RESEARCH CENTRE 2021

Paris ACTIVITY REPORT

Project-Team

PROSECCO

Programming securely with cryptography

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME
Security and Confidentiality

Contents

Project-Team PROSECCO 1
1 Team members, visitors, external collaborators 3
2 Overall objectives 4
2.1 Programming securely with cryptography 4
3 Research program 5
3.1 Symbolic verification of cryptographic applications 5
3.2 Computational verification of cryptographic applications 6
3.3 F*: A Higher-Order Effectful Language for Program Verification 7
3.4 Efficient Formally Secure Compilers to a Tagged Architecture 7
3.5 Provablysecure web applications 8

3.6 Design and Verification of next-generation protocols: identity, blockchains, and messaging 8

Application domains 9
4.1 High-Assurance Cryptographic Libraries 9
4.2 Design and Analysis of Protocol Standards 9
4.3 Webapplication Security o v vt it e e e e e e e e e 9
Social and environmental responsibility 9
5.1 Footprintofresearch activities o 9
Highlights of the year 9
New software and platforms 10
7.1 Newsoftwaret it e e e e e e e 10
7.1.1 CryptoVerif e 10
2 O 11
7.1.3 miTLS. . .o e e 11
7.1.4 ProVerif. e 11
7.1.5 HACL® .« .o e e 12
7.1.6 mlang e e e e e e e 13
7.01.7 HACSPEC . . . o o o o e e e e e e e e e e e e e e e e 13
718 Catala. o 13
7.1.9 EBaSyCrypl. . . o v vttt i e e e e e e e e e 14
7.1.10 Squirrel L e e e e e e 14
7.2 Newplatforms o oo i e e e e e e e e e e 15
New results 15
8.1 Surveyon computer-aided cryptography e 15
8.2 Verification of security protocols in the symbolic model: tool ProVerif 15
8.3 Verification of security protocols in the computational model: tool CryptoVerif 15
8.4 Verification of Security Protocols in the Computational Model: Squirrel 16
8.5 Mechanized Complexity Proofs for Cryptographic Reductions 16
8.6 Journal Paper: DecidabilityResult 17
8.7 High-Assurance High-Performance Crypto 17
8.8 Verification of cryptographic protocol implementations in the symbolic model: the DY*
framework L e e 18
8.9 ExtensionstoF* 18
8.10 Formalizing and Implementing Tax Lawottt n it 18
Bilateral contracts and grants with industry 19

9.1 Bilateral grantswithindustry e 19

10 Partnerships and cooperations
10.1 National initiatives ot e e
10.1.1 ANR . . o e e e e

11 Dissemination
11.1 Promoting scientificactivities L L. L e
11.1.1 Scientific events: organisation e e
11.1.2 Scientific events: selection i e
11.1.3 Journal e e e e e e e e e
11.1.4 Invited talks o o e e e e e e e e e e e
11.1.5 Scientific eXpertise v v v v i i e e e e e
11.1.6 Research administration v v i it it et e et e e
11.2 Teaching - Supervision - Juries o v i i it e et
11.2.1 Teaching o o e e e e e e e e e e e
11.2.2 SUPETIVISION . . . v v v it e e e e e e e e e e e e e e e e e e e
1123 JUIIES . . v v e o i e
11.3 Popularization v it it e e e e e e e e e e e e e e e e e e
11.3.1 INterventions v v i v it i e e e e e e e e e e e e e e

12 Scientific production
12.1 Major publications e e e e e
12.2 Publicationsof theyear it
12.3 Cited publications o it it e e e e e e e

Project PROSECCO

Project-Team PROSECCO

Creation of the Project-Team: 2012 July 01

Keywords

Computer sciences and digital sciences

Al.1. - Architectures

Al.1.8. — Security of architectures
Al.2. — Networks

A1.2.8. — Network security

Al.3. - Distributed Systems

A2. - Software

A2.1. - Programming Languages
A2.1.1. - Semantics of programming languages
A2.1.4. — Functional programming
A2.1.7. - Distributed programming
A2.1.11. - Proof languages

A2.2. - Compilation

A2.2.1. - Static analysis

A2.2.5. — Run-time systems

A2.4. - Formal method for verification, reliability, certification
A2.4.2. —Model-checking

A2.4.3. —Proofs

A2.5. — Software engineering

A4. - Security and privacy

A4.3. - Cryptography

A4.3.3. - Cryptographic protocols
A4.5. — Formal methods for security
A4.6. - Authentication

A4.8. — Privacy-enhancing technologies
Other research topics and application domains

B6. — IT and telecom

B6.1. — Software industry
B6.1.1. — Software engineering
B6.3. - Network functions
B6.3.1. - Web

B6.3.2. — Network protocols
B6.4. — Internet of things

https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/OtherResearchTopicsandApplicationDomains.html

Inria Annual Report 2021

B9. — Society and Knowledge
B9.10. — Privacy

Project PROSECCO

1 Team members, visitors, external collaborators

Research Scientists

e Karthikeyan Bhargavan [Team leader, Inria, Senior Researcher, HDR]

¢ Bruno Blanchet [Inria, Senior Researcher, HDR]

¢ Vincent Cheval [Inria, Researcher]

¢ Adrien Koutsos [Inria, Researcher]

¢ Prasad Naldurg [Inria, Advanced Research Position, Jan 2021]

¢ Exequiel Rivas Gadda [Inria, Starting Research Position, until Feb 2021]

¢ Kristina Sojakova [Inria, Starting Research Position]

Post-Doctoral Fellow

¢ Aymeric Fromherz [Inria, from Oct 2021]

PhD Students

¢ Son Ho [Inria]

¢ Natalia Kulatova [Inria, until Oct 2021]

¢ Theo Laurent [Inria]

¢ Benjamin Lipp [Inria]

¢ Denis Merigoux [Inria]

e Marina Polubelova [Inria, until May 2021]

¢ Theophile Wallez [Inria, from Apr 2021]

Technical Staff

¢ Florian Groult [Inria, Engineer, until Oct 2021]

¢ Theophile Wallez [Inria, Engineer, until Mar 2021]

Interns and Apprentices

* Alain Delaet-Tixeuil [Ecole Normale Supérieure de Lyon, from Oct 2021]
¢ Paul Nicolas Madelaine [Inria, from Apr 2021 until Aug 2021]
¢ Antonin Reitz [Inria, from Oct 2021]

e Justine Sauvage [Inria, from Oct 2021]

Administrative Assistants

¢ Christelle Guiziou [Inria]
e Mathieu Mourey [Inria, until Oct 2021]

¢ Scheherazade Rouag [Inria, from Oct 2021]

4 Inria Annual Report 2021

Visiting Scientist

 Aymeric Fromherz [Ecole Normale Supérieure de Lyon, Sep 2021]

External Collaborators

¢ Benjamin Beurdouche [Mozilla]
¢ Adrien Durier [Max Planck Society, until Jun 2021]
¢ Marina Polubelova [Nomadic Labs, from Jun 2021]

¢ Jonathan Protzenko [Microsoft Research]

2 Overall objectives

2.1 Programming securely with cryptography

In recent years, an increasing amount of sensitive data is being generated, manipulated, and accessed
online, from bank accounts to health records. Both national security and individual privacy have come to
rely on the security of web-based software applications. But even a single design flaw or implementation
bug in an application may be exploited by a malicious criminal to steal, modify, or forge the private
records of innocent users. Such attacks are becoming increasingly common and now affect millions of
users every year.

The risks of deploying insecure software are too great to tolerate anything less than mathematical
proof, but applications have become too large for security experts to examine by hand, and automated
verification tools do not scale. Today, there is not a single widely-used web application for which we can
give a proof of security, even against a small class of attacks. In fact, design and implementation flaws are
still found in widely-distributed and thoroughly-vetted security libraries designed and implemented by
experts.

Software security is in crisis. A focused research effort is needed if security programming and analysis
techniques are to keep up with the rapid development and deployment of security-critical distributed
applications based on new cryptographic protocols and secure hardware devices. The goal of our team
PROSECCO is to draw upon our expertise in cryptographic protocols and program verification to make
decisive contributions in this direction.

Our vision is that, over its lifetime, PROSECCO will contribute to making the use of formal techniques
when programming with cryptography as natural as the use of a software debugger. To this end, our
long-term goals are to design and implement programming language abstractions, cryptographic mod-
els, verification tools, and verified security libraries that developers can use to deploy provably secure
distributed applications. Our target applications include cryptographic libraries, network protocol im-
plementations, web applications, and cloud-based web services. In particular, we aim to verify full
software applications, including both the cryptographic core and the high-level application code. Further-
more, we aim to verify implementations, not just models. Finally, we aim to account for computational
cryptography, not just its symbolic abstraction.

We identify five key focus areas for our research in the short- to medium term.

New programming languages for verified software Building realistic verified applications requires
new programming languages that enable the systematic development of efficient software hand-in-hand
with their proofs of correctness. Our current focus is on designing and implementing the programming
language F*, in collaboration with Microsoft Research. F* (pronounced F star) is a general-purpose
functional programming language with a state-of-the-art type-and-effect system aimed at program
verification. Its type system includes polymorphism, dependent types, monadic effects, refinement types,
and a weakest precondition calculus. Together, these features allow expressing precise and compact
specifications for programs, including functional correctness and security properties. The F* type-checker
aims to prove that programs meet their specifications using a combination of SMT solving and interactive
proofs. Programs written in F* can be translated to efficient OCaml, F#, or C for execution. The main

Project PROSECCO 5

ongoing use case of F* in our group is HACL*, a verified cryptographic library, and DY*, a framework for
verifying protocol implementations.

Symbolic verification of cryptographic applications We aim to develop our own security verification
tools for models and implementations of cryptographic protocols and security APIs using symbolic
cryptography. Our starting point is the tools we have previously developed: the specialized cryptographic
prover ProVerif and the F* verification system. These tools are already used to verify industrial-strength
cryptographic protocol implementations and commercial cryptographic hardware. We plan to extend
and combine these approaches to capture more sophisticated attacks on applications consisting of
protocols, software, and hardware, as well as to prove symbolic security properties for such composite
systems.

Computational verification of cryptographic applications We aim to develop our own cryptographic
application verification tools that use the computational model of cryptography. The tools include the
computational prover CryptoVerif, and the F* verification system. Working together, we plan to extend
these tools to analyze, for the first time, cryptographic protocols, security APIs, and their implementations
under fully precise cryptographic assumptions. We also plan to pursue links between symbolic and
computational verification, such as computational soundness results that enable computational proofs
by symbolic techniques.

Efficient formally secure compilers for tagged architectures We aim to leverage emerging hardware
capabilities for fine-grained protection to build the first, efficient secure compilation chains for realistic
low-level programming languages (the C language, and Low* a safe subset of C embedded in F* for
verification). These compilation chains will provide a secure semantics for all programs and will ensure
that high-level abstractions cannot be violated even when interacting with untrusted low-level code. To
achieve this level of security without sacrificing efficiency, our secure compilation chains target a tagged
architecture, which associates a metadata tag to each word and efficiently propagates and checks tags
according to software-defined rules.

