OCaml is still part of the trusted computing
base (TCB). The Coqaml project will minimise the TCB for extracted programs even further by also
providing a machine-checked correctness proof for the extraction mechanism to OCaml. Under
the supervision of Nicolas Tabareau, head of the Inria Gallinette team in Nantes, the experienced
researcher will implement Coq’s extraction as mechanically verified MetaCoq-plugin, obtaining the
guarantee that extracted OCaml programs behave exactly like the Coq function specified.

Project GALLINETTE 27

9.4 National initiatives

NUSCAP

Title: Numerical Safety for Computer-Aided Proofs

Program: ANR AAPG2020,

Type: PRC, CES 48

Duration: Feb 2021 - Jan 2024

Coordinator: UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668

Local Contact: Assia Mahboubi

Summary: The last twenty years have seen the advent of computer-aided proofs in mathematics and
this trend is getting more and more important. They request various levels of numerical safety,
from fast and stable computations to formal proofs of the computations. Hovewer, the necessary
tools and routines are usually ad hoc, sometimes unavailable, or inexistent. On a complementary
perspective, numerical safety is also critical for complex guidance and control algorithms, in the
context of increased satellite autonomy. We plan to design a whole set of theorems, algorithms and
software developments, that will allow one to study a computational problem on all (or any) of the
desired levels of numerical rigor. Key developments include fast and certified spectral methods
and polynomial arithmetic, with subsequent formal verifications. There will be a strong feedback
between the development of our tools and the applications that motivate it.

ReCiProg

Title: Reasoning on Circular proofs for Programming

Program: ANR AAPG2021,

Type: PRC, CES 48

Duration: Jan 2022 - Jan 2025

Coordinator: UMR CNRS - IRIF - Université de Paris

Local Contact: Guilhem Jaber

Summary: ReCiProg is a collaborative project (Lyon-Marseille-Nantes-Paris) aiming at extending the
proofs-as-programs correspondence (also known as Curry-Howard correspondence) to recursive
programs and circular proofs for logic and type systems using induction and coinduction. The
project will contribute both to the necessary theoretical foundations of circular proofs and to the
software development allowing to enhance the use of coinductive types and coinductive reasoning
in the Coq proof assistant: such coinductive types present, in the current state of the art serious
defects that the project will aim at solving.

DyVerSe

Title: Dynamic Versatile Semantics

Program: ANR AAPG2019,

Type: PRC, CES 48

Duration: Jan 2020 - Dec 2023

Coordinator: Pierre Clairambault (CR CNRS, LIP, UMR 5668)

Local Contact: Guillaume Munch-Maccagnoni

28 Inria Annual Report 2021

Summary: DyVerSe aims to develop a theoretical framework for dynamic/game semantics for pro-
gramming languages, capturing in one versatile setting a spectrum of computational features,
representative of the heterogeneity of software (e.g. higher-order functions, concurrency, probabil-
ities or other quantitative aspects). Our ambition is (1) to help unify denotational semantics by
providing the missing link between various incompatible models focusing on specific aspects, and
(2) to provide a toolbox to reason compositionally about the dynamic behaviour of programs, with
an eye towards specification and verification.

9.5 Regional initiatives

Vercoma

Atlanstic 2020/Attractivity grant

Goal: Verified computer mathematics

Coordinator: Assia Mahboubi.

Duration: 08/2018 - 12/2021.

ASCOC

Atlanstic 2020/Amorçage grant

Goal: Compositional Analysis of OCaml code

Coordinator: G. Jaber.

Duration: 09/2020 - 12/2022

10 Dissemination

This section involves all the permanent members of the team.

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

The Seventh International Workshop on Coq for Programming Languages

Date: January 19 2021, fully online.

Sponsorship: ACM SIGPLAN, ACM SIGLOG

Website

YouTube

Spring School on Homotopy Type Theory

Date: April 12-16 2021, fully online.

Sponsorship: ACM SIGPLAN, ACM SIGLOG and Nomadic Labs.

Website

YouTube channel

Github

https://popl21.sigplan.org/home/CoqPL-2021
https://popl21.sigplan.org/home/CoqPL-2021#videos-on-youtube
https://epit2020cnrs.inria.fr/
https://youtu.be/Ur_dMuEVppg
https://github.com/HoTT/EPIT-2020

Project GALLINETTE 29

Member of the organizing committees The Gallinette team is organizing TYPES’22 in Nantes, 20-25th
June 2022.

10.1.2 Scientific events: selection

Member of the conference program committees

• Matthieu Sozeau was a Program Committee member of POPL 2021 and ITP 2021.

• Assia Mahboubi was a Program Committee member of ITP 2021, CADE 2021, CIE 2021, JFLA 2021
and of the TYPES international workshop.

• Pierre-Marie Pédrot was a Program Committee member of WITS 2022.

Reviewer

• Pierre-Marie Pédrot has reviewed articles for LICS 2021.

• Guillaume Munch-Maccagnoni has reviewed an article for the TYPES post-proceedings.

10.1.3 Journal

Member of the editorial boards

• Assia Mahboubi is a member of the editorial board of the Journal of Automated Reasoning.

Reviewer - reviewing activities

• Matthieu Sozeau has reviewed articles for the Journal of Functional Programming.

• Pierre-Marie Pédrot has reviewed articles for the Bulletin of Symbolic Logic.

• Guillaume Munch-Maccagnoni has reviewed articles for the Logical Methods in Computer Science
and Mathematical Structures in Computer Science journals.

10.1.4 Invited talks

• Matthieu Sozeau gave invited talks at the LFMTP’21 workshop and the HoTTest seminar on Meta-
Coq.

• Assia Mahboubi gave invited talks at the CSL’21 conference, at the FM’21 conference, at the Journées
du GDR Informatique Mathématique, at the colloquium of mathematics of the university of Ljub-
jlana (Slovenia), at the chocola seminar (Lyon, France), at the colloquium of the School of Computer
and Cyber Sciences at university of Alberta (USA), at the OWLS on-line seminar.

• Pierre-Marie Pédrot gave an invited talk at TYPES 2021.

10.1.5 Leadership within the scientific community

• Matthieu Sozeau has been elected as a member of the TYPES conference Steering Committee.

