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2 Overall objectives

Starting in the eighties, the emerging computational geometry community has put a lot of effort into
designing and analyzing algorithms for geometric problems. The most commonly used framework was to
study the worst-case theoretical complexity of geometric problems involving linear objects (points, lines,
polyhedra...) in Euclidean spaces. This so-called classical computational geometry has some known
limitations:

* Objects: dealing with objects only defined by linear equations.

* Ambient space: considering only Euclidean spaces.

¢ Complexity: worst-case complexities often do not capture realistic behaviour.
* Dimension: complexities are often exponential in the dimension.

¢ Robustness: ignoring degeneracies and rounding errors.

Even if these limitations have already got some attention from the community [39], a quick look at
the proceedings of the flagship conference SoCG' shows that these topics still need a big effort.

It should be stressed that, in this document, the notion of certified algorithms is to be understood
with respect to robustness issues. In other words, certification does not refer to programs that are proven
correct with the help of mechanical proof assistants such as Coq, but to algorithms that are proven correct
on paper even in the presence of degeneracies and computer-induced numerical rounding errors.

We address several of the above limitations:

» Non-linear computational geometry. Curved objects are ubiquitous in the world we live in. However,
despite this ubiquity and decades of research in several communities, curved objects are far from being
robustly and efficiently manipulated by geometric algorithms. Our work on, for instance, quadric
intersections and certified drawing of plane curves has proven that dramatic improvements can be
accomplished when the right mathematics and computer science concepts are put into motion. In this
direction, many problems are fundamental and solutions have potential industrial impact in Computer
Aided Design and Robotics for instance. Intersecting NURBS (Non-uniform rational basis splines) and
meshing singular surfaces in a certified manner are important examples of such problems.

» Non-Euclidean computational geometry. Triangulations are central geometric data structures in
many areas of science and engineering. Traditionally, their study has been limited to the Euclidean setting.
Needs for triangulations in non-Euclidean settings have emerged in many areas dealing with objects
whose sizes range from the nuclear to the astrophysical scale, and both in academia and in industry. It
has become timely to extend the traditional focus on R? of computational geometry and encompass
non-Euclidean spaces.

« Probability in computational geometry. The design of efficient algorithms is driven by the analysis
of their complexity. Traditionally, worst-case input and sometimes uniform distributions are considered
and many results in these settings have had a great influence on the domain. Nowadays, it is necessary to
be more subtle and to prove new results in between these two extreme settings. For instance, smoothed
analysis, which was introduced for the simplex algorithm and which we applied successfully to convex
hulls, proves that such promising alternatives exist.

« Discrete geometric structures. Many geometric algorithms work, explicitly or implicitly, over discrete
structures such as graphs, hypergraphs, lattices that are induced by the geometric input data. For example,
convex hulls or straight-line graph drawing are essentially based on orientation predicates, and therefore
operate on the so-called order type of the input point set. Order types are a subclass of oriented matroids
that remains poorly understood: for instance, we do not even know how to sample this space with
reasonable bias. One of our goals is to contribute to the development of these foundations by better
understanding these discrete geometric structures.

1Symposium on Computational Geometry. www.computational-geometry.org/.


http://www.computational-geometry.org/
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Figure 1: Two views of the Whitney umbrella (on the left, the “stick” of the umbrella, i.e., the negative
z-axis, is missing). Right picture from [Wikipedia], left picture from [Lachaud et al.].

3 Research program

3.1 Non-linear computational geometry

As mentioned above, curved objects are ubiquitous in real world problems and in computer science
and, despite this fact, there are very few problems on curved objects that admit robust and efficient
algorithmic solutions without first discretizing the curved objects into meshes. Meshing curved objects
induces a loss of accuracy which is sometimes not an issue but which can also be most problematic
depending on the application. In addition, discretization induces a combinatorial explosion which could
cause a loss in efficiency compared to a direct solution on the curved objects (as our work on quadrics
has demonstrated with flying colors [45, 46, 47, 49, 53]). But it is also crucial to know that even the process
of computing meshes that approximate curved objects is far from being resolved. As a matter of fact there
is no algorithm capable of computing in practice meshes with certified topology of even rather simple
singular 3D surfaces, due to the high constants in the theoretical complexity and the difficulty of handling
degenerate cases. Part of the difficulty comes from the unintuitive fact that the structure of an algebraic
object can be quite complicated, as depicted in the Whitney umbrella (see Figure 1), the surface with
equation x? = y?z whose origin (the “special” point of the surface) is a vertex of the arrangement induced
by the surface while the singular locus is simply the whole z-axis. Even in 2D, meshing an algebraic
curve with the correct topology, that is in other words producing a correct drawing of the curve (without
knowing where the domain of interest is), is a very difficult problem on which we have recently made
important contributions [32, 33, 54].

Thus producing practical, robust, and efficient algorithmic solutions to geometric problems on curved
objects is a challenge on all and even the most basic problems. The basicness and fundamentality of
the two problems we mentioned above on the intersection of 3D quadrics and on the drawing in a
topologically certified way of plane algebraic curves show rather well that the domain is still in its infancy.
And it should be stressed that these two sets of results were not anecdotal but flagship results produced
during the lifetime of the VEGAS team (the team preceding GAMBLE).

There are many problems in this theme that are expected to have high long-term impacts. Intersecting
NURBS (Non-uniform rational basis splines) in a certified way is an important problem in computer-
aided design and manufacturing. As hinted above, meshing objects in a certified way is important when
topology matters. The 2D case, that is essentially drawing plane curves with the correct topology, is a
fundamental problem with far-reaching applications in research or R&D. Notice that on such elementary
problems it is often difficult to predict the reach of the applications; as an example, we were astonished by
the scope of the applications of our software on 3D quadric intersection” which was used by researchers
in, for instance, photochemistry, computer vision, statistics and mathematics.


https://en.wikipedia.org/wiki/Whitney_umbrella
http://www.lama.univ-savoie.fr/~lachaud/Research/Digital-surfaces-and-singular-surfaces/body.html
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Figure 2: Left: 3D mesh of a gyroid (triply periodic surface) [56]. Right: Simulation of a periodic Delaunay
triangulation of the hyperbolic plane [28].