Building provably secure web applications We aim to develop analysis tools and verified libraries to
help programmers build provably secure web applications. The tools will include static and dynamic
verification tools for client- and server-side JavaScript web applications, their verified deployment within
HTML5 websites and browser extensions, as well as type-preserving compilers from high-level appli-
cations written in F* to JavaScript. In addition, we plan to model new security APIs in browsers and
smartphones and develop the first formal semantics for various HTML5 web standards. We plan to
combine these tools and models to analyze the security of multi-party web applications, consisting of
clients on browsers and smartphones, and servers in the cloud.

3 Research program

3.1 Symbolic verification of cryptographic applications

Despite decades of experience, designing and implementing cryptographic applications remains danger-
ously error-prone, even for experts. This is partly because cryptographic security is an inherently hard
problem, and partly because automated verification tools require carefully-crafted inputs and are not
widely applicable. To take just the example of TLS, a widely-deployed and well-studied cryptographic
protocol designed, implemented, and verified by security experts, the lack of a formal proof about all its
details has regularly led to the discovery of major attacks (including several in PROSECCO) on both the
protocol and its implementations, after many years of unsuspecting use.

As a result, the automated verification for cryptographic applications is an active area of research,
with a wide variety of tools being employed for verifying different kinds of applications.

In previous work, we have developed the following approaches:

¢ ProVerif: a symbolic prover for cryptographic protocol models

6 Inria Annual Report 2021

¢ F*: anew language that enables the verification of cryptographic applications

Verifying cryptographic protocols with ProVerif Given a model of a cryptographic protocol, the prob-
lem is to verify that an active attacker, possibly with access to some cryptographic keys but unable to guess
other secrets, cannot thwart security goals such as authentication and secrecy [57]; it has motivated a
serious research effort on the formal analysis of cryptographic protocols, starting with [49] and eventually
leading to effective verification tools, such as our tool ProVerif.

To use ProVerif, one encodes a protocol model in a formal language, called the applied pi-calculus,
and ProVerif abstracts it to a set of generalized Horn clauses. This abstraction is a small approximation: it
just ignores the number of repetitions of each action, so ProVerif is still very precise, more precise than,
say, tree automata-based techniques. The price to pay for this precision is that ProVerif does not always
terminate; however, it terminates in most cases in practice, and it always terminates on the interesting
class of tagged protocols [46]. ProVerif can handle a wide variety of cryptographic primitives, defined
by rewrite rules or by some equations, and prove a wide variety of security properties: secrecy [43, 29],
correspondences (including authentication) [44], and observational equivalences [45]. Observational
equivalence means that an adversary cannot distinguish two processes (protocols); equivalences can be
used to formalize a wide range of properties, but they are particularly difficult to prove. Even if the class
of equivalences that ProVerif can prove is limited to equivalences between processes that differ only by
the terms they contain, these equivalences are useful in practice and ProVerif has long been the only tool
that proves equivalences for an unbounded number of sessions. (Maude-NPA in 2014 and Tamarin in
2015 adopted ProVerif’s approach to proving equivalences.)

Using ProVerif, it is now possible to verify large parts of industrial-strength protocols, such as TLS
[38], Signal [53], JFK [30], and Web Services Security [42], against powerful adversaries that can run
an unlimited number of protocol sessions, for strong security properties expressed as correspondence
queries or equivalence assertions. ProVerif is used by many teams at the international level, and has been
used in more than 140 research papers (references).

Verifying cryptographic applications using F* Verifying the implementation of a protocol has tradi-
tionally been considered much harder than verifying its model. This is mainly because implementations
have to consider real-world details of the protocol, such as message formats [61], that models typically
ignore. So even if a protocol has been proved secure in theory, its implementation may be buggy and
insecure. However, with recent advances in both program verification and symbolic protocol verification
tools, it has become possible to verify fully functional protocol implementations in the symbolic model.
One approach is to extract a symbolic protocol model from an implementation and then verify the model,
say, using ProVerif. This approach has been quite successful, yielding a verified implementation of TLS in
F# [41]. However, the generated models are typically quite large and whole-program symbolic verification
does not scale very well.

An alternate approach is to develop a verification method directly for implementation code, using
well-known program verification techniques. Our current focus is on designing and implementing the
programming language F* [63, 33, 55], in collaboration with Microsoft Research. F* is an ML-like func-
tional programming language aimed at program verification. Its type system includes polymorphism,
dependent types, monadic effects, refinement types, and a weakest precondition calculus. Together,
these features allow expressing precise and compact specifications for programs, including functional
correctness and security properties. The F* type-checker aims to prove that programs meet their spec-
ifications using a combination of SMT solving and interactive proofs. Programs written in F* can be
translated to efficient OCaml, F#, or C for execution [60]. The main ongoing use case of F* is building a
verified, drop-in replacement for the whole HTTPS stack in Project Everest [39] (a larger collaboration
with Microsoft Research). This includes a verified implementation of TLS 1.2 and 1.3 [40] and of the un-
derlying cryptographic primitives [65]. More recently, we have built a new symbolic protocol verification
framework in F* called DY* [19] and used it to verify protocols like Signal and ACME [18].

3.2 Computational verification of cryptographic applications

Proofs done by cryptographers in the computational model are mostly manual. Our goal is to provide
computer support to build or verify these proofs. In order to reach this goal, we have designed the

http://proverif.inria.fr/proverif-users.html

Project PROSECCO 7

automatic tool CryptoVerif, which generates proofs by sequences of games. We already applied it to
important protocols such as TLS [38] and Signal [53] but more work is still needed in order to develop this
approach, so that it is easier to apply to more protocols.

Another tool we develop, called the Squirrel Prover, uses a symbolic approach called the compuata-
tionally complete symbolic adversary (CCSA) [36] to verify cryptographic protocols in the computational
model. Squirrel is an interactive theorem prover, hence provides less automation than CryptoVerif, but
allows the user to guide the proof more easily when complex arguments are needed; and it is better-suited
for some protocols, notably for stateful protocols.

A third approach is to directly verify executable cryptographic code by typing. A recent work [50] shows
how to use refinement typechecking to prove computational security for protocol implementations. In
this method, henceforth referred to as computational F*, typechecking is used as the main step to justify
a classic game-hopping proof of computational security. The correctness of this method is based on a
probabilistic semantics of F# programs and crucially relies on uses of type abstraction and parametricity
to establish strong security properties, such as indistinguishability.

In principle, the three approaches—game-based proofs in CryptoVerif, interactive proofs in Squirrel,
and typechecking proofs in F*—are complementary. Understanding how to combine these approaches
remains an open and active topic of research. For example, CryptoVerif can generate OCaml implementa-
tions from CryptoVerif specifications that have been proved secure [47]. We are currently working on this
approach to generate implementations in F*.

3.3 F*: A Higher-Order Effectful Language for Program Verification

F* [63, 33] is a verification system for effectful programs developed collaboratively by Inria and Microsoft
Research. It puts together the automation of an SMT-backed deductive verification tool with the expres-
sive power of a proof assistant based on dependent types. After verification, F* programs can be extracted
to efficient OCaml, F#, or C code [60]. This enables verifying the functional correctness and security of
realistic applications. F*’s type system includes dependent types, monadic effects, refinement types, and
a weakest precondition calculus. Together, these features allow expressing precise and compact specifica-
tions for programs, including functional correctness and security properties. The F* type-checker aims to
prove that programs meet their specifications using a combination of SMT solving and interactive proofs.
The main ongoing use case of F* is building a verified, drop-in replacement for the whole HTTPS stack
in Project Everest. This includes verified implementations of TLS 1.2 and 1.3 [40] and of the underlying
cryptographic primitives [65, 59, 58].

3.4 Efficient Formally Secure Compilers to a Tagged Architecture

Severe low-level vulnerabilities abound in today’s computer systems, allowing cyber-attackers to remotely
gain full control. This happens in big part because our programming languages, compilers, and architec-
tures were designed in an era of scarce hardware resources and too often trade off security for efficiency.
The semantics of mainstream low-level languages like C is inherently insecure, and even for safer lan-
guages, establishing security with respect to a high-level semantics does not guarantee the absence of
low-level attacks. Secure compilation using the coarse-grained protection mechanisms provided by
mainstream hardware architectures would be too inefficient for most practical scenarios.

We aim to leverage emerging hardware capabilities for fine-grained protection to build the first,
efficient secure compilation chains for realistic low-level programming languages (the C language, and
Low* a safe subset of C embedded in F* for verification [60]). These compilation chains will provide a
secure semantics for all programs and will ensure that high-level abstractions cannot be violated even
when interacting with untrusted low-level code. To achieve this level of security without sacrificing
efficiency, our secure compilation chains target a tagged architecture [35], which associates a metadata
tag to each word and efficiently propagates and checks tags according to software-defined rules. We
hope to experimentally evaluate and carefully optimize the efficiency of our secure compilation chains
on realistic workloads and standard benchmark suites. We are also using property-based testing and
formal verification to provide high confidence that our compilation chains are indeed secure. Formally,
we are constructing machine-checked proofs of a new security criterion we call robustly safe compilation,
which is defined as the preservation of safety properties even against an adversarial context [32, 31]. This

8 Inria Annual Report 2021

strong criterion complements compiler correctness and ensures that no machine-code attacker can do
more harm to securely compiled components than a component already could with respect to a secure
source-level semantics.

3.5 Provably secure web applications

Web applications are fast becoming the dominant programming platform for new software, probably
because they offer a quick and easy way for developers to deploy and sell their apps to a large number
of customers. Third-party web-based apps for Facebook, Apple, and Google, already number in the
hundreds of thousands and are likely to grow in number. Many of these applications store and manage
private user data, such as health information, credit card data, and GPS locations. To protect this
data, applications tend to use an ad hoc combination of cryptographic primitives and protocols. Since
designing cryptographic applications is easy to get wrong even for experts, we believe this is an opportune
moment to develop security libraries and verification techniques to help web application programmers.

As a typical example, consider commercial password managers, such as LastPass, RoboForm, and
1Password. They are implemented as browser-based web applications that, for a monthly fee, offer to
store a user’s passwords securely on the web and synchronize them across all of the user’s computers
and smartphones. The passwords are encrypted using a master password (known only to the user) and
stored in the cloud. Hence, no-one except the user should ever be able to read her passwords. When the
user visits a web page that has a login form, the password manager asks the user to decrypt her password
for this website and automatically fills in the login form. Hence, the user no longer has to remember
passwords (except her master password) and all her passwords are available on every computer she uses.

Password managers are available as browser extensions for mainstream browsers such as Firefox,
Chrome, and Internet Explorer, and as downloadable apps for Android and Apple phones. So, seen as a
distributed application, each password manager application consists of a web service (written in PHP or
Java), some number of browser extensions (written in JavaScript), and some smartphone apps (written
in Java or Objective C). Each of these components uses a different cryptographic library to encrypt and
decrypt password data. How do we verify the correctness of all these components?

We propose three approaches. For client-side web applications and browser extensions written in
JavaScript, we propose to build a static and dynamic program analysis framework to verify security
invariants. To this end, we have developed two security-oriented type systems for JavaScript, Defensive
JavaScript [48] and TS* [62], and used them to guarantee security properties for a number of JavaScript
applications. For Android smartphone apps and web services written in Java, we propose to develop
annotated JML cryptography libraries that can be used with static analysis tools like ESC/Java to verify
the security of application code. For clients and web services written in F# for the .NET platform, we
propose to use F* to verify their correctness. We also propose to translate verified F* web applications to
JavaScript via a verified compiler that preserves the semantics of F* programs in JavaScript.