• Assia Mahboubi is a member of the steering committee of the CPP conference.

https://types22.inria.fr/
https://lfmtp.org/workshops/2021/
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
http://types.name

30 Inria Annual Report 2021

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Licence : Julien Cohen, Discrete Mathematics, 48h, L1 (IUT), IUT Nantes, France

• Licence : Julien Cohen, Introduction to proof assistants (Coq), 8h, L2 (PEIP : IUT/Engineering
school), Polytech Nantes, France

• Licence : Julien Cohen, Functional Programming (Scala), 22h, L2 (IUT), IUT Nantes, France

• Master : Julien Cohen, Object oriented programming (Java), 32h, M1 (Engineering school), Polytech
Nantes, France

• Master : Julien Cohen, Functional programming (OCaml), 18h, M1 (Engineering school), Polytech
Nantes, France

• Master : Julien Cohen, Tools for software engineering (proof with Frama-C, test, code management),
20h, M1 (Engineering school), Polytech Nantes, France

• Licence : Rémi Douence, Object Oriented Design and Programming, 45h, L1 (engineers), IMT-
Atlantique, Nantes, France

• Licence : Rémi Douence, Object Oriented Design and Programming Project, 30h, L1 (apprentice-
ship), IMT-Atlantique, Nantes, France

• Master : Rémi Douence, Functional Programming with Haskell, 45h, M1 (engineers), IMT-Atlantique,
Nantes, France

• Master : Rémi Douence, Functional Programming with Haskell, 20h, M1 (apprenticeship), IMT-
Atlantique, Nantes, France

• Master : Rémi Douence, Formal Methods: Model checking with Alloy and from Haskell to Coq, 11h,
M1 (apprenticeship), IMT-Atlantique, Nantes, France

• Master : Rémi Douence, Introduction to scientific research in computer science (Project: compila-
tion in Java of Haskell Class Types), 45h, M2 (apprenticeship), IMT-Atlantique, Nantes, France

• Licence : Hervé Grall, Algorithms and Discrete Mathematics, 25h , L3 (engineers), IMT-Atlantique,
Nantes, France

• Licence : Hervé Grall, Object Oriented Design and Programming, 25h , L3 (engineers), IMT-
Atlantique, Nantes, France

• Licence, Master : Hervé Grall, Modularity and Typing, 40h, L3 and M1, IMT-Atlantique, Nantes,
France

• Master : Hervé Grall, Service-oriented Computing, 40h, M1 and M2, IMT-Atlantique, Nantes, France

• Master : Hervé Grall, Research Project - (Linear) Logic Programming in Coq, 90h (1/3 supervised),
M1 and M2, IMT-Atlantique, Nantes, France

• Licence : Guilhem Jaber, Computer Tools for Science, 18h, L1, Université de Nantes France

• Licence : Guilhem Jaber, Foundations of Computer Science, 54h, L3, Université de Nantes France

• Licence : Guilhem Jaber, Logic in Computer Science, 48h, L2, Université de Nantes France

• Licence : Guilhem Jaber, Functional Programming, 36h, L3, Université de Nantes France

• Master : Guilhem Jaber, Verification and Formal Proofs, 18h, M1, Université de Nantes, France

• Master : Nicolas Tabareau, Homotopy Type Theory, 24h, M2 LMFI, Université Paris Diderot, France

• Master: Assia Mahboubi, Machine-Checked Mathematics, 22.5h, M2, Vrije Universiteit Amsterdam,
the Netherlands

• Master : Matthieu Sozeau, Proof Assistants, 24h, M2 MPRI, Université Paris Diderot, France

Project GALLINETTE 31

10.2.2 Supervision

• PhD in progress: Xavier Montillet, Rewriting and solvability for Call-by-push-value, Univ Nantes,
advisors: Guillaume Munch-Maccagnoni and Nicolas Tabareau

• PhD in progress: Joachim Hotonnier, Deep Specification for Domain-Specific Modelling, advisors:
Gerson Sunye (Naomod team), Massimo Tisi (Naomod team), Hervé Grall.

• PhD in progress: Loïc Pujet, Giving meaning to cubical type theory using forcing, Univ Nantes,
advisors: Nicolas Tabareau

• PhD in progress: Meven Bertrand, Gradualizing the calculus of constructions, Univ Nantes, advisors:
Nicolas Tabareau

• PhD in progress: Martin Baillon, Syntactic Models of Type Theory and Continuity Principles, Univ
Nantes, advisors: Assia Mahboubi and Pierre-Marie Pédrot

• PhD in progress: Pierre Benjamin Giraud, Formalizing extraction of Coq to OCaml, Univ Nantes,
advisors: Pierre-Marie Pédrot, Matthieu Sozeau and Nicolas Tabareau

• PhD in progress: Enzo Crance, Automated theorem proving and dependent types: automated
reasoning for interactive proof assistants, Univ Nantes, advisors: Denis Cousineau and Assia
Mahboubi

• PhD in progress: Antoine Allioux, Coherent Higher Structures in Homotopy Type Theory, Univ Paris
Diderot, advisors: Pierre-Louis Curien (Univ. Paris Diderot), Eric Finster (Univ. Birmingham) and
Matthieu Sozeau

• PhD in progress: Christopher Hughes, Transport of mathematical properties in type theory: struc-
tures, morphisms, refinements, Univ Nantes, advisors: Cyril Cohen (Inria Sophia Antipolis Méditer-
ranée) and Assia Mahboubi

• PhD in progress: Hamza Jaafar, Operational Game Semantics for OCaml, Univ. Nantes, advisor:
Guilhem Jaber and Nicolas Tabareau

• PhD in progress: Peio Borthelle, Formalized Game Semantics for Interoperability, Univ. Savoie
Mont-Blanc, advisor: Tom Hirschowitz and Guilhem Jaber

Supervision of interns

• L3 intern from ENS Paris Saclay. June-July 2021. Thomas Lamiaux. Univalent Parametricity for
inductive types. Advisor: Nicolas Tabareau

10.3 Popularization

10.3.1 Interventions

• Guilhem Jaber and Assia Mahboubi participated to an artists residence at the Athenor theater
(Saint-Nazaire, France). They participated to three performances in the frame of the Instants
Fertiles]9 festival.

11 Scientific production

11.1 Major publications

[1] R. Affeldt, C. Cohen, M. Kerjean, A. Mahboubi, D. Rouhling and K. Sakaguchi. ‘Competing in-
heritance paths in dependent type theory: a case study in functional analysis’. In: IJCAR 2020 -
International Joint Conference on Automated Reasoning. Paris, France, June 2020, pp. 1–19. URL:
https://hal.inria.fr/hal-02463336.

https://hal.inria.fr/hal-02463336

32 Inria Annual Report 2021

[2] B. Ahrens, A. Hirschowitz, A. Lafont and M. Maggesi. ‘Reduction Monads and Their Signatures’. In:
Proceedings of the ACM on Programming Languages (Jan. 2020), pp. 1–29. DOI: 10.1145/3371099.
URL: https://hal.inria.fr/hal-02380682.