3.2 Non-Euclidean computational geometry

Triangulations, in particular Delaunay triangulations, in the Euclidean space R? have been extensively
studied throughout the 20th century and they are still a very active research topic. Their mathematical
properties are now well understood, many algorithms to construct them have been proposed and
analyzed (see the book of Aurenhammer ez al. [27]). Some members of GAMBLE have been contributing
to these algorithmic advances (see, e.g. [31, 63, 42, 30]); they have also contributed robust and efficient
triangulation packages through the state-of-the-art Computational Geometry Algorithms Library CGAL
whose impact extends far beyond computational geometry. Application fields include particle physics,
fluid dynamics, shape matching, image processing, geometry processing, computer graphics, computer
vision, shape reconstruction, mesh generation, virtual worlds, geophysics, and medical imaging.®

It is fair to say that little has been done on non-Euclidean spaces, in spite of the large number of
questions raised by application domains. Needs for simulations or modeling in a variety of domains®
ranging from the infinitely small (nuclear matter, nano-structures, biological data) to the infinitely
large (astrophysics) have led us to consider 3D periodic Delaunay triangulations, which can be seen as
Delaunay triangulations of the 3D flat torus, i.e., the quotient of R® under the action of some group of
translations [37]. This work has already yielded a fruitful collaboration with astrophysicists [50, 64] and
new collaborations with physicists are emerging. To the best of our knowledge, our CGAL package [36]
is the only publicly available software that computes Delaunay triangulations of a 3D flat torus, in the
special case where the domain is cubic. This case, although restrictive, is already useful.” We have also
generalized this algorithm to the case of general d-dimensional compact flat manifolds [38]. As far as
non-compact manifolds are concerned, past approaches, limited to the two-dimensional case, have
stayed theoretical [55].

Interestingly, even for the simple case of triangulations on the sphere, the software packages that are
currently available are far from offering satisfactory solutions in terms of robustness and efficiency [35].

Moreover, while our solution for computing triangulations in hyperbolic spaces can be considered
as ultimate [28], the case of hyperbolic manifolds has hardly been explored. Hyperbolic manifolds are
quotients of a hyperbolic space by some group of hyperbolic isometries. Their triangulations can be seen
as hyperbolic periodic triangulations. Periodic hyperbolic triangulations and meshes appear for instance
in geometric modeling [59], neuromathematics [40], or physics [60]. Even the case of the Bolza surface (a
surface of genus 2, whose fundamental domain is the regular octagon in the hyperbolic plane) shows
mathematical difficulties [29, 52].

2QL: web.
3See Projects using CGAL for details.
4See CGAL Prospective Workshop on Geometric Computing in Periodic Spaces, Subdivide and Tile: Triangulating

spaces for understanding the world, Computational geometry in non-Euclidean spaces, Shape Up 2015 : Exercises in
Materials Geometry and Topology
5See examples at Projects using CGAL


http://www.cgal.org/
http://vegas.loria.fr/qi/
http://www.cgal.org/projects.html
http://www.loria.fr/~teillaud/PeriodicSpacesWorkshop/
https://www.lorentzcenter.nl/subdivide-and-tiletriangulating-spaces-for-understanding-the-world.html
https://www.lorentzcenter.nl/subdivide-and-tiletriangulating-spaces-for-understanding-the-world.html
https://members.loria.fr/monique.teillaud/other-geometries/
http://gerdschroeder-turk.org/2015/06/17/shape-up-2015-exercises-in-materials-geometry-and-topology/
http://gerdschroeder-turk.org/2015/06/17/shape-up-2015-exercises-in-materials-geometry-and-topology/
http://www.cgal.org/projects.html
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3.3 Probability in computational geometry

In most computational geometry papers, algorithms are analyzed in the worst-case setting. This often
yields too pessimistic complexities that arise only in pathological situations that are unlikely to occur in
practice. On the other hand, probabilistic geometry provides analyses with great precision [57, 58, 34],
but using hypotheses with much more randomness than in most realistic situations. We are developing
new algorithmic designs improving state-of-the-art performance in random settings that are not overly
simplified and that can thus reflect many realistic situations.

Sixteen years ago, smooth analysis was introduced by Spielman and Teng analyzing the simplex
algorithm by averaging on some noise on the data [62] (and they won the G6del prize). In essence, this
analysis smoothes the complexity around worst-case situations, thus avoiding pathological scenarios
but without considering unrealistic randomness. In that sense, this method makes a bridge between
full randomness and worst case situations by tuning the noise intensity. The analysis of computational
geometry algorithms within this framework is still embryonic. To illustrate the difficulty of the problem,
we started working in 2009 on the smooth analysis of the size of the convex hull of a point set, arguably the
simplest computational geometry data structure; then, only one very rough result from 2004 existed [41]
and we only obtained in 2015 breakthrough results, but still not definitive [44, 43, 48].

Another example of a problem of different flavor concerns Delaunay triangulations, which are rather
ubiquitous in computational geometry. When Delaunay triangulations are computed for reconstructing
meshes from point clouds coming from 3D scanners, the worst-case scenario is, again, too pessimistic
and the full randomness hypothesis is clearly not adapted. Some results exist for “good samplings of
generic surfaces” [26] but the big result that everybody wishes for is an analysis for random samples
(without the extra assumptions hidden in the “good” sampling) of possibly non-generic surfaces.

Trade-offs between full randomness and worst case may also appear in other forms such as dependent
distributions, or random distributions conditioned to be in some special configurations. Simulating
these kinds of geometric distributions is currently out of reach for more than a few hundred points [51]
although it has practical applications in physics or networks.

3.4 Discrete geometric structures

Our work on discrete geometric structures develops in several directions, each one probing a different
type of structure. Although these objects appear unrelated at first sight, they can be tackled by the same
set of probabilistic and topological tools.

A first research topic is the study of Order types. Order types are combinatorial encodings of finite
(planar) point sets, recording for each triple of points the orientation (clockwise or counterclockwise) of
the triangle they form. This already determines properties such as convex hulls or half-space depths, and
the behaviour of algorithms based on orientation predicates. These properties for all (infinitely many)
n-point sets can be studied through the finitely many order types of size n. Yet, this finite space is poorly
understood: its estimated size leaves an exponential margin of error, no method is known to sample it
without concentrating on a vanishingly small corner, the effect of pattern exclusion or VC dimension-type
restrictions are unknown. These are all directions we actively investigate.