3.6 Design and Verification of next-generation protocols: identity, blockchains, and
messaging

Building on our work on verifying and re-designing pre-existing protocols like TLS and Web Security
in general, with the resources provided by the NEXTLEAP project, we are working on both designing
and verifying new protocols in rapidly emerging areas like identity, blockchains, and secure messaging.
These are all areas where existing protocols, such as the heavily used OAuth protocol, are in need of
considerable re-design in order to maintain privacy and security properties. Other emerging areas, such
as blockchains and secure messaging, can have modifications to existing pre-standard proposals or even
a complete 'clean slate’ design. As shown by Prosecco’s work, newer standards, such as IETF OAuth, W3C
Web Crypto, and W3C Web Authentication API, can have vulnerabilities fixed before standardization is
complete and heavily deployed. We hope that the tools used by Prosecco can shape the design of new
protocols even before they are shipped to standards bodies. We are currently contributing to the design
and analysis of new extensions to the TLS protocol, such as Encrypted Client Hello, new secure messaging
protocol such as IETF Messaging Layer Security (MLS), and to IoT protocols like the IETF Lightweight
Authenticated Key Exchange (LAKE).

Project PROSECCO 9

4 Application domains

4.1 High-Assurance Cryptographic Libraries

Cryptographic libraries implement algorithms for symmetric and asymmetric encryption, digital sig-
natures, message authentication, hashing, and key exchange. Popular libraries like OpenSSL, NSS, and
BoringSSL are widely used in web browsers, operating system, and cloud services. We aim to apply
our tools and verification techniques to build high-assurance high-performance cryptographic libraries
that can be deployed in mainstream software applications. Our flagship project is HACL*, a verified
cryptographic library that is written in the F* programming language.

4.2 Design and Analysis of Protocol Standards

Cryptographic protocol standards such as TLS, SSH, IPSec, and Kerberos are the trusted base on which
the security of modern distributed systems is built. Our work enables the analysis and verification of
such protocols, both in their design and implementation. We participate in standards organizations
like the IETF and collaborate with industry groups to help them design and deploy secure protocols.
For example, we built and verified models and reference implementations for the well-known TLS 1.3
protocol, using our tools ProVerif and CryptoVerif, before it was standardaized at he IETF and contributed
to the protocol’s final design.

4.3 Web application security

Web applications use a variety of cryptographic techniques to securely store and exchange sensitive data
for their users. For example, a website may serve pages over HTTPS, authenticate users with a single
sign-on protocol such as OAuth, encrypt user files on the server-side using XML encryption, and deploy
client-side cryptographic mechanisms using a JavaScript cryptographic library. The security of these
applications depends on the public key infrastructure (X.509 certificates), web browsers’ implementation
of HTTPS and the same origin policy (SOP), the semantics of JavaScript, HTMLS5, and their various
associated security standards, as well as the correctness of the specific web application code of interest.
We build analysis tools to find bugs in all these artifacts and verification tools that can analyze commercial
web applications and evaluate their security against sophisticated web-based attacks.

5 Social and environmental responsibility

5.1 Footprint of research activities

Our team’s work focuses on the design, analysis, and implementation of cryptographic protocols. As such,
we are dedicated to improving the security and privacy of all Web users. The output of our research is
used, for example, to protect HTTPS connections used daily by millions of Mozilla Firefox users. On the
whole, we strive to perform ethical research that improves the digital lives of citizens everywhere.

Our research does not by itself have any environmental impact, but our team does travel to con-
ferences, and we regularly host international visitors, which incurs multiple international flights each
year.

6 Highlights of the year

This year we published 12 peer-reviewed papers, including four papers at IEEE Security and Privacy (S&P)
and one paper each at ACM Conference on Computer and Communications Security (CCS), Eurocrypt,
and ICFP. We would like to highlight two of these publications.

We published a paper at IEEE S&P [20] that presents major improvements in the protocol verifier
ProVerif. First, we extend ProVerif with lemmas, axioms, proofs by induction, natural numbers, and
temporal queries. These features not only extend the scope of ProVerif, but can also be used to improve its
precision (that is, avoid false attacks) and make it terminate more often. Second, we rework and optimize

10 Inria Annual Report 2021

many of the algorithms used in ProVerif (generation of clauses, resolution, subsumption, etc.), resulting
in impressive speed-ups on large examples.

We also presented a new tool, the Squirrel Prover, for the computational verification of security
protocols at IEEE S&P [14]. This tool is based upon a meta-logic as well as a proof system for deriving
security of protocols with an arbitrary number of sessions. Proofs in our system only deal with high-level,
symbolic representations of protocol executions, similar to proofs in the symbolic model, but providing
security guarantees at the computational level. We demonstrate the applicability of the Squirrel prover by
performing a number of case studies covering a variety of primitives (encryption, DH exponentiation,
etc.) and security properties (secrecy, unlinkability, etc.)

7 New software and platforms

7.1 New software
7.1.1 CryptoVerif

Name: Cryptographic protocol verifier in the computational model
Keywords: Security, Verification, Cryptographic protocol

Functional Description: CryptoVerifis an automatic protocol prover sound in the computational model.
In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing
machine. CryptoVerif can prove secrecy and correspondences, which include in particular authen-
tication. It provides a generic mechanism for specifying the security assumptions on cryptographic
primitives, which can handle in particular symmetric encryption, message authentication codes,
public-key encryption, signatures, hash functions, and Diffie-Hellman key agreements. It also
provides an explicit formula that gives the probability of breaking the protocol as a function of the
probability of breaking each primitives, this is the exact security framework.

News of the Year: The main new features of the year are:

1) Improved the precision of the computation of probabilities, to get better bounds on the probabil-
ity of success of an attack.

2) Extended the language for specifying assumptions on security primitives: we allow comparisons
between array indices used in the "find" construct and we allow tables (instructions "insert" and
"get") as a more user-friendly alternative to "find".

3) Extended the language of games, by allowing random number generation (instruction "new")
and events that stop the game (instruction "event_abort") in conditions of "find". Also added the
instruction "get[unique]" which looks for elements in a table and fails in case several elements
satisfy the desired condition, this instruction is translated into "find[unique]" at the beginning
of the game transformations. CryptoVerif now proves that the "get[unique]" and "find[unique]"
are really unique in the first game, that is, except in cases of negigible probability, there is a single
element that satisfies the desired condition.

4) Calls to probability functions are now type-checked.

5) Some improvements in the specifications of Diffie-Hellman assumptions in the standard library
of cryptographic primitives.

These changes are included in CryptoVerif version 2.05 available at https://cryptoverif.inria.fr.
URL: http://cryptoverif.inria.fr/

Publications: hal-03113251, hal-03471218, hal-01947959, hal-01764527, hal-02396640, hal-02100345,
tel-01112630, hal-01102382, hal-01528752, hal-01575920, hal-01575861, hal-01575923

Contact: Bruno Blanchet

Participants: Bruno Blanchet, David Cadé

http://cryptoverif.inria.fr/
https://hal.inria.fr/hal-03113251
https://hal.inria.fr/hal-03471218
https://hal.inria.fr/hal-01947959
https://hal.inria.fr/hal-01764527
https://hal.inria.fr/hal-02396640
https://hal.inria.fr/hal-02100345
https://hal.inria.fr/tel-01112630
https://hal.inria.fr/hal-01102382
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575923

Project PROSECCO 11

7.1.2 F*

Name: FStar
Keywords: Programming language, Software Verification

Functional Description: F*is a new higher order, effectful programming language (like ML) designed
with program verification in mind. Its type system is based on a core that resembles System Fw
(hence the name), but is extended with dependent types, refined monadic effects, refinement types,
and higher kinds. Together, these features allow expressing precise and compact specifications
for programs, including functional correctness properties. The F* type-checker aims to prove that
programs meet their specifications using an automated theorem prover (usually Z3) behind the
scenes to discharge proof obligations. Programs written in F* can be translated to OCaml, F#, or
JavaScript for execution.

Release Contributions: New in 2020: F* continues to evolve and is actively developed on GitHub
(https://github.com/FStarLang/FStar). This year, we worked on reworking the stateful core of
F* using a new formal foundation called Steel (which was published at ICFP 2020) and on improv-
ing the libraries and tooling of F* to support meta-programming, which was heavily used in the
EverCrypt and HACLxN projects.

New in 2021: F* now has layered effects which were used in multiple projects, including to imple-
ment a symbolic protocol verification framework called DY*.

URL: https://www.fstar-lang.org/
Contact: Catalin Hritcu
Participants: Antoine Delignat-Lavaud, Catalin Hritcu, Cedric Fournet, Chantal Keller, Karthikeyan

Bhargavan, Pierre-Yves Strub

7.1.3 miTLS

Keywords: Cryptographic protocol, Software Verification

Functional Description: miTLS is a verified reference implementation of the TLS protocol. Our code
fully supports its wire formats, ciphersuites, sessions and connections, re-handshakes and resump-
tions, alerts and errors, and data fragmentation, as prescribed in the RFCs, it interoperates with
mainstream web browsers and servers. At the same time, our code is carefully structured to enable
its modular, automated verification, from its main API down to computational assumptions on its
cryptographic algorithms.

Release Contributions: New in 2020: In 2020, we continued work on the implementation and deploy-
ment of TLS 1.3 and the QUIC protocol, which internally uses TLS 1.3. We integrated the new
EverCrypt cryptographic provider to miTLS, resulting in significant performance improvements.
Finally, we deployed our code within Microsoft MsQuic (https://github.com/microsoft/msquic).

URL: https://github.com/mitls/mitls-fstar
Contact: Karthikeyan Bhargavan

Participants: Alfredo Pironti, Antoine Delignat-Lavaud, Cedric Fournet, Jean-Karim Zinzindohoué,
Karthikeyan Bhargavan, Pierre-Yves Strub, Santiago Zanella

7.1.4 ProVerif

Keywords: Security, Verification, Cryptographic protocol

https://www.fstar-lang.org/
https://github.com/mitls/mitls-fstar

12 Inria Annual Report 2021

Functional Description: ProVerif is an automatic security protocol verifier in the symbolic model (so
called Dolev-Yao model). In this model, cryptographic primitives are considered as black boxes.
This protocol verifier is based on an abstract representation of the protocol by Horn clauses. Its
main features are:

It can verify various security properties (secrecy, authentication, process equivalences).
It can handle many different cryptographic primitives, specified as rewrite rules or as equations.

It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded
message space.

News of the Year: Vincent Cheval and Bruno Blanchet finished their work on several extensions of
ProVerif: 1) support for integer counters, with incrementation and inequality tests, 2) lemmas and
axioms to give intermediate results to ProVerif, which it exploits to help proving subsequent queries,
by deriving additional information in the Horn clauses that it uses to perform the proofs, 3) proofs
by induction on the length of the trace, by giving as lemma the property to prove, but obviously
for strictly shorter traces, 4) temporal queries, which allow to order events. The soundness of
these features is proved (by hand). Moreover, they optimized many algorithms used in ProVerif
(generation of clauses, resolution, subsumption ...) resulting in impressive speedups on large
examples. These features are included in ProVerif 2.02pl1 and a paper by Bruno Blanchet, Vincent
Cheval, and Véronique Cortier has been published at Security and Privacy 2022.