[3] J. Cockx, N. Tabareau and T. Winterhalter. ‘The Taming of the Rew: A Type Theory with Computa-
tional Assumptions’. In: Proceedings of the ACM on Programming Languages. POPL 2021 (2021).
DOI: 10.1145/3434341. URL: https://hal.archives-ouvertes.fr/hal-02901011.

[4] G. Jaber. ‘SyTeCi: Automating Contextual Equivalence for Higher-Order Programs with References’.
In: Proceedings of the ACM on Programming Languages 28 (2020), pp. 1–28. DOI: 10.1145/33711
27. URL: https://hal.archives-ouvertes.fr/hal-02388621.

[5] P.-M. Pédrot. ‘Russian Constructivism in a Prefascist Theory’. In: LICS 2020 - Thirty-Fifth Annual
ACM/IEEE Symposium on Logic in Computer Science. Saarbrücken, Germany: IEEE, July 2020,
pp. 1–14. DOI: 10.1145/3373718.3394740. URL: https://hal.inria.fr/hal-02548315.

[6] P.-M. Pédrot and N. Tabareau. ‘The Fire Triangle’. In: Proceedings of the ACM on Programming
Languages (Jan. 2020), pp. 1–28. DOI: 10.1145/3371126. URL: https://hal.archives-ouvert
es.fr/hal-02383109.

[7] L. Pujet and N. Tabareau. ‘Observational Equality: Now For Good’. In: POPL. Philadelphie, United
States, 17th Jan. 2022. URL: https://hal.inria.fr/hal-03367052.

[8] M. Sozeau, S. Boulier, Y. Forster, N. Tabareau and T. Winterhalter. ‘Coq Coq Correct! Verification
of Type Checking and Erasure for Coq, in Coq’. In: Proceedings of the ACM on Programming
Languages (Jan. 2020), pp. 1–28. DOI: 10.1145/3371076. URL: https://hal.archives-ouvert
es.fr/hal-02380196.

[9] N. Tabareau, É. Tanter and M. Sozeau. ‘The Marriage of Univalence and Parametricity’. In: Journal
of the ACM (JACM) 68.1 (15th Jan. 2021), pp. 1–44. DOI: 10.1145/3429979. URL: https://hal.i
nria.fr/hal-03120580.

11.2 Publications of the year

International journals

[10] L. Birkedal, T. Dinsdale-Young, A. Guéneau, G. Jaber, K. Svendsen and N. Tzevelekos. ‘Theorems for
free from separation logic specifications’. In: Proceedings of the ACM on Programming Languages
5.ICFP (22nd Aug. 2021), pp. 1–29. DOI: 10.1145/3473586. URL: https://hal.archives-ouve
rtes.fr/hal-03510684.

[11] J. Cockx, N. Tabareau and T. Winterhalter. ‘The Taming of the Rew: A Type Theory with Computa-
tional Assumptions’. In: Proceedings of the ACM on Programming Languages. POPL 2021 (2021).
DOI: 10.1145/3434341. URL: https://hal.archives-ouvertes.fr/hal-02901011.

[12] M. Lennon-Bertrand, K. Maillard, N. Tabareau and É. Tanter. ‘Gradualizing the Calculus of In-
ductive Constructions’. In: ACM Transactions on Programming Languages and Systems (TOPLAS)
(2022). DOI: 10.1145/3495528. URL: https://hal.archives-ouvertes.fr/hal-02896776.

[13] A. Mahboubi and T. Sibut-Pinote. ‘A formal proof of the irrationality of ζ(3)’. In: Logical Methods
in Computer Science (18th Feb. 2021). DOI: 10.23638/LMCS-17(1:16)2021. URL: https://hal
.inria.fr/hal-03517003.

[14] L. Pujet and N. Tabareau. ‘Observational Equality: Now For Good’. In: Proceedings of the ACM on
Programming Languages 6.POPL (15th Jan. 2022). DOI: 10.1145/3498693. URL: https://hal.i
nria.fr/hal-03367052.

[15] N. Tabareau, É. Tanter and M. Sozeau. ‘The Marriage of Univalence and Parametricity’. In: Journal
of the ACM (JACM) 68.1 (15th Jan. 2021), pp. 1–44. DOI: 10.1145/3429979. URL: https://hal.i
nria.fr/hal-03120580.

https://doi.org/10.1145/3371099
https://hal.inria.fr/hal-02380682
https://doi.org/10.1145/3434341
https://hal.archives-ouvertes.fr/hal-02901011
https://doi.org/10.1145/3371127
https://doi.org/10.1145/3371127
https://hal.archives-ouvertes.fr/hal-02388621
https://doi.org/10.1145/3373718.3394740
https://hal.inria.fr/hal-02548315
https://doi.org/10.1145/3371126
https://hal.archives-ouvertes.fr/hal-02383109
https://hal.archives-ouvertes.fr/hal-02383109
https://hal.inria.fr/hal-03367052
https://doi.org/10.1145/3371076
https://hal.archives-ouvertes.fr/hal-02380196
https://hal.archives-ouvertes.fr/hal-02380196
https://doi.org/10.1145/3429979
https://hal.inria.fr/hal-03120580
https://hal.inria.fr/hal-03120580
https://doi.org/10.1145/3473586
https://hal.archives-ouvertes.fr/hal-03510684
https://hal.archives-ouvertes.fr/hal-03510684
https://doi.org/10.1145/3434341
https://hal.archives-ouvertes.fr/hal-02901011
https://doi.org/10.1145/3495528
https://hal.archives-ouvertes.fr/hal-02896776
https://doi.org/10.23638/LMCS-17(1:16)2021
https://hal.inria.fr/hal-03517003
https://hal.inria.fr/hal-03517003
https://doi.org/10.1145/3498693
https://hal.inria.fr/hal-03367052
https://hal.inria.fr/hal-03367052
https://doi.org/10.1145/3429979
https://hal.inria.fr/hal-03120580
https://hal.inria.fr/hal-03120580

Project GALLINETTE 33

International peer-reviewed conferences

[16] M. Baillon, A. Mahboubi and P.-M. Pédrot. ‘Gardening with the PythiaA model of continuity in
a dependent setting’. In: Computer Science Logic. Göttingen, Germany, 14th Feb. 2022. DOI:
10.4230/LIPIcs.CSL.2022.13. URL: https://hal.inria.fr/hal-03510671.

