
2021
ACTIVITY REPORT

Project-Team

TOCCATA

RESEARCH CENTRE

Saclay - Île-de-France

IN PARTNERSHIP WITH:

CNRS, Université Paris-Saclay

Certified Programs, Certified Tools,
Certified Floating-Point Computations

IN COLLABORATION WITH: Laboratoire de Méthodes Formelles

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Proofs and Verification

Contents

Project-Team TOCCATA 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

2.1 Presentation . 3

3 Research program 3

3.1 Foundations and spreading of deductive program verification 5

3.2 Reasoning on mutable memory in program verification . 5

3.3 Verification of Computer Arithmetic . 6

3.4 Spreading Formal Proofs . 6

4 Application domains 7

4.1 Safety-Critical Software in Transportation . 7

4.2 Formal Analysis of Debian packages . 8

4.3 Extensions of ProofInUse joint lab . 8

5 Social and environmental responsibility 8

5.1 Footprint of research activities . 8

5.2 Impact of research results . 9

6 Highlights of the year 9

6.1 Agrégation d’Informatique . 9

6.2 Awards . 9

7 New software and platforms 9

7.1 New software . 9

7.1.1 Alt-Ergo . 9

7.1.2 CoqInterval . 10

7.1.3 Coquelicot . 10

7.1.4 Cubicle . 11

7.1.5 Flocq . 11

7.1.6 Gappa . 11

7.1.7 Why3 . 12

7.1.8 Coq . 12

8 New results 13

8.1 Foundations and Spreading of Deductive Program Verification 13

8.2 Reasoning on mutable memory in program verification . 15

8.3 Verification of Computer Arithmetic . 15

8.4 Spreading Formal Proofs . 16

9 Bilateral contracts and grants with industry 18

9.1 ProofInUse-AdaCore Collaboration . 18

9.2 ProofInUse-MERCE Collaboration . 18

9.3 ProofInUse-TrustInSoft Collaboration . 18

9.4 CEA-DAM Collaboration . 19

9.5 CIFRE contract with Tarides company . 19

9.6 CIFRE contract with OCamlPro company . 19

10 Partnerships and cooperations 19
10.1 European initiatives . 19

10.1.1 FP7 & H2020 projects . 19
10.2 National initiatives . 20

10.2.1 ANR NuSCAP . 20

11 Dissemination 21
11.1 Administration, Collective Responsibilities . 21
11.2 Promoting scientific activities . 21

11.2.1 Journal . 22
11.2.2 Invited talks . 22
11.2.3 Leadership within the scientific community . 22
11.2.4 Scientific expertise . 23

11.3 Teaching - Supervision - Juries . 23
11.3.1 Teaching . 23
11.3.2 Supervision . 24
11.3.3 Juries . 24

11.4 Popularization . 24
11.4.1 Interventions . 24

12 Scientific production 24
12.1 Major publications . 24
12.2 Publications of the year . 25
12.3 Cited publications . 27

Project TOCCATA 1

Project-Team TOCCATA

Creation of the Project-Team: 2014 July 01

Keywords

Computer sciences and digital sciences

A2.1.1. – Semantics of programming languages

A2.1.4. – Functional programming

A2.1.6. – Concurrent programming

A2.1.10. – Domain-specific languages

A2.1.11. – Proof languages

A2.4.2. – Model-checking

A2.4.3. – Proofs

A6.2.1. – Numerical analysis of PDE and ODE

A7.2. – Logic in Computer Science

A7.2.1. – Decision procedures

A7.2.2. – Automated Theorem Proving

A7.2.3. – Interactive Theorem Proving

A7.2.4. – Mechanized Formalization of Mathematics

A8.10. – Computer arithmetic

Other research topics and application domains

B5.2.2. – Railway

B5.2.3. – Aviation

B5.2.4. – Aerospace

B6.1. – Software industry

B9.5.1. – Computer science

B9.5.2. – Mathematics

https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2021

1 Team members, visitors, external collaborators

Research Scientists

• Claude Marché [Team leader, Inria, Senior Researcher, HDR]

• Sylvie Boldo [Inria, Senior Researcher, HDR]

• Jean-Christophe Filliâtre [CNRS, Senior Researcher, HDR]

• Guillaume Melquiond [Inria, Senior Researcher, HDR]

Faculty Members

• Sylvain Conchon [Univ Paris-Saclay, Professor, HDR]