URL: http://proverif.inria.fr/

Publications: hal-03366962, hal-01947972, hal-01423742, hal-01306440, hal-01423760, hal-01102136,
hal-01575920, hal-01528752, hal-01575923, hal-01527671, hal-01575861

Contact: Bruno Blanchet

Participants: Bruno Blanchet, Marc Sylvestre, Vincent Cheval

7.1.5 HACL*
Name: High Assurance Cryptography Library
Keywords: Cryptography, Software Verification

Functional Description: HACL* is a formally verified cryptographic library in F*, developed by the
Prosecco team at INRIA Paris in collaboration with Microsoft Research, as part of Project Everest.

HACL stands for High-Assurance Cryptographic Library and its design is inspired by discussions
at the HACS series of workshops. The goal of this library is to develop verified C reference imple-
mentations for popular cryptographic primitives and to verify them for memory safety, functional
correctness, and secret independence.

Release Contributions: New in 2020: In 2020, we worked on two major updates to the HACL* library

(1) EverCrypt: We built a new cryptographic provider called EverCrypt that combines verified C code
from HACL* with verified Intel assembly code from the Vale projects and integrates them under
a verified agile multiplexed API that seamlessly works across multiple platforms. The resulting
verified code provides best-in-class performance for popular primitives like AES-GCM and X25519.
This work resulted in a paper at IEEE S&P 2020 and a new HACL* release. The resulting code was
deployed in the Linux kernel, Mozilla Firefox, WireGuard VPN, and Microsoft MsQuic.

(2) HACLxN: We developed a new methodology for writing and verifying generic SIMD crypto
code that can be compiled to efficient code on multiple platforms that support vector instructions,
including ARM Neon and Intel AVX, AVX2, and AVX512. We used this methodology to develop
high-performance verified SIMD implementations for Chacha20-Poly1305, Blake2, and SHA-2.
This work resulted in a paper at ACM CCS 2020 and a new HACL* release. The resulting code is
deployed in Mozilla Firefox and Tezos Blockchain.

New in 2021: We added new primitives to HACL* including RSA-PSS and FFDHE, along with a
generic verified Bignum library. We also added support for IBMz and Power architectures.

http://proverif.inria.fr/
https://hal.inria.fr/hal-03366962
https://hal.inria.fr/hal-01947972
https://hal.inria.fr/hal-01423742
https://hal.inria.fr/hal-01306440
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01102136
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01527671
https://hal.inria.fr/hal-01575861

Project PROSECCO 13

URL: https://github.com/mitls/hacl-star

Contact: Karthikeyan Bhargavan

7.1.6 mlang
Name: Mlang
Keywords: Compilers, Legality

Functional Description: In France, income tax is computed from taxpayers’ individual returns, using an
algorithm that is authored, designed and maintained by the French Public Finances Directorate
(DGFiP). This algorithm relies on a legacy custom language and compiler originally designed in
1990, which unlike French wine, did not age well with time. Owing to the shortcomings of the input
language and the technical limitations of the compiler, the algorithm is proving harder and harder
to maintain, relying on ad-hoc behaviors and workarounds to implement the most recent changes
in tax law. Competence loss and aging code also mean that the system does not benefit from any
modern compiler techniques that would increase confidence in the implementation. We overhaul
this infrastructure and present Mlang, an open-source compiler toolchain whose goal is to replace
the existing infrastructure. Mlang is based on a reverse-engineered formalization of the DGFiP’s
system, and has been thoroughly validated against the private DGFiP test suite. As such, Mlang
has a formal semantics, eliminates previous handwritten workarounds in C, compiles to modern
languages (Python), and enables a variety of instrumentations, providing deep insights about the
essence of French income tax computation. The DGFiP is now officially transitioning to Mlang for
their production system.

Publications: hal-02320347, hal-03002266
Authors: Denis Merigoux, Raphaél Monat
Contact: Denis Merigoux

Partner: Direction Générale des Finances Publiques (DGFiP)

7.1.7 Hacspec
Keywords: Specification language, Rust

Functional Description: Hacspec is a domain specific language embedded inside Rust geared towards
cryptographic specifications. It allows easier communication between formal methods experts
and cryptographers that write their implementations in Rust. Hacspec compiles to various proof
backends including F* and Coq.

URL: https://hacspec.github.io/
Publication: hal-03176482
Contact: Karthikeyan Bhargavan

Partners: Concordium Blockchain Research Center, Aarhus University, Denmark, Université de Porto

7.1.8 Catala
Keywords: Domain specific, Programming language, Law

Functional Description: Catala is a domain-specific programming language designed for deriving
correct-by-construction implementations from legislative texts. Its specificity is that it allows
direct translation from the text of the law using a literate programming style, that aims to foster
interdisciplinary dialogue between lawyers and software developers. By enjoying a formal specifi-
cation and a proof-oriented design, Catala also opens the way for formal verification of programs
implementing legislative specifications.t

https://github.com/mitls/hacl-star
https://hal.inria.fr/hal-02320347
https://hal.inria.fr/hal-03002266
https://hacspec.github.io/
https://hal.inria.fr/hal-03176482

14 Inria Annual Report 2021

Release Contributions: Changelog:

- Performance improvements - Better error message formatting - New Markdown syntax - Better
lexer factorization - ...

URL: https://catala-lang.org/en
Publications: hal-03128248, hal-03159939, hal-03128248, hal-02936606
Contact: Denis Merigoux

Partner: Université Panthéon-Sorbonne

7.1.9 Easycrypt
Keywords: Proof assistant, Cryptography

Functional Description: EasyCrypt is a toolset for reasoning about relational properties of probabilistic
computations with adversarial code. Its main application is the construction and verification of
game-based cryptographic proofs. EasyCrypt can also be used for reasoning about differential
privacy.

News of the Year: This year, Benjamin Gregoire, Adrien Koutsos and Pierre-Yves Strub extended the Easy-
Crypt proof assistant to reason about complexity, by adding a Hoare logic to prove computational
complexity (execution time and oracle calls) of adversarial computations. This Hoare logic is built
on top of EasyCrypt module system used to model adversaries, which has been extended to support
complexity restrictions.

URL: https://www.easycrypt.info/trac/
Publications: hal-03352062, hal-03469015
Contact: Gilles Barthe

Participants: Benjamin Grégoire, Gilles Barthe, Pierre-Yves Strub, Adrien Koutsos

7.1.10 Squirrel
Name: Squirrel Prover
Keywords: Proof assistant, Cryptographic protocol

Functional Description: Squirrel is a proof assistant based designed to prove that security protocols are
computationally secure. It is based on a meta-logic built above CCSA logic.

Squirrel allows to specify security protocol in a variant of the applied pi-calculus, and handles
unbounded replication and stateful protocols. It can be used to prove both correspondence (e.g.
authentication) and equivalence security properties (e.g. strong secrecy, unlinkability).

News of the Year: Adrien Koutsos made several new improvements to the Squirrel prover this year: i)
improved user interface, with the addition of an include system and a small general purpose
library, better error messages, and a type system, ii) a new mode allowing for explicit handling of
proof contexts (e.g. explicit variable and hypothesis naming, structured proofs), which permit to
have more stable and maintainable proofs, iii) advanced tactics (rewrite, apply, rewriting hints)
supporting a proof style a la SSReflect, which help reduce user inputs.

Publications: hal-03172119, hal-03264227
Contact: Adrien Koutsos
Participants: David Baelde, Stephanie Delaune, Charlie Jacomme, Solene Moreau, Adrien Koutsos

Partners: IRISA, ENS Rennes

https://catala-lang.org/en
https://hal.inria.fr/hal-03128248
https://hal.inria.fr/hal-03159939
https://hal.inria.fr/hal-03128248
https://hal.inria.fr/hal-02936606
https://www.easycrypt.info/trac/
https://hal.inria.fr/hal-03352062
https://hal.inria.fr/hal-03469015
https://hal.inria.fr/hal-03172119
https://hal.inria.fr/hal-03264227

Project PROSECCO 15

7.2 New platforms

No new platforms in 2021

8 New results

8.1 Surveyon computer-aided cryptography

Participants: Bruno Blanchet, Karthikeyan Bhargavan.

In collaboration with Manuel Barbosa, Gilles Barthe, Cas Cremers, Kevin Liao, and Bryan Parno, we
wrote a survey on computer-aided cryptography, published at IEEE Security and Privacy 2021 [15].

8.2 Verification of security protocols in the symbolic model: tool ProVerif

Participants: Bruno Blanchet, Vincent Cheval.

In collaboration with Vincent Cheval and Véronique Cortier, we (Bruno Blanchet) wrote a paper on
important improvements of ProVerif: 1) support for integer counters, with incrementation and inequality
tests, 2) lemmas and axioms to give intermediate results to ProVerif, which it exploits to help proving
subsequent queries, by deriving additional information in the Horn clauses that it uses to perform the
proofs, 3) proofs by induction on the length of the trace, by giving as lemma the property to prove, but
obviously for strictly shorter traces, 4) temporal queries, which allow to order events. The soundness of
these features is proved (by hand). Moreover, many algorithms used in ProVerif (generation of clauses,
resolution, subsumption ...) were optimized, resulting in impressive speedups on large examples. These
features are included in ProVerif 2.02pl1 and the paper will appear at IEEE Security and Privacy 2022 [20].

8.3 Verification of security protocols in the computational model: tool CryptoVerif

Participants: Karthikeyan Bhargavan, Bruno Blanchet, Benjamin Lipp.

Bruno Blanchet continued the development of our protocol verification tool CryptoVerif. The new
features of this year are detailed in the section on software.

In collaboration with Joél Alwen, Eduard Hauck, Eike Kiltz, and Doreen Riepel, team members
Bruno Blanchet and Benjamin Lipp verified the Hybrid Public Key Encryption (HPKE) scheme. It is an
emerging standard currently under consideration by the Crypto Forum Research Group (CFRG) of the
IETF as a candidate for formal approval. Of the four modes of HPKE, we analyse the authenticated mode
HPKEath in its single-shot encryption form as it contains what is, arguably, the most novel part of HPKE.
HPKEa.th's intended application domain is captured by a new primitive which we call Authenticated
Public Key Encryption (APKE). We provide syntax and security definitions for APKE schemes, as well as
for the related Authenticated Key Encapsulation Mechanisms (AKEMs). We prove security of the AKEM
scheme DH — AKEM underlying HPKE 5+, based on the Gap Diffie-Hellman assumption and provide
general AKEM/DEM composition theorems with which to argue about HPKE ¢ ’s security. To this end,
we also formally analyse HPKE a1 ’s key schedule and key derivation functions. All these proofs are done
using the automatic computational verifier CryptoVerif. As an independent contribution, we propose the
new framework of nominal groups that allows us to capture abstract syntactical and security properties of
practical elliptic curves, including the Curve25519 and Curve448 based groups (which do not constitute
cyclic groups). This work appeared at EuroCrypt 2021 [13] (long version [34]).

16 Inria Annual Report 2021

Benjamin Lipp, Bruno Blanchet, and Karthikeyan Bhargavan implemented a compiler from Cryp-
toVerif models to executable F* implementations. This compiler extends a previous translation from
CryptoVerif to OCaml by generating lemmas for equational assumptions made on primitives in Cryp-
toVerif. These assumptions can then be proved in F*. For instance, we prove that message parsing
composed with the corresponding serialization is the identity. In the future, we plan to translate the
security properties proved by CryptoVerif into F*, so that these properties can be assumed in subsequent
F* proofs.