[17] S. Bernard, C. Cohen, A. Mahboubi and P.-Y. Strub. ‘Unsolvability of the Quintic Formalized in
Dependent Type Theory’. In: ITP 2021 - 12th International Conference on Interactive Theorem
Proving. Rome / Virtual, France, 29th June 2021. URL: https://hal.inria.fr/hal-03136002.

[18] E. Finster, A. Allioux and M. Sozeau. ‘Types are internal infinity-groupoids’. In: LICS 2021. Rome,
Italy, 21st June 2021. URL: https://hal.inria.fr/hal-03133144.

[19] G. Jaber and A. Murawski. ‘Compositional relational reasoning via operational game semantics’.
In: LICS 2021 - 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Proceedings
of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science 23. Rome, Italy: IEEE,
29th June 2021, pp. 1–13. DOI: 10.1109/LICS52264.2021.9470524. URL: https://hal.archi
ves-ouvertes.fr/hal-03510294.

[20] G. Jaber and A. S. Murawski. ‘Complete trace models of state and control’. In: ESOP 2021 - 30th
European Symposium on Programming. Vol. 12648. Lecture Notes in Computer Science. Luxem-
bourg, Luxembourg: Springer International Publishing, 23rd Mar. 2021, pp. 348–374. DOI: 10.100
7/978-3-030-72019-3_13. URL: https://hal.archives-ouvertes.fr/hal-03510374.

[21] G. Jaber and D. Sangiorgi. ‘Games, mobile processes, and functions’. In: 30th EACSL Annual
Conference on Computer Science Logic (CSL 2022). Göttingen, Germany, 28th Oct. 2021. URL:
https://hal.archives-ouvertes.fr/hal-03407123.

[22] M. Lennon-Bertrand. ‘Complete Bidirectional Typing for the Calculus of Inductive Constructions’.
In: 12th International Conference on Interactive Theorem Proving (ITP 2021). Vol. 193. Leibniz
International Proceedings in Informatics (LIPIcs) 24. Rome, Italy, 21st June 2021, 24:1–24:19. DOI:
10.4230/LIPIcs.ITP.2021.24. URL: https://hal.archives-ouvertes.fr/hal-0313992
4.

[23] M. Sozeau. ‘Touring the MetaCoq Project (Invited Paper)’. In: LFMTP 2021 - Logical Frameworks
and Meta-Languages: Theory and Practice. Pittsburg, United States, 16th July 2021. URL: https:
//hal.inria.fr/hal-03516619.

Conferences without proceedings

[24] G. Jaber and C. Riba. ‘Temporal Refinements for Guarded Recursive Types’. In: ESOP 2021 - 30th
European Symposium on Programming. Vol. 12648. Lecture Notes in Computer Science. 2021-04-
01, Luxembourg: Springer International Publishing, 23rd Mar. 2021, pp. 548–578. DOI: 10.1007/9
78-3-030-72019-3_20. URL: https://hal.archives-ouvertes.fr/hal-03517430.

[25] G. Munch-Maccagnoni. ‘Probabilistic resource limits using StatMemprof’. In: OCaml Workshop
2021. Online, France, 27th Aug. 2021, p. 2. URL: https://hal.inria.fr/hal-03517592.

Doctoral dissertations and habilitation theses

[26] A. Mahboubi. ‘Machine-checked computer-aided mathematics’. Université de Nantes (UN),
Nantes, FRA., 5th Jan. 2021. URL: https://tel.archives-ouvertes.fr/tel-03107626.

Reports & preprints

[27] G. Jaber and A. S. Murawski. Complete trace models of state and control (full version). 20th Jan.
2021. URL: https://hal.archives-ouvertes.fr/hal-03116698.

[28] G. Jaber and C. Riba. Temporal Refinements for Guarded Recursive Types (full version). 7th Jan.
2021. URL: https://hal.archives-ouvertes.fr/hal-02512655.

[29] K. Maillard, N. Margulies, M. Sozeau, N. Tabareau and É. Tanter. The Multiverse: Logical Modularity
for Proof Assistants. 23rd Aug. 2021. URL: https://hal.inria.fr/hal-03324596.

https://doi.org/10.4230/LIPIcs.CSL.2022.13
https://hal.inria.fr/hal-03510671
https://hal.inria.fr/hal-03136002
https://hal.inria.fr/hal-03133144
https://doi.org/10.1109/LICS52264.2021.9470524
https://hal.archives-ouvertes.fr/hal-03510294
https://hal.archives-ouvertes.fr/hal-03510294
https://doi.org/10.1007/978-3-030-72019-3_13
https://doi.org/10.1007/978-3-030-72019-3_13
https://hal.archives-ouvertes.fr/hal-03510374
https://hal.archives-ouvertes.fr/hal-03407123
https://doi.org/10.4230/LIPIcs.ITP.2021.24
https://hal.archives-ouvertes.fr/hal-03139924
https://hal.archives-ouvertes.fr/hal-03139924
https://hal.inria.fr/hal-03516619
https://hal.inria.fr/hal-03516619
https://doi.org/10.1007/978-3-030-72019-3_20
https://doi.org/10.1007/978-3-030-72019-3_20
https://hal.archives-ouvertes.fr/hal-03517430
https://hal.inria.fr/hal-03517592
https://tel.archives-ouvertes.fr/tel-03107626
https://hal.archives-ouvertes.fr/hal-03116698
https://hal.archives-ouvertes.fr/hal-02512655
https://hal.inria.fr/hal-03324596

34 Inria Annual Report 2021

[30] T. Zimmermann, J. Coolen, J. Gross, P.-M. Pédrot and G. Gilbert. Extending the team with a
project-specific bot. 14th Dec. 2021. URL: https://hal.inria.fr/hal-03479327.

11.3 Cited publications

[31] A. Abel and T. Coquand. ‘Untyped Algorithmic Equality for Martin-Löf’s Logical Framework
with Surjective Pairs’. English. In: Typed Lambda Calculi and Applications. Ed. by P. Urzyczyn.
Vol. 3461. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005, pp. 23–38. DOI:
10.1007/11417170_4. URL: http://dx.doi.org/10.1007/11417170_4.