A second research topic is the study of Embedded graphs and simplicial complexes. Many topological
structures can be effectively discretized, for instance combinatorial maps record homotopy classes of
embedded graphs and simplicial complexes represent a large class of topological spaces. This raises
many structural and algorithmic questions on these discrete structures; for example, given a closed walk
in an embedded graph, can we find a cycle of the graph homotopic to that walk? (The complexity status of
that problem is unknown.) Going in the other direction, some purely discrete structures can be given an
associated topological space that reveals some of their properties (e.g. the Nerve theorem for intersection
patterns). An open problem is for instance to obtain fractional Helly theorems for set systems of bounded
topological complexity.

Another research topic is that of Sparse inclusion-exclusion formulas. For any family of sets Ay, Ay, ..., Ay,
by the principle of inclusion-exclusion we have

Ty 4= 2 DM, e
1€{1,2,...,n}
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where Ty is the indicator function of X. This formula is universal (it applies to any family of sets) but
its number of summands grows exponentially with the number 7 of sets. When the sets are balls, the
formula remains true if the summation is restricted to the regular triangulation; we proved that similar
simplifications are possible whenever the Venn diagram of the A; is sparse. There is much room for
improvements, both for general set systems and for specific geometric settings. Another interesting
problem is to combine these simplifications with the inclusion-exclusion algorithms developed, for
instance, for graph coloring.

4 Application domains

Many domains of science can benefit from the results developed by GAMBLE. Curves and surfaces are
ubiquitous in all sciences to understand and interpret raw data as well as experimental results. Still, the
non-linear problems we address are rather basic and fundamental, and it is often difficult to predict the
impact of solutions in that area. The short-term industrial impact is likely to be small because, on basic
problems, industries have used ad hoc solutions for decades and have thus got used to it.

The example of our work on quadric intersection is typical: even though we were fully convinced that
intersecting 3D quadrics is such an elementary/fundamental problem that it ought to be useful, we were
the first to be astonished by the scope of the applications of our software ° (which was the first and still is
the only one —to our knowledge— to compute robustly and efficiently the intersection of 3D quadrics)
which has been used by researchers in, for instance, photochemistry, computer vision, statistics, and
mathematics. Our work on certified drawing of plane (algebraic) curves falls in the same category. It
seems obvious that it is widely useful to be able to draw curves correctly (recall also that part of the
problem is to determine where to look in the plane) but it is quite hard to come up with specific examples
of fields where this is relevant. A contrario, we know that certified meshing is critical in mechanical-
design applications in robotics, which is a non-obvious application field. There, the singularities of
a manipulator often have degrees higher than 10 and meshing the singular locus in a certified way is
currently out of reach. As a result, researchers in robotics can only build physical prototypes for validating,
or not, the approximate solutions given by non-certified numerical algorithms.

The fact that several of our pieces of software for computing non-Euclidean triangulations had already
been requested by users long before they become public in CGAL is a good sign for their wide future
impact. This will not come as a surprise, since most of the questions that we have been studying followed
from discussions with researchers outside computer science and pure mathematics. Such researchers are
either users of our algorithms and software, or we meet them in workshops. Let us only mention a few
names here. Rien van de Weijgaert [50, 64] (astrophysicist, Groningen, NL) and Michael Schindler [61]
(theoretical physicist, ENSPCI, CNRS, France) used our software for 3D periodic weighted triangulations.
Stephen Hyde and Vanessa Robins (applied mathematics and physics at Australian National University)
used our package for 3D periodic meshing. Olivier Faugeras (neuromathematics, INRIA Sophia Antipolis)
had come to us and mentioned his needs for good meshes of the Bolza surface [40] before we started to
study them. Such contacts are very important both to get feedback about our research and to help us
choose problems that are relevant for applications. These problems are at the same time challenging from
the mathematical and algorithmic points of view. Note that our research and our software are generic,
i.e., we are studying fundamental geometric questions, which do not depend on any specific application.
This recipe has made the sucess of the CGAL library.

Probabilistic models for geometric data are widely used to model various situations ranging from
cell phone distribution to quantum mechanics. The impact of our work on probabilistic distributions
is twofold. On the one hand, our studies of properties of geometric objects built on such distributions
will yield a better understanding of the above phenomena and has potential impact in many scientific
domains. On the other hand, our work on simulations of probabilistic distributions will be used by other
teams, more maths oriented, to study these distributions.

8QL: web.


http://vegas.loria.fr/qi/
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5 Highlights of the year

We developed a breakthrough method for the two fundamental problems of evaluating a polynomial
on multiple points and finding its complex roots, with a bit complexity quasi-linear in the degree. In
particular, our approach solves a problem that has been open for 50 years. It was selected to the prestigious
conference FOCS [18], and the practical efficiency of this method led to a transfer contract with the private
company WATERLOO MAPLE INC.

6 New software and platforms

6.1 New software
6.1.1 CGAL Package: 2D triangulations on the sphere
Keywords: Computational geometry, Delaunay triangulation

Functional Description: This package enables the construction and manipulation of Delaunay triangu-
lations on the 2-sphere. Triangulations are built incrementally and can be modified by insertion or
removal of vertices. Point location querying and primitives to build the dual Voronoi diagram are
provided.

News of the Year: Integration into CGAL 5.3

URL: https://doc.cgal.org/latest/Manual/packages.html#PkgTriangulationOnSphere2
Publication: hal-03469649

Authors: Mael Rouxel-Labbé, Monique Teillaud, Claudia Werner, Sébastien Loriot, Olivier Rouiller
Contact: Monique Teillaud

Partner: GeometryFactory

6.1.2 hefroots
Name: Hyperbolic, Elliptic and Flat ROOT Solver
Keywords: Polynomial equations, Complex number

Scientific Description: This software for solving polynomial equations is based on a recent result which
consists in approximating a polynomial of large degree by a piecewise polynomial function on the
complex plane.