In collaboration with Pierre-Yves Strub (Ecole Polytechnique), Pierre Boutry, Christian Doczkal, et
Benjamin Grégoire (Inria Sophia), team member Bruno Blanchet worked on a translation from CryptoVerif
security assumptions on primitives to EasyCrypt. These assumptions can then be proven in EasyCrypt
from lower-level cryptographic assumptions. This is useful since CryptoVerif provides a high degree of
automation but is better at proving protocols than primitives, while EasyCrypt has the expressive power
needed to reason both about protocols and about the correctness of primitives, but this expressive power
comes at the cost of providing less automation. Hence, proving primitives in EasyCrypt and protocols
in CryptoVerif provides the best trade-off. We applied our approach to the proof of the Computational
Diffie-Hellman (CDH) model in CryptoVerif (which includes several Diffie-Hellman pairs and allows key
compromise) from the standard CDH assumption for one Diffie-Hellman pair. We are currently working
to apply it to the Gap Diffie-Hellman model and to an authenticated Key Encapsulation Mechanism
(AKEM).

8.4 Verification of Security Protocols in the Computational Model: Squirrel

Participants: Adrien Koutsos.

In collaboration with David Baelde, Stephanie Delaune, Charlie Jacomme and Solene Moreau, Adrien
Koutsos designed a new framework and an interactive prover — the Squirrel Prover - allowing to mecha-
nize proofs of security protocols for an arbitrary number of sessions in the computational model. This
framework consists of a meta-logic based upon the CCSA logic [37], and a proof system for deriving
security properties. Proofs in Squirrel only deal with high-level, symbolic representations of protocol
executions, similar to proofs in the symbolic model, but providing security guarantees at the computa-
tional level. We have performed a number of case studies in Squirrel, covering a variety of primitives
(e.g. hashes, encryption) and security properties (e.g. authentication, unlinkability). This work has been
published at IEEE Security and Privacy 2021 [14], and the Squirrel Prover is open source, and continues to
be developed.

Squirrel approach to protocol security is complementary w.r.t. existing tools in the computational
model (e.g. CryptoVerif or EasyCrypt). Squirrel particularly shines when analyzing stateful protocols,
which are often out-of-reach of existing tools, or require a very large amount of work. Work in that
direction has been started, and early results have been presented at the LFMTP’21 workshop [25].

8.5 Mechanized Complexity Proofs for Cryptographic Reductions

Participants: Adrien Koutsos.

In collaboration with Manuel Barbosa, Gilles Barthe, Benjamin Gregoire and Pierre-Yves Strub, Adrien
Koutsos enhanced the EasyCrypt proof assistant with a Hoare logic for reasoning about computational
complexity (execution time and oracle calls) of adversarial computations. Our Hoare logic is built on
top of EasyCrypt module system used for modeling adversaries. We proved that our logic is sound
w.r.t. EasyCrypt semantics — incidentally, our work provided the first full semantics for the EasyCrypt
module system, which was previously lacking. We exemplified this extension by revisiting the security
proofs of some well-known cryptographic constructions, and by conducting a new formalization of

Project PROSECCO 17

Universal Composability (UC). This work was published at ACM CCS’21 [16], and has been integrated in
the EasyCrypt tool.

8.6 Journal Paper: Decidability Result

Participants: Adrien Koutsos.

Ajournal version of the IEEE CSF’19 paper [54]:
Decidability of a Sound Set of Inference Rules for Computational Indistinguishability

has been published at ACM Transactions on Computational Logic [11]. In this work, we prove the
decidability of a set of first-order axioms which are computationally sound, though incomplete, for
protocols with a bounded number of sessions whose security is based on an IND-CCA, encryption
scheme. Alternatively, our result can be viewed as the decidability of a family of cryptographic game
transformations. Our proof relies on term rewriting and automated deduction techniques.

8.7 High-Assurance High-Performance Crypto

Participants: Karthikeyan Bhargavan, Marina Polubelova, Benjamin Beurdouche,
Natalia Kulatova, Jonathan Protzenko, Adrien Koutsos.

Since 2017, we maintain and distribute the HACL* verified cryptographic library, which is currently
deployed in many mainstream software applications and high-performance networking stacks including
Mozilla Firefox, Linux Kernel, WireGuard VPN, Microsoft WinQuic, Tezos Blockchain, and ElectionGuard.

While HACL* includes best-in-class C implementations of many popular cryptographic algorithms,
on certain platforms, significantly improved performance can be obtained by exploiting low-level in-
structions that are only available to assembly code. The EverCrypt API brings together verified C code
from HACL* with verified Intel assembly code from the Vale project and packages them in a verified
multiplexed agile API that can be conveniently used by applications. Our work resulted in a new release
of HACL* and a paper at the IEEE Security and Privacy conference [59].

In a second line of work, we propose a new methodology called HACLxN for building formally verified
cryptographic code that exploits single-instruction multiple data (SIMD) parallelism. We show how to
write and verify code once and then compile it to multiple platforms that support vector instructions,
including ARM Neon and Intel AVX, AVX2, and AVX512. We apply our methodology to obtain verified
vectorized implementations in C on all these platforms for the ChaCha20 encryption algorithm, the
Poly1305 one-time MAC, and the SHA-2 and Blake2 families of hash algorithms. The resulting C code
has performance that is comparable to hand-optimized assembly for these platforms. This work led to a
new release of HACL* and a paper at ACM CCS 2020 [58]. This year we extended HACL* with code for
more primitives, such as RSA-PSS and FFDHE, based on a generic verified Bignum library. We also added
support for IBMz and Power architectures.

High-assurance cryptography aims at building efficient cryptographic software with machine-checked
proofs of memory safety, functional correctness, provable security, and absence of timing leaks. Tradition-
ally, these guarantees are established under a sequential execution semantics. However, this semantics
does not correspond to the behavior of modern processors, that make use of speculative execution to
improve performance. This semantics mismatch has been exploited to conduct attacks (e.g. Spectre).
In a new line of work, published at IEEE Security and Privacy 2021 [17], we showed that the benefits of
high-assurance cryptography can be extended to speculative execution, costing only a modest perfor-
mance overhead. To do this, we built atop the Jasmin verification framework an end-to-end approach
for proving properties of cryptographic software under speculative execution. This approach has been
validated experimentally with efficient, functionally correct assembly implementations of ChaCha20
and Poly1305, which have been proved secure against both traditional timing and speculative execution
attacks.

18 Inria Annual Report 2021

8.8 Verification of cryptographic protocol implementations in the symbolic model:
the DY* framework

Participants: Karthikeyan Bhargavan.

In collaboration with colleagues at the University of Stuttgart and IIT Gandhinagar, we developed DY,
a new formal verification framework for the symbolic security analysis of cryptographic protocol code
written in the F* programming language. Unlike automated symbolic provers, our framework accounts
for advanced protocol features like unbounded loops and mutable recursive data structures, as well as
low-level implementation details like protocol state machines and message formats, which are often at
the root of real-world attacks.

Our work extends a long line of research on using dependent type systems for this task, but takes
a fundamentally new approach by explicitly modeling the global trace-based semantics within the
framework, hence bridging the gap between trace-based and type-based protocol analyses. This approach
enables us to uniformly, precisely, and soundly model, for the first time using dependent types, long-lived
mutable protocol state, equational theories, fine-grained dynamic corruption, and trace-based security
properties like forward secrecy and post-compromise security.

DY* is built as a library of F* modules that includes a model of low-level protocol execution, a Dolev-
Yao symbolic attacker, and generic security abstractions and lemmas, all verified using F*. The library
exposes a high-level API that facilitates succinct security proofs for protocol code. We demonstrate the
effectiveness of this approach through a detailed symbolic security analysis of the Signal protocol that is
based on an interoperable implementation of the protocol from prior work, and is the first mechanized
proof of Signal to account for forward and post-compromise security over an unbounded number of
protocol rounds.

The design of DY* and a detailed analysis of Signal was published at IEEE Euro S&P 2021 [19] and
a tutorial introduction to the framework appeared in [24]. We also applied DY* to an in-depth analysis
of the ACME protocol, which is used by the LetsEncrypt CA to issue the majority of certificates on the
Web [18].

8.9 Extensions to F*

Participants: Denis Merigoux.

Since 2010, our group contributes to the design, implementation, and application of the F* program-
ming language and verification work.

In new work this year, we developed a semantics for concurrent separation logic (CSL) within the
F* proof assistant in a manner that enables dependently-typed, effectful F* programs to make use of
concurrency and to be specified and verified using a full-featured, extensible CSL. In contrast to prior
approaches, we directly derive the partial-correctness Hoare rules for CSL from the denotation of compu-
tations in the effectful semantics of non-deterministically interleaved atomic actions. Demonstrating
the flexibility of our semantics, we build generic, verified libraries that support various concurrency
constructs, ranging from dynamically allocated, storable spin locks, to protocol-indexed channels. This
work has led to on ongoing re-architecture of the core of the F* framework, and was published at ICFP
2020 [64].

8.10 Formalizing and Implementing Tax Law

Participants: Denis Merigoux, Aymeric Fromherz.

Project PROSECCO 19

In France, income tax is computed from taxpayers’ individual returns, using an algorithm that is
authored, designed and maintained by the French Public Finances Directorate (DGFiP). Owing to the
shortcomings of its custom programming language and the technical limitations of the compiler, the
algorithm is proving harder and harder to maintain, relying on ad-hoc behaviors and workarounds to
implement the most recent changes in tax law. As an improvement to this infrastructure, we developed
Mlang, an open-source compiler toolchain that has been thoroughly validated against the private DGFiP
test suite. Mlang has a formal semantics; eliminates previous handwritten workarounds in C; compiles to
modern languages (Python); and enables a variety of instrumentations, providing deep insights about
the essence of French income tax computation. The DGFiP is now officially transitioning to Mlang for
their production system. This line of work has yielded papers at CC 2020 [22] and JFLA [56], as well as a
successful industrial technology transfer from Inria to DGFiP.

2021 has seen the development of a new domain-specific language, Catala, targeted specifically for
legal expert systems. This new domain-specific language has been built in close collaboration with
lawyers, and advertised to that community with a number of legal-oriented papers [52, 51]. On the formal
methods side, the simple and clean design of the Catala semantics [12] allows for extension into a proper
proof platform for the law [23].

9 Bilateral contracts and grants with industry

9.1 Bilateral grants with industry

Evolution, Semantics, and Engineering of the F* Verification System
¢ Grant from Nomadic Labs - Inria
¢ PIs: Catalin Hritcu and Exequiel Rivas
¢ Duration: March 2019 - April 2023

e Abstract: While the F* verification system shows great promise in practice, many challenging
conceptual problems remain to be solved, many of which can directly inform the further evolution
and design of the language. Moreover, many engineering challenges remain in order to build a
truly usable verification system. This proposal promises to help address this by focusing on the
following 5 main topics:

(1) Generalizing Dijkstra monads, i.e., a program verification technique for arbitrary monadic
effects; (2) Relational reasoning in F* devising scalable verification techniques for properties of
multiple program executions (e.g., confidentiality, noninterference) or of multiple programs (e.g.,
program equivalence); (3) Making F*’s effect system more flexible, by supporting tractable forms
of effect polymorphism and allowing some of the effects of a computation to be hidden if they do
not impact the observable behavior; (4) Working out more of the F* semantics and metatheory; (5)
Solving the engineering challenges of building a usable verification system.