[32] B. Accattoli and G. Guerrieri. ‘Open Call-by-Value’. In: Programming Languages and Systems
(1st Jan. 2016). DOI: 10.1007/978-3-319-47958-3_12. URL: http://dx.doi.org/10.1007
/978-3-319-47958-3_12.

[33] D. Ahman, N. Ghani and G. D. Plotkin. ‘Dependent Types and Fibred Computational Effects’. In:
Proc. FoSSaCS. 2015.

[34] A. Ajouli, J. Cohen and J.-C. Royer. ‘Transformations between Composite and Visitor Implementa-
tions in Java’. In: Software Engineering and Advanced Applications (SEAA), 2013 39th EUROMICRO
Conference on. Sept. 2013, pp. 25–32. DOI: 10.1109/SEAA.2013.53. URL: http://dx.doi.org
/10.1109/SEAA.2013.53.

[35] J. Aldrich. ‘The power of interoperability: why objects are inevitable’. In: ACM Symposium on New
Ideas in Programming and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis,
IN, USA, October 26-31, 2013. Ed. by A. L. Hosking, P. T. Eugster and R. Hirschfeld. ACM, 2013,
pp. 101–116.

[36] T. Altenkirch, C. McBride and W. Swierstra. ‘Observational equality, now!’ In: Proceedings of the
ACM Workshop on Programming Languages meets Program Verification (PLPV 2007). Freiburg,
Germany, Oct. 2007, pp. 57–68.

[37] J.-M. Andreoli. ‘Logic Programming with Focusing Proof in Linear Logic’. In: Journal of Logic and
Computation 2.3 (1992), pp. 297–347.

[38] E. Arafailova. ‘Functional description of sequence constraints and synthesis of combinatorial
objects’. Theses. Ecole nationale supérieure Mines-Télécom Atlantique, Sept. 2018. URL: https:
//tel.archives-ouvertes.fr/tel-01962957.

[39] E. Arafailova, N. Beldiceanu, R. Douence, M. Carlsson, P. Flener, M. A. F. Rodríguez, J. Pear-
son and H. Simonis. ‘Global Constraint Catalog, Volume II, Time-Series Constraints’. In: CoRR
abs/1609.08925 (2016). URL: http://arxiv.org/abs/1609.08925.

[40] E. Arafailova, N. Beldiceanu, R. Douence, P. Flener, M. A. F. Rodríguez, J. Pearson and H. Simonis.
‘Time-Series Constraints: Improvements and Application in CP and MIP Contexts’. In: Integration
of AI and OR Techniques in Constraint Programming - 13th International Conference, CPAIOR 2016,
Banff, AB, Canada, May 29 - June 1, 2016, Proceedings. Ed. by C.-G. Quimper. Vol. 9676. Lecture
Notes in Computer Science. Springer, 2016, pp. 18–34. DOI: 10.1007/978-3-319-33954-2_2.
URL: https://doi.org/10.1007/978-3-319-33954-2_2.

[41] A. F. Barco, J.-G. Fages, É. Vareilles, M. Aldanondo and P. Gaborit. ‘Open Packing for Facade-Layout
Synthesis Under a General Purpose Solver’. In: Principles and Practice of Constraint Programming
- 21st International Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings.
Ed. by G. Pesant. Vol. 9255. Lecture Notes in Computer Science. Springer, 2015, pp. 508–523. DOI:
10.1007/978-3-319-23219-5_36. URL: http://dx.doi.org/10.1007/978-3-319-23219
-5%5C_36.

[42] N. Beldiceanu, M. Carlsson, R. Douence and H. Simonis. ‘Using finite transducers for describing
and synthesising structural time-series constraints’. In: Constraints 21.1 (2016), pp. 22–40. DOI:
10.1007/s10601-015-9200-3. URL: http://dx.doi.org/10.1007/s10601-015-9200-3.

[43] S. Berardi, M. Bezem and T. Coquand. ‘On the computational content of the axiom of choice’. In:
The Journal of Symbolic Logic 63.02 (1998), pp. 600–622.

https://hal.inria.fr/hal-03479327
https://doi.org/10.1007/11417170_4
http://dx.doi.org/10.1007/11417170_4
https://doi.org/10.1007/978-3-319-47958-3_12
http://dx.doi.org/10.1007/978-3-319-47958-3_12
http://dx.doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1109/SEAA.2013.53
http://dx.doi.org/10.1109/SEAA.2013.53
http://dx.doi.org/10.1109/SEAA.2013.53
https://tel.archives-ouvertes.fr/tel-01962957
https://tel.archives-ouvertes.fr/tel-01962957
http://arxiv.org/abs/1609.08925
https://doi.org/10.1007/978-3-319-33954-2_2
https://doi.org/10.1007/978-3-319-33954-2_2
https://doi.org/10.1007/978-3-319-23219-5_36
http://dx.doi.org/10.1007/978-3-319-23219-5%5C_36
http://dx.doi.org/10.1007/978-3-319-23219-5%5C_36
https://doi.org/10.1007/s10601-015-9200-3
http://dx.doi.org/10.1007/s10601-015-9200-3

Project GALLINETTE 35

[44] M. Bezem, T. Coquand and S. Huber. ‘A model of type theory in cubical sets’. In: Preprint, Septem-
ber (2013).

[45] S. Boulier, P.-M. Pédrot and N. Tabareau. ‘The next 700 syntactical models of type theory’. In:
Certified Programs and Proofs (CPP 2017). Paris, France, Jan. 2017, pp. 182–194. DOI: 10.1145/30
18610.3018620. URL: https://hal.inria.fr/hal-01445835.

[46] E. Brady. ‘Idris, a general-purpose dependently typed programming language: Design and imple-
mentation’. In: J. Funct. Program. 23.5 (2013), pp. 552–593. DOI: 10.1017/S095679681300018X.
URL: https://doi.org/10.1017/S095679681300018X.

[47] F. Chyzak, A. Mahboubi, T. Sibut-Pinote and E. Tassi. ‘A Computer-Algebra-Based Formal Proof
of the Irrationality of ζ(3)’. In: Interactive Theorem Proving. Ed. by R. G. Gerwin Klein. Vol. 8558.
Lecture Notes in Computer Science. Springer, 2014.

[48] C. Cohen, T. Coquand, S. Huber and A. Mörtberg. Cubical Type Theory: a constructive interpretation
of the univalence axiom. To appear in post-proceedings of Types for Proofs and Programs (TYPES
2015). 2016.