• Andrei Paskevich [Univ Paris-Saclay, Associate Professor]

PhD Students

• Louise Ben Salem-Knapp [CEA, Until Sept 2021]

• Xavier Denis [Univ Paris-Saclay]

• Diane Gallois-Wong [Univ Paris-Saclay, until Feb 2021]

• Quentin Garchery [Université de Paris]

• Antoine Lanco [Inria]

• Houda Mouhcine [Inria, from Oct 2021]

• Clément Pascutto [Tarides, CIFRE]

Technical Staff

• Benedikt Becker [Inria, Engineer, until Oct 2021]

• Guillaume Cluzel [Inria, Engineer, from Jun 2021 until Nov 2021]

• Yacine El Haddad [Inria, Engineer, from Sep 2021]

Interns and Apprentices

• Louise Leclerc [Inria, from Jun 2021 until Jul 2021]

• Houda Mouhcine [Inria, from Apr 2021 until Jul 2021]

• Paul Patault [Inria, from May 2021 until Jul 2021]

• Gaetan Serre [Inria, from May 2021 until Jul 2021]

Administrative Assistant

• Alexandra Merlin [Inria]

External Collaborators

• Thibaut Balabonski [Univ Paris-Saclay]

• Jacques-Henri Jourdan [CNRS, from Mar 2021]

• Chantal Keller [Univ Paris-Saclay]

Project TOCCATA 3

2 Overall objectives

2.1 Presentation

The general objective of the Toccata project is to promote formal specification and computer-assisted
proof in the development of software that requires high assurance in terms of safety and correctness
with respect to its intended behavior. Such safety-critical software appears in many application domains
like transportation (e.g., aviation, aerospace, railway, and more and more in cars), communication
(e.g., internet, smartphones), health devices, etc. The number of tasks performed by software is quickly
increasing, together with the number of lines of code involved. Given the need of high assurance of safety
in the functional behavior of such applications, the need for automated (i.e., computer-assisted) methods
and techniques to bring guarantee of safety became a major challenge. In the past and at present, the
most widely used approach to check safety of software is to apply heavy test campaigns, which take a
large part of the costs of software development. Yet they cannot ensure that all the bugs are caught, and
remaining bugs may have catastrophic causes (e.g., the Heartbleed bug in OpenSSL library discovered in
2014).

Generally speaking, software verification approaches pursue three goals: (1) verification should be
sound, in the sense that no bugs should be missed, (2) verification should not produce false alarms, or
as few as possible, (3) it should be as automatic as possible. Reaching all three goals at the same time
is a challenge. A large class of approaches emphasizes goals (2) and (3): testing, run-time verification,
symbolic execution, model checking, etc. Static analysis, such as abstract interpretation, emphasizes
goals (1) and (3). Deductive verification emphasizes (1) and (2). The Toccata project is mainly interested
in exploring the deductive verification approach, although we also consider the other ones in some cases.

In the past decade, significant progress has been made in the domain of deductive program verifica-
tion. This is emphasized by some success stories of application of these techniques on industrial-scale
software. For example, the Atelier B system was used to develop part of the embedded software of the
Paris metro line 14 [40] and other railway-related systems; a formally proved C compiler was developed
using the Coq proof assistant [62]; the L4-verified project developed a formally verified micro-kernel
with high security guarantees, using analysis tools on top of the Isabelle/HOL proof assistant [61]. A
bug in the JDK implementation of TimSort was discovered using the KeY environment [57] and a fixed
version was proved sound. Another sign of recent progress is the emergence of deductive verification
competitions (e.g., VerifyThis [2]). Finally, recent trends in the industrial practice for development of
critical software is to require more and more guarantees of safety, e.g., the new DO-178C standard for
developing avionics software adds to the former DO-178B the use of formal models and formal methods.
It also emphasizes the need for certification of the analysis tools involved in the process.

3 Research program

Panorama of Deductive Verification There are two main families of approaches for deductive verifi-
cation. Methods in the first family build on top of mathematical proof assistants (e.g., Coq, Isabelle) in
which both the model and the program are encoded; the proof that the program meets its specification is
typically conducted in an interactive way using the underlying proof construction engine. Methods from
the second family proceed by the design of standalone tools taking as input a program in a particular
programming language (e.g., C, Java) specified with a dedicated annotation language (e.g., ACSL [36],
JML [46]) and automatically producing a set of mathematical formulas (the verification conditions) which
are typically proved using automatic provers (e.g., Z3 [64], Alt-Ergo [49], CVC4 [35]).