10 Partnerships and cooperations

10.1 National initiatives
10.1.1 ANR
TECAP

Title: TECAP: Protocol Analysis - Combining Existing Tools (ANR générique 2017.)

Other partners: Inria Nancy/EPI PESTO, Inria Sophia Antipolis/EPI MARELLE, IRISA, LIX, LSV - ENS
Cachan.

Duration: January 2018 - June 2022

https://www.inria.fr/en/mlang-modernise-tax-calculations

20 Inria Annual Report 2021

Coordinator: Vincent Cheval, EPI Prosecco, Inria Paris (France)

Participants: Bruno Blanchet, Benjamin Lipp, Vincent Cheval

Summary: A large variety of automated verification tools have been developed to prove or find attacks
on security protocols. These tools differ in their scope, degree of automation, and attacker models.
The aim of this project is to get the best of all these tools, meaning, on the one hand, to improve the
theory and implementations of each individual tool towards the strengths of the others and, on the

other hand, build bridges that allow the cooperations of the methods/tools. We will focus in this
project on the tools CryptoVerif, EasyCrypt, Scary, ProVerif, Tamarin, AKiSs and APTE.

11 Dissemination

11.1 Promoting scientific activities
11.1.1 Scientific events: organisation

Member of the organizing committees

¢ Karthikeyan Bhargavan: Co-Organizer for VeriCrypt and HACS workshops

11.1.2 Scientific events: selection

Member of the conference program committees
e Karthikeyan Bhargavan: PC Member for IEEE S&P, ACM CCS, IEEE CSE Indocrypt

¢ Vincent Cheval: PC Member for ACM CCS

11.1.3 Journal

Member of the editorial boards
¢ Associate Editor of ACM Transactions on Privacy and Security (TOPS) - Karthikeyan Bhargavan

¢ Associate Editor of the International Journal of Applied Cryptography (IJACT) — Inderscience
Publishers: Bruno Blanchet
11.1.4 Invited talks

¢ Karthikeyan Bhargavan: Invited talk at Developing Secure Systems Summit (DS3)

¢ Karthikeyan Bhargavan: Invited talk at Indocrypt 2021

11.1.5 Scientific expertise

¢ Bruno Blanchet was a scientific consultant for Nomadic Labs, regarding the development of the
blockchain Tezos.

11.1.6 Research administration

¢ Bruno Blanchet was a representative of Inria Paris at the DIM RFSI (Domaine d’'Intérét Majeur,
Réseau Francilien en Sciences Informatiques).

Project PROSECCO 21

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

Master: Karthikeyan Bhargavan, Cryptographic protocols: formal and computational proofs, 18h
equivalent TD, master M2 MPRI, université Paris VII

Master: Vincent Cheval, Cryptographic protocols: formal and computational proofs, 18h equivalent
TD, master M2 MPRI, université Paris VII

Master: Adrien Koutsos, Cryptographic protocols: formal and computational proofs, 18h equivalent
TD, master M2 MPRI, université Paris VII

PhD: Karthikeyan Bhargavan, Introduction: Formal Verification meets Applied Cryptography;
Bruno Blanchet, Introduction to Symbolic and Computational Proofs; Vincent Cheval, ProVerif
tutorial, in VeriCrypt: An Introduction to Tools for Verified Cryptography, 18-19 December 2021

Master and PhD: Karthikeyan Bhargavan, Formal Software Analysis, IIT Delhi

11.2.2 Supervision

L]

PhD in progress: Benjamin Lipp, On Mechanised Cryptographic Proofs of Protocols and their Link
with Verified Implementations, ENS Paris, since October 2018, supervised by Bruno Blanchet and
Karthikeyan Bhargavan.

PhD in progress: Natalia Kulatova, Formal Analysis of Security Devices, PSL, since September 2017,
supervised by Karthikeyan Bhargavan and Graham Steel.

PhD in progress: Marina Polubelova, Formal Verification of a Cryptographic Library, PSL, since
September 2017, supervised by Karthikeyan Bhargavan.

PhD defended: Denis Merigoux, Verification framework for performance-oriented memory-safe
programming languages, defended on December 13, 2021, supervised by Karthikeyan Bhargavan
and Jonathan Protzenko.

11.2.3 Juries

L]

Karthikeyan Bhargavan was on the PhD jury of Darius Mercadier and Lucas Franceschino

11.3 Popularization

11.3.1 Interventions

12

Bruno Blanchet, Vérification de protocoles cryptographiques. ENS, Paris, September 2021.

Scientific production

12.1 Major publications

(1]

M. Abadi, B. Blanchet and C. Fournet. ‘The Applied Pi Calculus: Mobile Values, New Names, and
Secure Communication’. In: Journal of the ACM (JACM) 65.1 (Oct. 2017), pp. 1-103. boI1: 10.1145
/3127586. URL: https://hal.inria.fr/hal-01636616.

D. Baelde, S. Delaune, C. Jacomme, A. Koutsos and S. Moreau. ‘An Interactive Prover for Protocol
Verification in the Computational Model’. In: SP 2021 - 42nd IEEE Symposium on Security and
Privacy. Proceedings of the 42nd IEEE Symposium on Security and Privacy (S&P’21). San Fransisco
/ Virtual, United States, 23rd May 2021. URL: https://hal.archives-ouvertes.fr/hal-0317
2119.

https://doi.org/10.1145/3127586
https://doi.org/10.1145/3127586
https://hal.inria.fr/hal-01636616
https://hal.archives-ouvertes.fr/hal-03172119
https://hal.archives-ouvertes.fr/hal-03172119

22

Inria Annual Report 2021

3]

(10]

K. Bhargavan, B. Blanchet and N. Kobeissi. ‘Verified Models and Reference Implementations for the
TLS 1.3 Standard Candidate’. In: 38th IEEE Symposium on Security and Privacy. San Jose, United
States, May 2017, pp. 483-502. DO1: 10.1109/SP.2017.26. URL: https://hal.inria.fr/hal-0
1575920.

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti and P-Y. Strub. ‘Triple Handshakes and
Cookie Cutters: Breaking and Fixing Authentication over TLS’. In: IEEE Symposium on Security and
Privacy (Oakland). 2014, pp. 98-113. URL: https://hal.inria.fr/hal-01102259.

B. Blanchet. ‘Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif'.
In: Foundations and Trends in Privacy and Security 1.1-2 (Oct. 2016), pp. 1-135. URL: https://hal
.inria.fr/hal-01423760.

B. Blanchet, V. Cheval and V. Cortier. ‘ProVerif with Lemmas, Induction, Fast Subsumption, and
Much More’. In: S&P’22 - 43rd IEEE Symposium on Security and Privacy. San Francisco, United
States, 22nd May 2022. URL: https://hal.inria.fr/hal-03366962.

V. Cheval, S. Kremer and I. Rakotonirina. ‘DEEPSEC: Deciding Equivalence Properties in Security
Protocols - Theory and Practice’. In: 39th IEEE Symposium on Security and Privacy. San Francisco,
United States, May 2018. URL: https://hal.inria.fr/hal-01763122.

A. Koutsos. ‘The 5G-AKA Authentication Protocol Privacy’. In: EuroS&P 2019 - IEEE European
Symposium on Security and Privacy. Stockholm, Sweden: IEEE, June 2019, pp. 464-479. DOI: 10.11
09/EuroSP.2019.00041. URL: https://hal.inria.fr/hal-03155483.

N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet,
P-Y. Strub, M. Kohlweiss, J. K. Zinzindohoué and S. Zanella-Béguelin. ‘Dependent Types and Multi-
Monadic Effects in F*’. In: 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, Jan. 2016, pp. 256-270. URL: https://hal.inria.fr/hal-01265793.

J. K. Zinzindohoué, K. Bhargavan, J. Protzenko and B. Beurdouche. ‘HACL*: A Verified Modern
Cryptographic Library’. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017.2017, pp. 1789-
1806. URL: https://hal.inria.fr/hal-01588421.

12.2 Publications of the year

International journals

(11]

(12]

A. Koutsos. ‘Decidability of a Sound Set of Inference Rules for Computational Indistinguishability’.
In: ACM Transactions on Computational Logic 22.1 (22nd Jan. 2021), pp. 1-44. DOI: 10.1145/3423
169. URL: https://hal.archives-ouvertes.fr/hal-03469091.

D. Merigoux, N. Chataing and J. Protzenko. ‘Catala: A Programming Language for the Law’. In:
Proceedings of the ACM on Programming Languages 5.1CFP (Aug. 2021), 77:1-29. DOI: 10.1145/34
73582. URL: https://hal.inria.fr/hal-03159939.

International peer-reviewed conferences

(13]

(14]

J. Alwen, B. Blanchet, E. Hauck, E. Kiltz, B. Lipp and D. Riepel. ‘Analysing the HPKE Standard’. In:
Eurocrypt 2021 - 40th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Vol. 12696. Lecture Notes in Computer Science. Zagreb, Croatia: Springer
International Publishing, 16th June 2021, pp. 87-116. boI1: 10.1007/978-3-030-77870-5_4. URL:
https://hal.inria.fr/hal-03471218.

D. Baelde, S. Delaune, C. Jacomme, A. Koutsos and S. Moreau. ‘An Interactive Prover for Protocol
Verification in the Computational Model’. In: SP 2021 - 42nd IEEE Symposium on Security and
Privacy. Proceedings of the 42nd IEEE Symposium on Security and Privacy (S&P’21). San Fransisco
/ Virtual, United States, 23rd May 2021. URL: https://hal.archives-ouvertes.fr/hal-0317
2119.

https://doi.org/10.1109/SP.2017.26
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01102259
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-03366962
https://hal.inria.fr/hal-01763122
https://doi.org/10.1109/EuroSP.2019.00041
https://doi.org/10.1109/EuroSP.2019.00041
https://hal.inria.fr/hal-03155483
https://hal.inria.fr/hal-01265793
https://hal.inria.fr/hal-01588421
https://doi.org/10.1145/3423169
https://doi.org/10.1145/3423169
https://hal.archives-ouvertes.fr/hal-03469091
https://doi.org/10.1145/3473582
https://doi.org/10.1145/3473582
https://hal.inria.fr/hal-03159939
https://doi.org/10.1007/978-3-030-77870-5_4
https://hal.inria.fr/hal-03471218
https://hal.archives-ouvertes.fr/hal-03172119
https://hal.archives-ouvertes.fr/hal-03172119

Project PROSECCO 23

[15] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao and B. Parno. ‘SoK: Computer-
Aided Cryptography’. In: SP 2021 - 42nd IEEE Symposium on Security and Privacy. Virtual Confer-
ence, United States, 23rd May 2021. URL: https://hal.inria.fr/hal-03046757.

[16] M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos and P.-Y. Strub. ‘Mechanized Proofs of Adversarial
Complexity and Application to Universal Composability’. In: CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security. Virtual Event, South Korea: ACM, 15th Nov. 2021,
pp. 2541-2563. DOI: 10.1145/3460120.3484548. URL: https://hal.archives-ouvertes.fr
/hal-03469015.