[49] J. Cohen, R. Douence and A. Ajouli. ‘Invertible Program Restructurings for Continuing Modular
Maintenance’. In: Software Maintenance and Reengineering (CSMR), 2012 16th European Confer-
ence on. Mar. 2012, pp. 347–352. DOI: 10.1109/CSMR.2012.42. URL: http://dx.doi.org/10.1
109/CSMR.2012.42.

[50] J. Cohen. ‘Renaming Global Variables in C Mechanically Proved Correct’. In: Proceedings of the
Fourth International Workshop on Verification and Program Transformation, Eindhoven, The
Netherlands, 2nd April 2016. Ed. by G. Hamilton, A. Lisitsa and A. P. Nemytykh. Vol. 216. Electronic
Proceedings in Theoretical Computer Science. Open Publishing Association, 2016, pp. 50–64. DOI:
10.4204/EPTCS.216.3. URL: http://dx.doi.org/10.4204/EPTCS.216.3.

[51] J. Cohen and A. Ajouli. ‘Practical Use of Static Composition of Refactoring Operations’. In: Pro-
ceedings of the 28th Annual ACM Symposium on Applied Computing. SAC ’13. Coimbra, Portugal:
ACM, 2013, pp. 1700–1705. DOI: 10.1145/2480362.2480684. URL: http://dx.doi.org/10.11
45/2480362.2480684.

[52] P. Cohen and M. Davis. Set theory and the continuum hypothesis. WA Benjamin New York, 1966.

[53] W. R. Cook. ‘On understanding data abstraction, revisited’. In: Proceedings of the 24th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA. Ed. by S. Arora and G. T. Leavens. ACM,
2009, pp. 557–572. DOI: 10.1145/1640089.1640133. URL: http://doi.acm.org/10.1145/16
40089.1640133.

[54] Coq Development Team, The. The Coq proof assistant reference manual. Version 8.5. 2015. URL:
http://coq.inria.fr.

[55] P.-L. Curien, M. Fiore and G. Munch-Maccagnoni. ‘A Theory of Effects and Resources: Adjunction
Models and Polarised Calculi’. In: Proc. POPL. 2016. DOI: 10.1145/2837614.2837652. URL:
http://dx.doi.org/10.1145/2837614.2837652.

[56] P.-L. Curien and H. Herbelin. ‘The duality of computation’. In: ACM SIGPLAN Notices 35 (2000),
pp. 233–243.

[57] D. Delahaye and M. Mayero. ‘Dealing with algebraic expressions over a field in Coq using Maple’.
In: J. Symbolic Comput. 39.5 (2005). Special issue on the integration of automated reasoning and
computer algebra systems, pp. 569–592. DOI: 10.1016/j.jsc.2004.12.004. URL: http://dx
.doi.org/10.1016/j.jsc.2004.12.004.

[58] É. Tanter and N. Tabareau. ‘Gradual Certified Programming in Coq’. In: Proceedings of the 11th
ACM Dynamic Languages Symposium (DLS 2015). Pittsburgh, PA, USA: ACM Press, Oct. 2015,
pp. 26–40.

https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3018610.3018620
https://hal.inria.fr/hal-01445835
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1109/CSMR.2012.42
http://dx.doi.org/10.1109/CSMR.2012.42
http://dx.doi.org/10.1109/CSMR.2012.42
https://doi.org/10.4204/EPTCS.216.3
http://dx.doi.org/10.4204/EPTCS.216.3
https://doi.org/10.1145/2480362.2480684
http://dx.doi.org/10.1145/2480362.2480684
http://dx.doi.org/10.1145/2480362.2480684
https://doi.org/10.1145/1640089.1640133
http://doi.acm.org/10.1145/1640089.1640133
http://doi.acm.org/10.1145/1640089.1640133
http://coq.inria.fr
https://doi.org/10.1145/2837614.2837652
http://dx.doi.org/10.1145/2837614.2837652
https://doi.org/10.1016/j.jsc.2004.12.004
http://dx.doi.org/10.1016/j.jsc.2004.12.004
http://dx.doi.org/10.1016/j.jsc.2004.12.004

36 Inria Annual Report 2021

[59] R. Douence, X. Lorca and N. Loriant. ‘Lazy Composition of Representations in Java’. In: Software
Composition, 8th International Conference, SC 2009, Zurich, Switzerland, July 2-3, 2009. Proceed-
ings. Ed. by A. Bergel and J. Fabry. Vol. 5634. Lecture Notes in Computer Science. Springer, 2009,
pp. 55–71. DOI: 10.1007/978-3-642-02655-3_6. URL: https://doi.org/10.1007/978-3-
642-02655-3_6.

[60] T. Ehrhard. ‘Call-by-push-value from a linear logic point of view’. In: European Symposium on
Programming Languages and Systems. Springer. 2016, pp. 202–228.

[61] A. Frisch, G. Castagna and V. Benzaken. ‘Semantic Subtyping: Dealing Set-theoretically with
Function, Union, Intersection, and Negation Types’. In: J. ACM 55.4 (Sept. 2008), 19:1–19:64.

[62] C. Führmann. ‘Direct Models for the Computational Lambda Calculus’. In: Electr. Notes Theor.
Comput. Sci. 20 (1999), pp. 245–292.

[63] J.-Y. Girard. ‘Linear Logic’. In: Theoretical Computer Science 50 (1987), pp. 1–102.

[64] J.-Y. Girard, A. Scedrov and P. J. Scott. ‘Normal Forms and Cut-Free Proofs as Natural Transforma-
tions’. In: in : Logic From Computer Science, Mathematical Science Research Institute Publications
21. Springer-Verlag, 1992, pp. 217–241.

[65] G. Gonthier. ‘Formal proofs—the four-colour theorem’. In: Notices of the AMS 55.11 (2008),
pp. 1382–1393.

[66] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Roux, A. Mahboubi, R. O’Connor,
S. Ould Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi and L. Théry. ‘A Machine-Checked Proof
of the Odd Order Theorem’. In: Interactive Theorem Proving. Ed. by S. Blazy, C. Paulin-Mohring
and D. Pichardie. Vol. 7998. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pp. 163–179. DOI: 10.1007/978-3-642-39634-2_14. URL: http://dx.doi.org/10.1007/9
78-3-642-39634-2_14.

[67] G. Gonthier, A. Mahboubi and E. Tassi. A Small Scale Reflection Extension for the Coq system.
Research Report RR-6455. The Reference Manual of the Ssreflect extension to the Coq tactic language,
available at h t t p : // h a l . i n r i a . f r / i n r i a -0 0 2 5 8 3 8 4 . INRIA, 2008.