Functional Description: This software takes as input a file containing the coefficients of a univariate
polynomial and returns the list of its complex roots.

URL: https://gitlab.inria.fr/gmoro/hefpoly
Publication: hal-03249123
Author: Guillaume Moroz

Contact: Guillaume Moroz

7 New results

7.1 Non-Linear Computational Geometry

Participants: Laurent Dupont, Nuwan Herath Mudiyanselage, George Krait, Syl-
vain Lazard, Guillaume Moroz, Marc Pouget.


https://doc.cgal.org/latest/Manual/packages.html#PkgTriangulationOnSphere2
https://hal.inria.fr/hal-03469649
https://gitlab.inria.fr/gmoro/hefpoly
https://hal.inria.fr/hal-03249123
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7.1.1 Animproved complexity bound for computing the topology of a real algebraic space curve

We propose a new algorithm to compute the topology of a real algebraic space curve. The novelties of this
algorithm are a new technique to achieve the lifting step which recovers points of the space curve in each
plane fiber from several projections and a weakened notion of generic position. As opposed to previous
work, our sweep generic position does not require that x-critical points have different x-coordinates. The
complexity of achieving this sweep generic position is thus no longer a bottleneck in terms of complexity.
The bit complexity of our algorithm is O(d'® + d'” t) where d and t bound the degree and the bitsize of
the integer coefficients of the defining polynomials of the curve and polylogarithmic factors are ignored.
To the best of our knowledge, this improves upon the best currently known results at least by a factor of
da? [20].

7.1.2 Certified numerical algorithm for isolating the singularities of the plane projection of generic
smooth space curves

Isolating the singularities of a plane curve is the first step towards computing its topology. For this,
numerical methods are efficient but not certified in general. We are interested in developing certified
numerical algorithms for isolating the singularities. In order to do so, we restrict our attention to the
special case of plane curves that are projections of smooth curves in higher dimensions. This type of
curve appears naturally in robotics applications and scientific visualization. In this setting, we show
that the singularities can be encoded by a regular square system whose solutions can be isolated with
certified numerical methods. Our analysis is conditioned by assumptions that we prove to be generic
using transversality theory. We also provide a semi-algorithm to check their validity. Finally, we present
experiments, some of which are not reachable by other methods, and discuss the efficiency of our method
[15, 19].

7.1.3 Fast guaranteed drawing of high degree algebraic curves

We address the problem of computing a guaranteed drawing of high resolution of a plane curve defined
by a bivariate polynomial equation P(x, y) = 0. The drawing is a subset of pixels defined on a grid of a
given resolution with the guarantee that the pixels enclose all the parts of the curve that intersect the grid.
Our main contribution is to use a non-uniform grid based on the Chebyshev nodes to take advantage of
multipoint evaluation techniques via the Discrete Cosine Transform. We propose two new algorithms
that compute guaranteed drawings and compare them experimentally on several classes of high degree
polynomials. Notably, one of those approaches is faster than state-of-the-art drawing software, even
when these softwares are not guaranteed [25].

7.1.4 Fastreal and complex root-finding methods for well-conditioned polynomials

Given a polynomial p of degree d and a bound x on a condition number of p, we present the first root-
finding algorithms that return all its real and complex roots with a number of bit operations quasi-linear
in dlog? (x). More precisely, several condition numbers can be defined depending on the norm chosen
on the coefficients of the polynomial. Let

d p_ o d k
p(x)=lé]akx =I§] ( 5 )bkx.

We call the condition number associated with a perturbation of the a; the hyperbolic condition number
Kj, and the one associated with a perturbation of the by the elliptic condition number x.. For each
of these condition numbers, we present algorithms that find the real and the complex roots of p in
O (dlog? (dx) polylog(log(dx))) bit operations.

Our algorithms are well suited for random polynomials since xj, (resp. x.) is bounded by a polynomial
in d with high probability if the a (resp. the by) are independent, centered Gaussian variables of variance
1 [24].



10 Inria Annual Report 2021

7.1.5 New data structure for univariate polynomial approximation and applications to root isola-
tion, numerical multipoint evaluation, and other problems

We present a new data structure to approximate accurately and efficiently a polynomial f of degree d
given as a list of coefficients f;. Its properties allow us to improve the state-of-the-art bounds on the bit
complexity for the problems of root isolation and approximate multipoint evaluation. This data structure
also leads to a new geometric criterion to detect ill-conditioned polynomials, implying notably that the
standard condition number of the zeros of a polynomial is at least exponential in the number of roots of
modulus less than 1/2 or greater than 2.

Given a polynomial f of degree d with | fll; =Y |fi| < 2* for T = 1, isolating all its complex roots or
evaluating it at d points can be done with a quasi-linear number of arithmetic operations. However,
considering the bit complexity, the state-of-the-art algorithms require at least @°'? bit operations even
for well-conditioned polynomials and when the accuracy required is low. Given a positive integer m, we
can compute our new data structure and evaluate f at d points in the unit disk with an absolute error
less than 27" in O(d(t + m)) bit operations, where O(-) means that we omit logarithmic factors. We also
show that if x is the absolute condition number of the zeros of f, then we can isolate all the roots of f in
O(d(t +1ogx)) bit operations. Moreover, our algorithms are simple to implement. For approximating
the complex roots of a polynomial, we implemented a small prototype in Python/NumPy that is an order
of magnitude faster than the state-of-the-art solver MPSolve for high degree polynomials with random
coefficients [18].

7.2 Non-Euclidean Computational Geometry

Participants: Vincent Despré, Loic Dubois, Benedikt Kolbe, Alba Marina Mélaga
Sabogal, Monique Teillaud.

7.2.1 Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces

Guided by insights on the mapping class group of a surface, we give experimental evidence that the
upper bound recently proven on the diameter of the flip graph of a surface by Despré, Schlenker, and
Teillaud [3] is largely overestimated. To obtain this result, we propose a set of techniques allowing us
to actually perform experiments. We solve arithmetic issues by proving a density result on rationally
described genus two hyperbolic surfaces, and we rely on a description of surfaces allowing us to propose
a data structure on which flips can be efficiently implemented [21].