[17] G.Barthe, S. Cauligi, B. Grégoire, A. Koutsos, K. Liao, T. Oliveira, S. Priya, T. Rezk and P. Schwabe.
‘High-Assurance Cryptography in the Spectre Era’. In: IEEE Symposium of Security and Privacy
(S&P’21). Virtual, France, 24th May 2021. URL: https://hal.inria.fr/hal-03352062.

[18] K. Bhargavan, A. Bichhawat, Q. H. Do, P. Hosseyni, R. Kiisters, G. Schmitz and T. Wiirtele. ‘An
In-Depth Symbolic Security Analysis of the ACME Standard’. In: CCS "21: 2021 ACM SIGSAC
Conference on Computer and Communications Security. Virtual Event Republic of Korea, France:
ACM, 15th Nov. 2021, pp. 2601-2617. DOI: 10.1145/3460120.3484588. URL: https://hal.inri
a.fr/hal-03540403.

[19] K. Bhargavan, A. Bichhawat, Q. H. Do, P. Hosseyni, R. Kiisters, G. Schmitz and T. Wiirtele. ‘DY*
: A Modular Symbolic Verification Framework for Executable Cryptographic Protocol Code’. In:
EuroS&P 2021 - 6th IEEE European Symposium on Security and Privacy. Virtual, Austria, 6th Sept.
2021. URL: https://hal.inria.fr/hal-03178425.

[20] B. Blanchet, V. Cheval and V. Cortier. ‘ProVerif with Lemmas, Induction, Fast Subsumption, and
Much More’. In: S&P’22 - 43rd IEEE Symposium on Security and Privacy. San Francisco, United
States, 22nd May 2022. URL: https://hal.inria.fr/hal-03366962.

[21] M.]. Gabbay, A. Jakobsson and K. Sojakova. ‘Money Grows on (Proof-)Trees: The Formal FA1.2
Ledger Standard’. In: 3rd International Workshop on Formal Methods for Blockchains. Los Angeles,
United States, 18th July 2021. DO1: 10.4230/0ASIcs.FMBC.2021.2. URL: https://hal.inria.f
r/hal-03498062.

[22] D.Merigoux, R. Monat and J. Protzenko. ‘A Modern Compiler for the French Tax Code’. In: CC '21:
30th ACM SIGPLAN International Conference on Compiler Construction. CC 2021: Proceedings of
the 30th ACM SIGPLAN International Conference on Compiler Construction. Virtual, South Korea:
ACM, Mar. 2021, pp. 71-82. DOIL: 10.1145/3446804 . 3446850. URL: https://hal.inria.fr/ha
1-03002266.

Conferences without proceedings

[23] A. Delaét, D. Merigoux and A. Fromherz. ‘Turning Catala into a Proof Platform for the Law’. In:
POPL 2022 - Programming Languages and the Law. Philadelphia, United States, 16th Jan. 2022.
URL: https://hal.inria.fr/hal-03447072.

Scientific book chapters

[24] K.Bhargavan, A. Bichhawat, Q. H. Do, P Hosseyni, R. Kiisters, G. Schmitz and T. Wiirtele. ‘A Tutorial-
Style Introduction to DY*$’. In: Protocols, Strands, and Logic. Vol. 13066. Lecture Notes in Computer
Science. Springer International Publishing, 19th Nov. 2021, pp. 77-97. DOIL: 10.1007/978-3-030-
91631-2_4. URL:https://hal.inria.fr/hal-03540824.

Reports & preprints

[25] D. Baelde, S. Delaune, C. Jacomme, A. Koutsos and S. Moreau. Extending the SQUIRREL meta-logic
for reasoning over security protocols: Work in Progress. 18th June 2021. URL: https://hal.archiv
es-ouvertes.fr/hal-03264227.

[26] S.HO,]. Protzenko, A. Bichhawat and K. Bhargavan. Noise*: A Library of Verified High-Performance
Secure Channel Protocol Implementations. Inria, 10th Dec. 2021. URL: https://hal.inria.fr/h
al-03474303.

https://hal.inria.fr/hal-03046757
https://doi.org/10.1145/3460120.3484548
https://hal.archives-ouvertes.fr/hal-03469015
https://hal.archives-ouvertes.fr/hal-03469015
https://hal.inria.fr/hal-03352062
https://doi.org/10.1145/3460120.3484588
https://hal.inria.fr/hal-03540403
https://hal.inria.fr/hal-03540403
https://hal.inria.fr/hal-03178425
https://hal.inria.fr/hal-03366962
https://doi.org/10.4230/OASIcs.FMBC.2021.2
https://hal.inria.fr/hal-03498062
https://hal.inria.fr/hal-03498062
https://doi.org/10.1145/3446804.3446850
https://hal.inria.fr/hal-03002266
https://hal.inria.fr/hal-03002266
https://hal.inria.fr/hal-03447072
https://doi.org/10.1007/978-3-030-91631-2_4
https://doi.org/10.1007/978-3-030-91631-2_4
https://hal.inria.fr/hal-03540824
https://hal.archives-ouvertes.fr/hal-03264227
https://hal.archives-ouvertes.fr/hal-03264227
https://hal.inria.fr/hal-03474303
https://hal.inria.fr/hal-03474303

24 Inria Annual Report 2021

[27] L. Huttner and D. Merigoux. Catala: Moving Towards the Future of Legal Expert Systems. 8th Jan.
2022. URL: https://hal.inria.fr/hal-02936606.

[28] D. Merigoux, E Kiefer and K. Bhargavan. Hacspec: succinct, executable, verifiable specifications for
high-assurance cryptography embedded in Rust. Inria, 22nd Mar. 2021. URL: https://hal.inria
.fr/hal-03176482.

12.3 Cited publications

[29] M. Abadi and B. Blanchet. ‘Analyzing Security Protocols with Secrecy Types and Logic Programs’.
In: Journal of the ACM 52.1 (Jan. 2005), pp. 102-146. URL: http://prosecco.gforge.inria.fr
/personal/bblanche/publications/AbadiBlanchet JACM7037 .pdf.

[30] M. Abadi, B. Blanchet and C. Fournet. ‘Just Fast Keying in the Pi Calculus’. In: ACM Transactions on
Information and System Security (TISSEC) 10.3 (July 2007), pp. 1-59. URL: http://prosecco.gfor
ge.inria.fr/personal/bblanche/publications/AbadiBlanchetFournetTISSECO7.pdf.

[31] C.Abate, A. Azevedo de Amorim, R. Blanco, A. N. Evans, G. Fachini, C. Hritcu, T. Laurent, B. C. Pierce,
M. Stronati and A. Tolmach. ‘When Good Components Go Bad: Formally Secure Compilation
Despite Dynamic Compromise’. In: 25th ACM Conference on Computer and Communications
Security (CCS). ACM, Oct. 2018, pp. 1351-1368. URL: https://arxiv.org/abs/1802.00588.

[32] C. Abate, R. Blanco, D. Garg, C. Hritcu, M. Patrignani and J. Thibault. ‘Journey Beyond Full Abstrac-
tion: Exploring Robust Property Preservation for Secure Compilation’. In: 32nd IEEE Computer
Security Foundations Symposium (CSF). IEEE, June 2019, pp. 256-271. DOI: 10.1109/CSF.2019.0
0025. URL: https://arxiv.org/abs/1807.04603.

[33] D.Ahman, C. Hritcu, K. Maillard, G. Martinez, G. Plotkin, J. Protzenko, A. Rastogi and N. Swamy.
‘Dijkstra Monads for Free’. In: 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL). ACM, Jan. 2017, pp. 515-529. DOI: 10. 1145/3009837 . 3009878. URL: https:
//www.fstar-lang.org/papers/dmdfree/.

[34] J. Alwen, B. Blanchet, E. Hauck, E. Kiltz, B. Lipp and D. Riepel. Analysing the HPKE Standard.
Research Report. IACR Cryptology ePrint Archive, Nov. 2020. URL: https://hal.inria.fr/hal-
03113251.

[35] A.Azevedo de Amorim, M. Dénes, N. Giannarakis, C. Hritcu, B. C. Pierce, A. Spector-Zabusky
and A. Tolmach. ‘Micro-Policies: Formally Verified, Tag-Based Security Monitors’. In: 36th IEEE
Symposium on Security and Privacy (Oakland S&P). IEEE Computer Society, May 2015, pp. 813-830.
DOI: 10.1109/8P.2015.55. URL: http://prosecco.gforge.inria.fr/personal/hritcu/p
ublications/micro-policies.pdf.

[36] G. Bana, P. Adad and H. Sakurada. ‘Computationally Complete Symbolic Adversary and Com-
putationally Sound Veri?cation of Security Protocols (in Japanese)’. In: Proceedings of The 30th
Symposium on Cryptography and Information Security. CD-ROM (4D1-3), Jan. 2013.

[37] G.Banaand H. Comon-Lundh. ‘A Computationally Complete Symbolic Attacker for Equivalence
Properties’. In: ACM Conference on Computer and Communications Security (CCS’14). New York,
NY, USA: ACM, Nov. 2014, pp. 609-620.

[38] K. Bhargavan, B. Blanchet and N. Kobeissi. ‘Verified Models and Reference Implementations for the
TLS 1.3 Standard Candidate’. In: 38th IEEE Symposium on Security and Privacy. San Jose, United
States, May 2017, pp. 483-502. DO1: 10.1109/SP.2017.26. URL: https://hal.inria.fr/hal-0
1575920.

[39] K. Bhargavan, B. Bond, A. Delignat-Lavaud, C. Fournet, C. Hawblitzel, C. Hritcu, S. Ishtiaq, M.
Kohlweiss, R. Leino, J. Lorch, K. Maillard, J. Pan, B. Parno, J. Protzenko, T. Ramananandro, A. Rane,
A. Rastogi, N. Swamy, L. Thompson, P. Wang, S. Zanella-Béguelin and J. K. Zinzindohoué. ‘Everest:
Towards a Verified, Drop-in Replacement of HTTPS'. In: 2nd Summit on Advances in Programming
Languages (SNAPL). May 2017. URL: http://drops.dagstuhl.de/opus/volltexte/2017/711
9/pdf/LIPIcs-SNAPL-2017-1.pdf.

https://hal.inria.fr/hal-02936606
https://hal.inria.fr/hal-03176482
https://hal.inria.fr/hal-03176482
http://prosecco.gforge.inria.fr/personal/bblanche/publications/AbadiBlanchetJACM7037.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/AbadiBlanchetJACM7037.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/AbadiBlanchetFournetTISSEC07.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/AbadiBlanchetFournetTISSEC07.pdf
https://arxiv.org/abs/1802.00588
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1109/CSF.2019.00025
https://arxiv.org/abs/1807.04603
https://doi.org/10.1145/3009837.3009878
https://www.fstar-lang.org/papers/dm4free/
https://www.fstar-lang.org/papers/dm4free/
https://hal.inria.fr/hal-03113251
https://hal.inria.fr/hal-03113251
https://doi.org/10.1109/SP.2015.55
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
https://doi.org/10.1109/SP.2017.26
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575920
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf

Project PROSECCO 25

(40]

(41]

(42]

(43]

(44]

[45]

[46]

(47]

(48]

(49]

[50]

(51]

(52]

(53]

(54]

(53]

(56]

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Pan, J. Protzenko, A. Rastogi, N.
Swamy, S. Zanella-Béguelin and J. K. Zinzindohoué. ‘Implementing and Proving the TLS 1.3 Record
Layer’. In: IEEE Symposium on Security and Privacy (Oakland). 2017.