[68] T. G. Griffin. ‘A Formulae-as-Types Notion of Control’. In: Seventeenth Annual ACM Symposium
on Principles of Programming Languages. ACM Press, 1990, pp. 47–58.

[69] Y.-G. Guéhéneuc, R. Douence and N. Jussien. ‘No Java without Caffeine: A Tool for Dynamic Anal-
ysis of Java Programs’. In: 17th IEEE International Conference on Automated Software Engineering
(ASE 2002), 23-27 September 2002, Edinburgh, Scotland, UK. IEEE Computer Society, 2002, p. 117.
DOI: 10.1109/ASE.2002.1115000. URL: https://doi.org/10.1109/ASE.2002.1115000.

[70] T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, T. L. Hoang, C. Kaliszyk, V. Magron, S.
McLaughlin, T. T. Nguyen, T. Q. Nguyen, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, A. H. T. Ta,
T. N. Tran, D. T. Trieu, J. Urban, K. K. Vu and R. Zumkeller. ‘A formal proof of the Kepler conjecture’.
In: CoRR abs/1501.02155 (2015). URL: http://arxiv.org/abs/1501.02155.

[71] H. A. Helfgott. ‘The ternary Goldbach conjecture is true’. In: ArXiv e-prints (Dec. 2013). arXiv:
1312.7748 [math.NT].

[72] H. Herbelin. ‘A Constructive Proof of Dependent Choice, Compatible with Classical Logic’. In:
LICS 2012 - 27th Annual ACM/IEEE Symposium on Logic in Computer Science. Dubrovnik, Croatia:
IEEE Computer Society, June 2012, pp. 365–374. URL: https://hal.inria.fr/hal-00697240.

[73] H. Herbelin and É. Miquey. ‘Toward dependent choice: a classical sequent calculus with depen-
dent types’. In: TYPES 2015. 2015.

[74] T. Hirschowitz. ‘Cartesian closed 2-categories and permutation equivalence in higher-order
rewriting’. In: Logical Methods in Computer Science 9.3 (2013). 19 pages, p. 10. DOI: 10.2168
/LMCS-9(3:10)2013. URL: https://hal.archives-ouvertes.fr/hal-00540205.

[75] F. Immler. ‘Verified Reachability Analysis of Continuous Systems’. In: Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings. Ed. by C. Baier and C. Tinelli. Vol. 9035. Lecture Notes in Computer
Science. Springer, 2015, pp. 37–51.

https://doi.org/10.1007/978-3-642-02655-3_6
https://doi.org/10.1007/978-3-642-02655-3_6
https://doi.org/10.1007/978-3-642-02655-3_6
https://doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://hal.inria.fr/inria-00258384
https://doi.org/10.1109/ASE.2002.1115000
https://doi.org/10.1109/ASE.2002.1115000
http://arxiv.org/abs/1501.02155
https://arxiv.org/abs/1312.7748
https://hal.inria.fr/hal-00697240
https://doi.org/10.2168/LMCS-9(3:10)2013
https://doi.org/10.2168/LMCS-9(3:10)2013
https://hal.archives-ouvertes.fr/hal-00540205

Project GALLINETTE 37

[76] G. Jaber, G. Lewertowski, P.-M. Pédrot, M. Sozeau and N. Tabareau. ‘The Definitional Side of the
Forcing’. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’16, New York, NY, USA, July 5-8, 2016. 2016, pp. 367–376.

[77] G. Jaber, N. Tabareau and M. Sozeau. ‘Extending type theory with forcing’. In: Logic in Computer
Science (LICS), 2012. IEEE. 2012, pp. 395–404.

[78] C. B. Jay and N. Ghani. ‘The Virtues of Eta-Expansion’. In: J. Funct. Program. 5.2 (1995), pp. 135–
154.

[79] U. Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics. Springer
Science & Business Media, 2008.

[80] J.-L. Krivine. ‘Realizability algebras II : new models of ZF + DC’. In: Logical Methods in Computer
Science 8.1 (2012).

[81] J. Lambek and P. J. Scott. Introduction to higher order categorical logic. New York, NY, USA: Cam-
bridge University Press, 1986.

[82] S. M. Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer-Verlag, 1992.

[83] R. Lepigre. ‘A classical realizability model for a semantical value restriction’. In: European Sympo-
sium on Programming Languages and Systems. Springer. 2016, pp. 476–502.

[84] X. Leroy. ‘Formal certification of a compiler back-end or: programming a compiler with a proof
assistant’. In: ACM SIGPLAN Notices 41.1 (2006), pp. 42–54.

[85] P. B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis. Vol. 2. Semantic Structures in
Computation. Springer, 2004.

[86] P. B. Levy. ‘Contextual isomorphisms’. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages. ACM. 2017, pp. 400–414.

[87] C. Liang and D. Miller. ‘Focusing and polarization in linear, intuitionistic, and classical logics’. In:
Theor. Comput. Sci. 410.46 (2009), pp. 4747–4768.

[88] Z. Luo, S. Soloviev and T. Xue. ‘Coercive subtyping: Theory and implementation’. In: Inf. Comput.
223 (2013), pp. 18–42.

[89] J. Lurie. Higher topos theory. Annals of mathematics studies. Princeton, N.J., Oxford: Princeton
University Press, 2009.

[90] S. Mac Lane. ‘Natural associativity and commutativity’. In: Selected Papers (1979), pp. 415–433.

[91] P. Martin-Löf. ‘An intuitionistic theory of types: predicative part’. In: Logic Colloquium ’73 Studies
in Logic and the Foundations of Mathematics.80 (1975), pp. 73–118.

[92] P.-A. Melliès. ‘Asynchronous Games 3 An Innocent Model of Linear Logic’. In: Electr. Notes Theor.
Comput. Sci. 122 (2005), pp. 171–192.

[93] P.-A. Melliès. ‘Asynchronous Games 4: A Fully Complete Model of Propositional Linear Logic’. In:
LICS. 2005, pp. 386–395.

[94] P.-A. Melliès and N. Tabareau. ‘Resource modalities in tensor logic’. In: Ann. Pure Appl. Logic 161.5
(2010), pp. 632–653.

[95] É. Miquey. ‘A classical sequent calculus with dependent types’. In: European Symposium on
Programming. Springer. 2017, pp. 777–803.