7.2.2 Representing infinite hyperbolic periodic Delaunay triangulations using finitely many Dirich-
let domains

The Delaunay triangulation of a set of points P on a hyperbolic surface is the projection of the Delaunay
triangulation of the set P of lifted points in the hyperbolic plane. Since P is infinite, the algorithms to
compute Delaunay triangulations in the plane do not generalize naturally. Assuming that the surface
comes with a Dirichlet domain, we exhibit a finite set of points that captures the full triangulation. Indeed,
we prove that an edge of a Delaunay triangulation has a combinatorial length (a notion we define in the
paper) smaller than 12g — 6 with respect to a Dirichlet domain. On the way, we prove that both the edges
of a Delaunay triangulation and of a Dirichlet domain have some kind of distance minimizing properties
that are of intrinsic interest. The bounds produced in this paper depend only on the topology of the
surface. They provide mathematical foundations for hyperbolic analogs of the algorithms to compute
periodic Delaunay triangulations in Euclidean space [22].

7.2.3 Delaunay triangulations of generalized Bolza surfaces

The Bolza surface can be seen as the quotient of the hyperbolic plane, represented by the Poincaré disk
model, under the action of the group generated by the hyperbolic isometries identifying opposite sides of
aregular octagon centered at the origin. We consider generalized Bolza surfaces Mg, where the octagon is
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replaced by a regular 4g-gon, leading to a genus g surface. We propose an extension of Bowyer’s algorithm
to these surfaces. In particular, we compute the value of the systole of M. We also propose algorithms
computing small sets of points on M, that are used to initialize Bowyer’s algorithm [23]. In collaboration
with Matthijs Ebbens and Gert Vegter (Bernoulli Institute for Mathematics and Computer Science and
Artificial Intelligence, University of Groningen).

7.3 Probabilistic Analysis of Geometric Data Structures and Algorithms

Participants: Olivier Devillers, Charles Duménil, Xavier Goaoc, Guillaume Moroz, Ji
Won Park.

7.3.1 Stochastic analysis of empty-region graphs

Given a set of points X, an empty-region graph is a graph in which p, g € X are neighbors if some region
defined by (p, g) does not contain any point of X. We provide expected analyses of the degree of a point
and the possibility of having far neighbors in such a graph when X is a planar Poisson point process.
Namely the expected degree of a point in the empty axis-aligned-ellipse graph for a Poisson point process
of intensity A in the unit square is ©(In 1). It is ©(In g) if the ellipses are constrained to have an aspect ratio
between 1 and > 1, and ©(f) when the aspect ratio is constrained but ellipses are not axis-aligned [16].

7.4 Discrete Geometric structures

Participants: Xavier Goaoc.

7.4.1 A stepping-up lemma for topological set systems

Intersection patterns of convex sets in R? have the remarkable property that for d +1 < k < ¢, in any
sufficiently large family of convex sets in R? , if a constant fraction of the k-element subfamilies have
nonempty intersection, then a constant fraction of the ¢-element subfamilies must also have nonempty
intersection. Here, we prove that a similar phenomenon holds for any topological set system .% in RY .
Quantitatively, our bounds depend on how complicated the intersection of ¢ elements of & can be, as
measured by the sum of the [%] first Betti numbers. As an application, we improve the fractional Helly
2 number of set systems with bounded topological complexity due to the third author, from a Ramsey
number down to d + 1. We also shed some light on a conjecture of Kalai and Meshulam on intersection
patterns of sets with bounded homological VC dimension. A key ingredient in our proof is the use of the
stair convexity of Bukh, Matouss$ek and Nivasch to recast a simplicial complex as a homological minor of
a cubical complex [17].
In collaboration with Andreas Holmsen (KAIST) and Zuzana Patdkovd (Charles University of Praha)

7.4.2 An experimental study of forbidden patterns in geometric permutations by combinatorial lift-
ing

We study the problem of deciding if a given triple of permutations can be realized as geometric permu-
tations of disjoint convex sets in R®. We show that this question, which is equivalent to deciding the
emptiness of certain semi-algebraic sets bounded by cubic polynomials, can be “lifted” to a purely com-
binatorial problem. We propose an effective algorithm for that problem, and use it to gain new insights
into the structure of geometric permutations. In particular, we prove that all triples of permutations of
size 5 are realizable, and give a complete list of triples of size 6 that are not [13].

In collaboration with Andreas Holmsen (KAIST) and Cyril Nicaud (LIGM)
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8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

8.1.1 WATERLOO MAPLE INC.

Participants: Laurent Dupont, Sylvain Lazard, Guillaume Moroz, Marc Pouget.

Company: WATERLOO MAPLE INC.
Duration: 2 years
Participants: GAMBLE and OURAGAN Inria teams

Abstract: A renewable two-years licence and cooperation agreement was signed on April 1st, 2018
between WATERLOO MAPLE INC., Ontario, Canada (represented by Laurent Bernardin, its Executive Vice
President Products and Solutions) and Inria. On the Inria side, this contract involves the teams GAMBLE
and OURAGAN (Paris), and it is coordinated by Fabrice Rouillier (OURAGAN).

E Rouillier and GAMBLE are the developers of the ISOTOP software for the computation of topology of
curves. The transfer of a version of ISOTOP to WATERLOO MAPLE INC. should be done on the long run.

This contract is amended this year to include the new software HEFROOTS for the isolation of the
complex roots of a univariate polynomial. The transfer of HEFROOTS to WATERLOO MAPLE INC. started
this year with the help of the independent contractor REmi Imbach.

8.1.2 GEOMETRYFACTORY

Participants: Monique Teillaud.

Company: GEOMETRYFACTORY
Duration: permanent
Participants: INRIA and GEOMETRYFACTORY
Abstract: CGAL packages developed in GAMBLE are commercialized by GEOMETRYFACTORY.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria associate team not involved in an IIL or an international program
FIP

Participants: Xavier Goaoc, Ji Won Park.