K. Bhargavan, C. Fournet, R. Corin and E. Zalinescu. ‘Verified Cryptographic Implementations for
TLS’. In: ACM Transactions Inf. Syst. Secur. 15.1 (Mar. 2012), 3:1-3:32. DOI: 10.1145/2133375.213
3378. URL: http://doi.acm.org/10.1145/2133375.2133378.

K. Bhargavan, C. Fournet, A. D. Gordon and N. Swamy. ‘Verified implementations of the information
card federated identity-management protocol’. In: ACM Symposium on Information, Computer
and Communications Security (ASIACCS). 2008, pp. 123-135.

B. Blanchet. ‘An Efficient Cryptographic Protocol Verifier Based on Prolog Rules’. In: 14th IEEE
Computer Security Foundations Workshop (CSFW’01). 2001, pp. 82-96.

B. Blanchet. ‘Automatic Verification of Correspondences for Security Protocols’. In: Journal of
Computer Security 17.4 (July 2009), pp. 363—-434. URL: http://prosecco.gforge.inria.fr/per
sonal/bblanche/publications/BlanchetJCS08. pdf.

B. Blanchet, M. Abadi and C. Fournet. ‘Automated Verification of Selected Equivalences for Security
Protocols’. In: Journal of Logic and Algebraic Programming 75.1 (Feb. 2008), pp. 3-51. URL: http:
//prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetAbadiFourn
etJLAPO7 . pdf.

B. Blanchet and A. Podelski. ‘Verification of Cryptographic Protocols: Tagging Enforces Termination’.
In: Theoretical Computer Science 333.1-2 (Mar. 2005). Special issue FoSSaCS’03., pp. 67-90. URL:
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetPodel
skiTCSO4.html.

D. Cadé and B. Blanchet. ‘Proved Generation of Implementations from Computationally Secure
Protocol Specifications’. In: Journal of Computer Security 23.3 (2015), pp. 331-402.

A. Delignat-Lavaud, K. Bhargavan and S. Maffeis. ‘Language-Based Defenses Against Untrusted
Browser Origins’. In: Proceedings of the 22th USENIX Security Symposium. 2013. URL: http://pro
secco.inria.fr/personal/karthik/pubs/language-based-defenses-against-untrust
ed-origins-sec13.pdf.

D. Dolev and A. Yao. ‘On the security of public key protocols’. In: IEEE Transactions on Information
Theory IT-29.2 (1983), pp. 198-208.

C. Fournet, M. Kohlweiss and P--Y. Strub. ‘Modular Code-Based Cryptographic Verification’. In:
ACM Conference on Computer and Communications Security. 2011.

L. Huttner and D. Merigoux. ‘Catala: Moving Towards the Future of Legal Expert Systems’. working
paper or preprint. Jan. 2022. URL: https://hal.inria.fr/hal-02936606.

L. Huttner and D. Merigoux. ‘Traduire la loi en code grace au langage de programmation Catala’. In:
Intelligence artificielle et finances publiques. Nice, France, Oct. 2020. URL: https://hal.inria.f
r/hal-03128248.

N. Kobeissi, K. Bhargavan and B. Blanchet. ‘Automated Verification for Secure Messaging Protocols
and Their Implementations: A Symbolic and Computational Approach’. In: 2nd IEEE European
Symposium on Security and Privacy. Paris, France, Apr. 2017, pp. 435-450. DOI: 10.1109/Euro
SP.2017.38. URL: https://hal.inria.fr/hal-01575923.

A. Koutsos. ‘Decidability of a Sound Set of Inference Rules for Computational Indistinguishability’.
In: 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28,
2019.1EEE, 2019, pp. 48-61. DOI: 10.1109/CSF.2019.00011. URL: https://doi.org/10.1109
/CSF.2019.00011.

K. Maillard, D. Ahman, R. Atkey, G. Martinez, C. Hritcu, E. Rivas and E. Tanter. ‘Dijkstra Monads for
All'. In: PACMPL 3.ICFP (2019), 104:1-104:29. DOI: 10.1145/3341708. URL: https://arxiv.org
/abs/1903.01237.

D. Merigoux, R. Monat and C. Gaie. ‘Etude formelle de I'implémentation du code des impdts’. In:
JFLA 2020 - 31éme Journées Francophones des Langages Applicatifs. Gruissan, France, Jan. 2020.
URL:https://hal.inria.fr/hal-02320347.

https://doi.org/10.1145/2133375.2133378
https://doi.org/10.1145/2133375.2133378
http://doi.acm.org/10.1145/2133375.2133378
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetJCS08.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetJCS08.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetAbadiFournetJLAP07.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetAbadiFournetJLAP07.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetAbadiFournetJLAP07.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetPodelskiTCS04.html
http://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetPodelskiTCS04.html
http://prosecco.inria.fr/personal/karthik/pubs/language-based-defenses-against-untrusted-origins-sec13.pdf
http://prosecco.inria.fr/personal/karthik/pubs/language-based-defenses-against-untrusted-origins-sec13.pdf
http://prosecco.inria.fr/personal/karthik/pubs/language-based-defenses-against-untrusted-origins-sec13.pdf
https://hal.inria.fr/hal-02936606
https://hal.inria.fr/hal-03128248
https://hal.inria.fr/hal-03128248
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1109/EuroSP.2017.38
https://hal.inria.fr/hal-01575923
https://doi.org/10.1109/CSF.2019.00011
https://doi.org/10.1109/CSF.2019.00011
https://doi.org/10.1109/CSF.2019.00011
https://doi.org/10.1145/3341708
https://arxiv.org/abs/1903.01237
https://arxiv.org/abs/1903.01237
https://hal.inria.fr/hal-02320347

26

Inria Annual Report 2021

(57]

[58]

(59]

[60]

[61]

(62]

(63]

[64]

[65]

R. Needham and M. Schroeder. ‘Using encryption for authentication in large networks of comput-
ers’. In: Communications of the ACM 21.12 (1978), pp. 993-999.

M. Polubelova, K. Bhargavan, J. Protzenko, B. Beurdouche, A. Fromherz, N. Kulatova and S. Zanella-
Béguelin. ‘HACLxN: Verified Generic SIMD Crypto (for all your favourite platforms)’. In: CCS '20:
2020 ACM SIGSAC Conference on Computer and Communications Security. Virtual Event, United
States, Nov. 2020. URL: https://hal.inria.fr/hal-03154275.

J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova, K. Bhargavan, B. Beurdouche,
J. Choi, A. Delignat-Lavaud, C. Fournet, N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy, C.
Wintersteiger and S. Zanella-Béguelin. ‘EverCrypt: A Fast, Verified, Cross-Platform Cryptographic
Provider’. In: SP 2020 - IEEE Symposium on Security and Privacy. San Francisco / Virtual, United
States: IEEE, May 2020, pp. 983-1002. DO1: 10.1109/SP40000.2020.00114. URL: https://hal
.inria.fr/hal-03154278.

J. Protzenko, J. K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang, S. Zanella-Béguelin, A.
Delignat-Lavaud, C. Hritcu, K. Bhargavan, C. Fournet and N. Swamy. ‘Verified Low-Level Program-
ming Embedded in F*'. In: PACMPL 1.ICFP (Sept. 2017), 17:1-17:29. DOI: 10.1145/3110261. URL:
http://arxiv.org/abs/1703.00053.

T.Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy, T. Chajed, N. Kobeissi and J. Protzenko.
‘EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats’. In: 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019. Ed. by N.
Heninger and P. Traynor. USENIX Association, 2019, pp. 1465-1482. URL: https://www.usenix.o

rg/conference/usenixsecurityl9/presentation/delignat-1lavaud.

N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P-Y. Strub and G. M. Bierman. ‘Gradual
typing embedded securely in JavaScript’. In: 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). 2014, pp. 425-438. URL: http://prosecco.inria.fr/perso
nal/karthik/pubs/tsstar-popl14.pdf.

N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet,
P-Y. Strub, M. Kohlweiss, J. K. Zinzindohoué and S. Zanella-Béguelin. ‘Dependent Types and Multi-
Monadic Effects in F*’. In: 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, Jan. 2016, pp. 256-270. URL: https://www.fstar-lang.org/papers
/mumon/.

N. Swamy, A. Rastogi, A. Fromherz, D. Merigoux, D. Ahman and G. Martinez. ‘SteelCore: an ex-
tensible concurrent separation logic for effectful dependently typed programs’. In: Proceedings of
the ACM on Programming Languages 4.1CFP (Aug. 2020), pp. 1-30. DOI: 10.1145/3409003. URL:
https://hal.inria.fr/hal-02936273.

J. K. Zinzindohoué, K. Bhargavan, J. Protzenko and B. Beurdouche. ‘HACL*: A Verified Modern
Cryptographic Library’. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. 2017, pp. 1789—
1806. URL: http://doi.acm.org/10.1145/3133956.3134043.

https://hal.inria.fr/hal-03154275
https://doi.org/10.1109/SP40000.2020.00114
https://hal.inria.fr/hal-03154278
https://hal.inria.fr/hal-03154278
https://doi.org/10.1145/3110261
http://arxiv.org/abs/1703.00053
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
http://prosecco.inria.fr/personal/karthik/pubs/tsstar-popl14.pdf
http://prosecco.inria.fr/personal/karthik/pubs/tsstar-popl14.pdf
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/3409003
https://hal.inria.fr/hal-02936273
http://doi.acm.org/10.1145/3133956.3134043

	Project-Team PROSECCO
	Team members, visitors, external collaborators
	Overall objectives
	Programming securely with cryptography

	Research program
	Symbolic verification of cryptographic applications
	Computational verification of cryptographic applications
	F*: A Higher-Order Effectful Language for Program Verification
	Efficient Formally Secure Compilers to a Tagged Architecture
	Provably secure web applications
	Design and Verification of next-generation protocols: identity, blockchains, and messaging

	Application domains
	High-Assurance Cryptographic Libraries
	Design and Analysis of Protocol Standards
	Web application security

	Social and environmental responsibility
	Footprint of research activities

	Highlights of the year
	New software and platforms
	New software
	CryptoVerif
	F*
	miTLS
	ProVerif
	HACL*
	mlang
	Hacspec
	Catala
	Easycrypt
	Squirrel

	New platforms

	New results
	Survey on computer-aided cryptography
	Verification of security protocols in the symbolic model: tool ProVerif
	Verification of security protocols in the computational model: tool CryptoVerif
	Verification of Security Protocols in the Computational Model: Squirrel
	Mechanized Complexity Proofs for Cryptographic Reductions
	Journal Paper: Decidability Result
	High-Assurance High-Performance Crypto
	Verification of cryptographic protocol implementations in the symbolic model: the DY* framework
	Extensions to F*
	Formalizing and Implementing Tax Law

	Bilateral contracts and grants with industry
	Bilateral grants with industry

	Partnerships and cooperations
	National initiatives
	ANR

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Scientific expertise
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Interventions

	Scientific production
	Major publications
	Publications of the year
	Cited publications