[96] E. Moggi. ‘Computational lambda-calculus and monads’. In: Proceedings of the Fourth Annual
IEEE Symposium on Logic in Computer Science (LICS 1989). Pacific Grove, CA, USA: IEEE Computer
Society Press, June 1989, pp. 14–23.

[97] E. Moggi. ‘Notions of computation and monads’. In: Inf. Comput. 93.1 (July 1991), pp. 55–92. DOI:
10.1016/0890-5401(91)90052-4. URL: http://dx.doi.org/10.1016/0890-5401(91)900
52-4.

[98] G. Munch-Maccagnoni. ‘Formulae-as-Types for an Involutive Negation’. In: Proceedings of the
joint meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (CSL-LICS). 2014.

https://doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4

38 Inria Annual Report 2021

[99] G. Munch-Maccagnoni. ‘Models of a Non-Associative Composition’. In: Proc. FoSSaCS. Ed. by
A. Muscholl. Vol. 8412. LNCS. Springer, 2014, pp. 397–412.

[100] G. Munch-Maccagnoni. ‘Note on Curry’s style for Linear Call-by-Push-Value’. Manuscript. 3rd May
2017. URL: https://hal.inria.fr/hal-01528857.

[101] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau and L. Birkedal. Ynot: Reasoning with the
awkward squad. 2008.

[102] C. Okasaki. Purely functional data structures. Cambridge University Press, 1999.

[103] P.-M. Pédrot and N. Tabareau. ‘An Effectful Way to Eliminate Addiction to Dependence’. Jan. 2017.
URL: https://hal.inria.fr/hal-01441829.

[104] C. Prud’homme. ‘Contrôle de la propagation et de la recherche dans un solveur de contraintes.
(Controlling propagation and search within a constraint solver)’. PhD thesis. École des mines de
Nantes, France, 2014. URL: https://tel.archives-ouvertes.fr/tel-01060921.

[105] C. Prud’homme, X. Lorca, R. Douence and N. Jussien. ‘Propagation engine prototyping with a
domain specific language’. In: Constraints 19.1 (2014), pp. 57–76. DOI: 10.1007/s10601-013-91
51-5. URL: https://doi.org/10.1007/s10601-013-9151-5.

[106] K. Quirin and N. Tabareau. ‘Lawvere-Tierney sheafification in Homotopy Type Theory’. In: Journal
of Formalized Reasoning 9.2 (2016). DOI: 10.6092/issn.1972-5787/6232. URL: https://hal
.inria.fr/hal-01451710.

[107] F. van Raamsdonk. ‘Higher-order Rewriting’. In: Proc. Rewrit. Tech. App. Vol. 1631. LNCS. Springer,
1999, pp. 220–239.

[108] J. C. Reynolds. ‘Types, Abstraction and Parametric Polymorphism’. In: IFIP Congress. 1983, pp. 513–
523.

[109] P. Selinger. ‘Control Categories and Duality: On the Categorical Semantics of the Lambda-Mu
Calculus’. In: Math. Struct in Comp. Sci. 11.2 (2001), pp. 207–260.

[110] S. G. Simpson. Subsystems of Second Order Arithmetic. Second. Cambridge Books Online. Cam-
bridge University Press, 2009. URL: http://dx.doi.org/10.1017/CBO9780511581007.

[111] K. Støvring. ‘Extending the Extensional Lambda Calculus with Surjective Pairing is Conservative’.
In: Logical Methods in Computer Science 2.2 (2006).

[112] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet,
P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue and S. Zanella-Béguelin. ‘Dependent Types and Multi-
Monadic Effects in F*’. In: 43nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, Jan. 2016, pp. 256–270. URL: https://www.fstar-lang.org/papers
/mumon/.

[113] Univalent Foundations Project. Homotopy Type Theory: Univalent Foundations for Mathematics.
http://homotopytypetheory.org/book, 2013.

[114] M. Vákár. ‘A Framework for Dependent Types and Effects’. In: arXiv preprint arXiv:1512.08009
(2015).

[115] B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski and V. Vafeiadis. ‘Mtac: A monad for typed
tactic programming in Coq’. In: Journal of Functional Programming 25 (2015). DOI: 10.1017/S09
56796815000118. URL: http://dx.doi.org/10.1017/S0956796815000118.

https://hal.inria.fr/hal-01528857
https://hal.inria.fr/hal-01441829
https://tel.archives-ouvertes.fr/tel-01060921
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.6092/issn.1972-5787/6232
https://hal.inria.fr/hal-01451710
https://hal.inria.fr/hal-01451710
http://dx.doi.org/10.1017/CBO9780511581007
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
http://homotopytypetheory.org/book
https://doi.org/10.1017/S0956796815000118
https://doi.org/10.1017/S0956796815000118
http://dx.doi.org/10.1017/S0956796815000118

	Project-Team GALLINETTE
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Scientific Context
	Enhance the computational and logical power of proof assistants
	A definitional proof-irrelevant version of Coq.
	Extend the Coq proof assistant with a computational version of univalence
	Extend the logical power of type theory without axioms in a modular way
	Methodology: Extending type theory with different compilation phases

	Semantic and logical foundations for effects in proof assistants based on type theory
	Models for integrating effects with dependent types
	Intuitionistic depolarisation
	Developing the rewriting theory of calculi with effects
	Direct models and categorical coherence
	Models of effects and resources

	Language extensions for the scaling of proof assistants
	Gradual Certified Programming
	Imperative features and object polymorphism in the Coq proof assistant
	Robust tactics for proof engineering for the scaling of formalised libraries

	Practical experiments
	Certified Code Refactoring
	Certified Constraint Programming
	Certified Symbolic Computation

	Application domains
	Highlights of the year
	New software and platforms
	New software
	Ltac2
	Equations
	Math-Components
	Math-comp-analysis
	MetaCoq
	Coq
	memprof-limits
	ocaml-boxroot

	New results
	Type Theory and Proof Assistants
	Type Theory
	Proof Assistants

	Logical Foundations of Programming Languages
	Program Certifications and Formalisation of Mathematics

	Bilateral contracts and grants with industry
	Partnerships and cooperations
	International initiatives
	Associate Teams in the framework of an Inria International Lab or in the framework of an Inria International Program
	Participation in other International Programs

	International research visitors
	Visits of international scientists

	European initiatives
	FP7 & H2020 projects

	National initiatives
	Regional initiatives

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Leadership within the scientific community

	Teaching - Supervision - Juries
	Teaching
	Supervision

	Popularization
	Interventions

	Scientific production
	Major publications
	Publications of the year
	Cited publications