Title: Finite point sets and Intersection Patterns
Duration: 4 years

Starting date: 2021

Coordinator: Andreas Holmsen (andreash@kaist.edu)
Partners:

» Korea Advanced Institute of Science and Technology
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Inria contact: Xavier Goaoc

Summary: This project involves, besides Andreas Holmsen and Xavier Goaoc who are discrete and

computational geometers, three specialists in combinatorics and probability theory: Mathilde
Bouvel (LORIA), Philippe Chassaing (IECL) and Valentin Féray (IECL). This collaboration tackles
questions from two classical research directions:

« Intersection patterns of geometric set systems. The theory of combinatorial convexity revealed
many striking properties of families of convex sets that found surprising applications going
far beyond their geometric origins. An established line of research explores generalizations of
these properties beyond convexity and some far-reaching conjectures were made by Kalai
and Meshulam regarding a homological analogue of the Vapnik-Chervonenkis dimension
from learning theory.

+ Combinatorial abstractions of finite point sets. Geometric algorithms are often designed over
the reals, taking advantage of properties of continuity, closure under arithmetic operations,
and geometric figures of R%. These algorithms do, however, effectively operate on a combina-
torial abstraction of the geometric input, as their courses are determined not by the numerical
values given in input, but by the output of certain predicate functions. A better understanding
of these combinatorial abstractions would allow better design and finer analysis of geometric
algorithms, as well as better testing of algorithms or geometric conjectures dealing with finite
point sets. This is a classical line of research; an example of a long standing open problem is
the tightening of the bounds on the number of halving lines in n-point sets, that is the number

of ways in which a line can partition it in two equal-size subsets, known to be ne®(V1°8™ and
O(n4/3).

9.1.2 Participation in other International Programs

SoS

Participants: Vincent Despré, Loic Dubois, Benedikt Kolbe, Alba Marina Mélaga

Sabogal, Monique Teillaud.

Title: Structures on Surfaces

Duration: 4 years + 1 year Covid'19 extension

Starting date: April 1st, 2018

Coordinator: Monique Teillaud

Partners:

e Gamble project-team, Inria.

e LIGM (Laboratoire d’'Informatique Gaspard Monge), Université Gustave Eiffel. Local Coordi-
nator: Eric Colin de Verdiére.

* RMATH (Mathematics Research Unit), University of Luxembourg. National Coordinator:
Hugo Parlier.

Inria contact: Monique Teillaud

Summary: SoS is co-funded by ANR (ANR-17-CE40-0033) and FNR (INTER/ANR/16/11554412/SoS) as a

PRCI (Projet de Recherche Collaborative Internationale).

The central theme of this project is the study of geometric and combinatorial structures related to
surfaces and their moduli. Even though they work on common themes, there is a real gap between
communities working in geometric topology and computational geometry and SoS aims to create
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along-lasting bridge between them. Beyond a common interest, techniques from both ends are
relevant and the potential gain in perspective from long-term collaborations is truly thrilling.

In particular, SoS aims to extend the scope of computational geometry, a field at the interface
between mathematics and computer science that develops algorithms for geometric problems, to
a variety of unexplored contexts. During the last two decades, research in computational geometry
has gained wide impact through CGAL, the Computational Geometry Algorithms Library. In parallel,
the needs for non-Euclidean geometries are arising, e.g., in geometric modeling, neuromathematics,
or physics. Our goal is to develop computational geometry for some of these non-Euclidean spaces
and make these developments readily available for users in academia and industry.

To reach this aim, SoS follows an interdisciplinary approach, gathering researchers whose expertise
cover a large range of mathematics, algorithms and software. A mathematical study of the objects
considered is performed, together with the design of algorithms when applicable. Algorithms are
analyzed both in theory and in practice after prototype implementations, which are improved
whenever it makes sense to target longer-term integration into CGAL.

Our main objects of study are Delaunay triangulations and circle patterns on surfaces, polyhedral
geometry, and systems of disjoint curves and graphs on surfaces.

Project website: sos.loria.fr/.

9.2 National initiatives
9.2.1 ANRPRC
ANR Aspag

Participants: Olivier Devillers, Charles Duménil, Xavier Goaoc, Sylvain Lazard, Guil-
laume Moroz, Ji Won Park, Marc Pouget.

Title: Analyse et Simulation Probabilistes d’Algorithmes Géométriques
Duration: 4 years + 1 year Covid'19 extension

Starting date: January 1st, 2018

Coordinator: Olivier Devillers

Partners:

e Gamble project-team, Inria.

e Labri (Laboratoire Bordelais de Recherche en Informatique), Université de Bordeaux. Local
Coordinator: Philippe Duchon.

e Laboratoire de Mathématiques Raphaél Salem, Université de Rouen. Local Coordinator:
Pierre Calka.

* LAMA (Laboratoire d’Analyse et de Mathématiques Appliquées), Université Paris-Est Marne-
la-Vallée. Local Coordinator: Matthieu Fradelizi

Inria contact: Olivier Devillers

Summary: The ASPAG projet is funded by ANR under number ANR-17-CE40-0017 .

The analysis and processing of geometric data has become routine in a variety of human activities
ranging from computer-aided design in manufacturing to the tracking of animal trajectories in
ecology or geographic information systems in GPS navigation devices. Geometric algorithms and
probabilistic geometric models are crucial to the treatment of all this geometric data, yet the current
available knowledge is in various ways much too limited: many models are far from matching real
data, and the analyses are not always relevant in practical contexts. One of the reasons for this state
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of affairs is that the breadth of expertise required is spread among different scientific communities
(computational geometry, analysis of algorithms and stochastic geometry) that historically had very
little interaction. The Aspag project brings together experts of these communities to address the
problem of geometric data. We will more specifically work on the following three interdependent
directions.

(1) Dependent point sets: One of the main issues of most models is the core assumption that the
data points are independent and follow the same underlying distribution. Although this may be
relevant in some contexts, the independence assumption is too strong for many applications.

(2) Simulation of geometric structures: The phenomena studied in (1) involve intricate random
geometric structures subject to new models or constraints. A natural first step would be to build up
our understanding and identify plausible conjectures through simulation. Perhaps surprisingly,
the tools for an effective simulation of such complex geometric systems still need to be developed.

(3) Understanding geometric algorithms: the analysis of algorithms is an essential step in assessing
the strengths and weaknesses of algorithmic principles, and is crucial to guide the choices made
when designing a complex data processing pipeline. Any analysis must strike a balance between
realism and tractability; the current analyses of many geometric algorithms are notoriously un-
realistic. Aside from the purely scientific objectives, one of the main goals of Aspag is to bring
the communities closer in the long term. As a consequence, the funding of the project is crucial
to ensure that the members of the consortium will be able to interact on a very regular basis, a
necessary condition for significant progress on the above challenges.

Project website: members.loria.fr/Olivier.Devillers/aspag/.

ANR MinMax

Participants: Xavier Goaoc.

Title: MIN-MAX

Duration: 4 years

Starting date: January 1st, 2019

Coordinator: Stéphane Sabourau (Université Paris-Est Créteil)
Partners:

* Université Paris Est Créteil, Laboratoire d’Analyse et de Mathématiques Appliquées (LAMA).
Local coordinator: Stéphane Sabourau

¢ Université de Tours, Institut Denis Poisson. Local coordinator: Laurent Mazet. This node in-
cludes two participants from Nancy, Benoit Daniel (IECL) and Xavier Goaoc (Loria, GAMBLE).

Inria contact: Xavier Goaoc

Summary: The MinMax projet is funded by ANR under number ANR-19-CE40-0014

This collaborative research project aims to bring together researchers from various areas — namely,
geometry and topology, minimal surface theory and geometric analysis, and computational ge-
ometry and algorithms — to work on a precise theme around min-max constructions and waist
estimates.

Project website: perso.math.u-pem.fr/sabourau.stephane/min-max/min-max.html
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10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

Member of the organizing committees A. Mdélaga co-organized a Fabrikathon in Marseille, October
11-13, 2021; a workshop on design and production of mathematical objects.

Seminars Five virtual seminars were organized in the framework of the SoS project (web)

10.1.2 Journal

Member of the editorial boards Monique Teillaud is a managing editor of JoCG, Journal of Computa-
tional Geometry.

Reviewer - reviewing activities  All members of the team are regular reviewers for the journals of
our field, namely Discrete and Computational Geometry (DCG), Journal of Computational Geometry
(JoCG), International Journal on Computational Geometry and Applications (IJCGA), Journal on Symbolic
Computations (JSC), SIAM Journal on Computing (SICOMP), Mathematics in Computer Science (MCS),
SIAM Journal on Discrete Mathematics (SIDMA), etc.

10.1.3 Invited talks

Members of the team were invited to give a talk at the following venues: Stochastic Geometry Days (O.
Devillers, (web)), Séminaire francilien de géométrie algorithmique et combinatoire (M. Teillaud, (web)),
Journées Nationales de Calcul Formel 2021 (G. Moroz, (web)), Copenhagen-Jerusalem combinatorics
seminar (X. Goaoc, (web)), DGeCo seminar (X. Goaoc, (web)), Séminaire de systemes dynamiques de
I'IMT (Alba Mélaga, (web)), Séminaire commun de géometrie de 'lECL (Alba Mdlaga), Séminaire virtuel
francophone Groupes et Géométrie (Alba Mélaga, (web), as well as the seminars of the INRIA project
teams LFANT (X. Goaoc) and OURAGAN (M. Teillaud).

10.1.4 Leadership within the scientific community
Member of the editorial boards of software projects Marc Pouget and Monique Teillaud are members
of the CGAL editorial board.

10.1.5 Scientific expertise

Members of Gamble are occasionally reviewing proposals or applications for foreign research agencies
(e.g., FWE NWO, NSERC, ISE etc.) or foreign universities. We are not giving more details here to preserve

anonymity.

10.1.6 Research administration

Team members are involved in various committees managing the scientific life of the lab or at a national
level.

Hiring committees:
¢ M. Teillaud was a member of the admission committee for INRIA senior researchers (DR)

¢ M. Teillaud was a member of the hiring committee for a permanent engineer (IR) position at INRIA
Nancy - Grand Est

¢ X. Goaoc chaired the hiring committee for a position of Maitre de conférences at Université de
Lorraine.
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Local:

¢ S. Lazard is the chair of the LORIA department "Algorithms, computation, image and geometry”
and a member of the scientific council of LORIA,

¢ G.Morozis the chair of the Comité des utilisateurs des moyens informatiques of INRIA Nancy - Grand
Est,

e S.Lazard is the chair of the PhD and postdoc hiring committee of INRIA Nancy - Grand Est,
¢ M. Teillaud is the Scientific Advisor for Technologic Development of INRIA Nancy - Grand Est,

¢ Team members participate in several INRIA local commissions: Développement technologique (G.
Moroz), Commission de gestion AGOS (M. Pouget), CLHSCT (G. Moroz), Information et Edition
Scientifique (L. Dupont),

¢ Team members participate in various university councils: Pole AM2I de I’ Université de Lorraine (O.
Devillers), Bureau CMI Ecole doctorale IAEM (S. Lazard, X. Goaoc), Fédération Charles Hermite (X.
Goaoc),

¢ Team members participate in local councils: Comité de centre INRIA NAncy Grand - Est (X. Goaoc),
Conseil de laboratoire du LORIA (M. Teillaud).
National:

¢ S. Lazard is the chair of the INRIA Mission Jeunes Chercheurs.

10.2 Teaching - Supervision - Juries
10.2.1 Teaching Committees

¢ V. Despré: Head of the Engineer diploma speciality SIR, Systemes d’'Information et Réseaux, Poly-
tech Nancy, Université de Lorraine.

¢ L. Dupont is the secretary of Commission Pédagogique Nationale Carrieres Sociales / Information-
Communication / Métiers du Multimédia et de I'Internet (2017-2022).

¢ L. Dupont represents the Commission Pédagogique Nationale Carrieres Sociales / Information-
Communication / Métiers du Multimédia et de I'Internet at the national working group on D.U.T/B.U.T
reform

e L. Dupont: Head of the Bachelor diploma Licence Professionnelle Animateur, Facilitateur de
Tiers-lieux Eco-Responsables, Université de Lorraine,

¢ L. Dupont: Responsible of fablab "Charlylab" of I.U.T. Nancy-Charlemagne,

¢ X. Goaoc is a member of the Conseil d’administration de 1'Ecole des Mines.

10.2.2 Teaching
* Licence: V. Despré, Programmation orientée objet, 62h, 1.2, Polytech Nancy, France.
¢ Licence: V. Despré, Algorithmique, 66h, L3, Polytech Nancy, France.
e Master: V. Despré, Programmation réseau, 68h, M1, Polytech Nancy, France.
e Master: V. Despré, Algorithmique distribuée, 48h, M1, Polytech Nancy, France.

e Master: O. Devillers, Modeles d’environnements, planification de trajectoires, 18h, M2 AVR, Univer-
sité de Lorraine, France (web).

e Licence: C. Duménil, Découverte de l'informatique, 103h, L1, Polytech Nancy, France.
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Licence: C. Duménil, Algorithmique, 81h, 1.2, Polytech Nancy, France.

Master: C. Duménil, Jury Projets J2E, 8h, M1, Polytech Nancy, France.

Licence: L. Dupont, Web development, 35h, L1, Université de Lorraine, France.

Licence: L. Dupont, Web development, 150h, L2, Université de Lorraine, France.

Licence: L. Dupont Web development and Social networks 100h L3, Université de Lorraine, France.
Licence: L. Dupont, 3D printing and CAO L3, Université de Lorraine, France.

Licence : X. Goaoc, Operation research, 18 HETD, L3, Ecole des Mines de Nancy, France.

Licence : X. Goaoc, Algorithms, 28 HETD, L3, Ecole des Mines de Nancy, France.

Master: X. Goaoc, Algorithms, 12 HETD, M1, Ecole des Mines de Nancy, France.

Master: X. Goaoc, Computer architecture, 32 HETD, M1, Ecole des Mines de Nancy Nancy, France.

Master: X. Goaoc, Introduction to blockchains, 60 HETD, M1, Ecole des Mines de Nancy + Polytech
Nancy, France.

Licence: B. Kolbe, Algorithmique, 42 HETD, L3, Polytech Nancy.

Master, A. Mdlaga, Mathematical software, course in the Master in Mathematics at University of
Granada, invited lecturer, 10h, Spain (taught online in 2021).

Licence: A. Mélaga, Information systems and databases, 86h, L1, Université de Lorraine, France.

Master: M. Pouget, Introduction to computational geometry, 10.5h, M2, Ecole Nationale Supérieure
de Géologie, France.

Licence : G. Moroz, Programmation et structures de données, 20 HETD, L3, Ecole des Mines de
Nancy, France.

10.2.3 Supervision

PhD: George Krait, Isolating the singularities of the plane projection of generic space curves and
applications in robotics, defended on May 4th, supervised by Sylvain Lazard, Guillaume Moroz and
Marc Pouget.

PhD in progress: Charles Duménil, Probabilistic analysis of geometric structures, started in Oct.
2016, supervised by Olivier Devillers.

PhD in progress: Nuwan Herath, Fast algorithm for the visualization of surfaces, started in Nov.
2019, supervised by Sylvain Lazard, Guillaume Moroz and Marc Pouget.

PhD in progress: Léo Valque, Rounding 3D meshes, started in Sept. 2020, supervised by Sylvain
Lazard.

PhD in progress: Matthias Fresacher, A toolbox for hyperbolic surfaces, started in Nov. 2021,
supervised by Monique Teillaud and Vincent Despré.

10.2.4 Juries

0. Devillers was a member of the PhD defense committee of Loic Crombez, Université Clermont
Auvergne.

M. Teillaud chaired the Habilitation defense committee of Jeanne Pellerin, Université de Lorraine

M. Teillaud chaired the PhD defense committee of Thomas Magnard, Université Gustave Eiffel,
Marne-la-Vallée

X. Goaoc was a member of the PhD defense committee of Matthijs Ebbens, Groningen University.
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10.3 Popularization
10.3.1 Articles and contents

A. Mélaga co-authored the winning image in the competition marking the 40th anniversary of the
mathematical meeting center CIRM, related to the non-euclidean geometry research questions treated in
the Gamble team.

10.3.2 Education

¢ O. Devillers and M. Teillaud went to highschools to introduce research in computer science, in the
framework of the program Chiche (web).

* G. Moroz is a member of the Mathematics Olympiads committee of the Nancy-Metz academy.

e A.Maélaga is a member of the scientific council of the "Maths en scene" association.

11 Scientific production

11.1 Major publications

[1] N.Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill and M. Smid. ‘Improved Routing on the
Delaunay Triangulation’. In: ESA 2018 - 26th Annual European Symposium on Algorithms. Helsinki,
Finland, 2018. DOI: 10.4230/LIPIcs.ESA.2018.22. URL: https://hal.archives-ouvertes
.fr/hal-01881280.

[2] N.Chenavier and O. Devillers. ‘Stretch Factor in a Planar Poisson-Delaunay Triangulation with a
Large Intensity’. In: Advances in Applied Probability 50.1 (2018), pp. 35-56. DOI: 10.1017/apr.201
8.3.URL:https://hal.inria.fr/hal-01700778.

[3] V. Despré, J.-M. Schlenker and M. Teillaud. ‘Flipping Geometric Triangulations on Hyperbolic
Surfaces’. In: SoCG 2020 - 36th International Symposium on Computational Geometry. Zurich,
Switzerland, 2020. DoI1: 10.4230/LIPIcs.SoCG.2020.35. URL: https://hal.inria.fr/hal-0
2886493.

[4] O.Devillers, S. Lazard and W. Lenhart. ‘Rounding meshes in 3D’. In: Discrete and Computational
Geometry (Apr. 2020). DOI: 10.1007/s00454-020-00202-2. URL: https://hal.inria.fr/hal-
02549290.

[5] X. Goaoc, P. Patdk, Z. Patdkové, M. Tancer and U. Wagner. ‘Shellability is NP-complete’. In: Journal
of the ACM (JACM) 66.3 (2019). DOI: 10.1145/3314024. URL: https://hal.inria.fr/hal-020
50505.

[6] X.Goaoc and E. Welzl. ‘Convex Hulls of Random Order Types’. In: SoCG 2020 - 36th International
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