The first family of approaches usually offers a higher level of assurance than the second, but also
demands more work to perform the proofs (because of their interactive nature) and makes them less
easy to adopt by industry. Moreover, they generally do not allow to directly analyze a program written
in a mainstream programming language like Java or C. The second kind of approaches has benefited in
the past years from the tremendous progress made in SAT and SMT solving techniques, allowing more
impact on industrial practices, but suffers from a lower level of trust: in all parts of the proof chain (the
model of the input programming language, the VC generator, the back-end automatic prover), potential
errors may appear, compromising the guarantee offered. Moreover, while these approaches are applied
to mainstream languages, they usually support only a subset of their features.

https://en.wikipedia.org/wiki/Heartbleed

4 Inria Annual Report 2021

Overall Goals of the Toccata Project One of our original skills is the ability to conduct proofs by using
automatic provers and proof assistants at the same time, depending on the difficulty of the program, and
specifically the difficulty of each particular verification condition. We thus believe that we are in a good
position to propose a bridge between the two families of approaches of deductive verification presented
above. Establishing this bridge is one of the goals of the Toccata project: we want to provide methods and
tools for deductive program verification that can offer both a high amount of proof automation and a high
guarantee of validity. Indeed, an axis of research of Toccata is the development of languages, methods
and tools that are themselves formally proved correct. Recent advances in the foundations of deductive
verification include various aspects such as reasoning efficiently on bitvector programs [54] or providing
counterexamples when a proof does not succeed [50].

A specifically challenging aspect of deductive verification methods is how does one deal with memory
mutation in general, an issue that appear under various similar forms such the reasoning on mutable
data structures or on concurrent programs, with the common denominator of the tracking of memory
change on shared data. The ability to track aliasing is also a key for the ability of specifying programs and
conduct proofs using the advanced notion of ghost code [7], notion that can be push forward very far as
demonstrated by our work on ghost monitors [48].

In industrial applications, numerical calculations are very common (e.g. control software in trans-
portation). Typically they involve floating-point numbers. Some of the members of Toccata have an
internationally recognized expertise on deductive program verification involving floating-point com-
putations. Our past work includes a new approach for proving behavioral properties of numerical C
programs using Frama-C/Jessie [34], various examples of applications of that approach [44], the use of the
Gappa solver for proving numerical algorithms [52], an approach to take architectures and compilers into
account when dealing with floating-point programs [45, 66]. We contributed to the CompCert verified
compiler, regarding the support for floating-point operations [3]. We also contributed to the Handbook
of Floating-Point Arithmetic [65]. A representative case study is the analysis and the proof of both the
method error and the rounding error of a numerical analysis program solving the one-dimension acoustic
wave equation [42] [41]. We published a reference book on the verification of floating-point algorithms
with Coq [4]. Our experience led us to a conclusion that verification of numerical programs can benefit a
lot from combining automatic and interactive theorem proving [43, 44, 55]. Verification of numerical
programs is another main axis of Toccata.

Deductive program verification methods are built upon theorem provers to decide whether a ex-
pected proof obligation on a program is a valid mathematical proposition, hence working on deductive
verification requires a certain amount of work on the aspect of design of theorem provers. We are involved
in particular in the Alt-Ergo SMT solver, for which we designed an original approach for reasoning on
arithmetic facts [6] [10] ; the Gappa tool dedicated to reasoning on rounding errors in floating-point
computations [63]; and the interval tactic to reason about real approximations [8]. Proof by reflection is
also a powerful approach for advanced reasoning about programs [9].

In the past, we have been more and more involved in the development of significantly large case
studies and applications, such as for example the verification of matrix multiplication algorithms [5], the
design of verified OCaml librairies [47], the realization of a platform for verification of shell scripts [38] [1],
or the correct-by-construction design of an efficient library for arbitrary-precision arithmetic [9].

Our scientific programme detailed below is structured into four axes:

1. Foundations and spreading of deductive program verification;

2. Reasoning on mutable memory in program verification;

3. Verification of Computer Arithmetic;

4. Spreading Formal Proofs.

Let us conclude with more general considerations about our agenda of the next four years: we want
to keep on

• with general audience actions;

• industrial transfer, in particular through an extension of the perimeter of the ProofInUse joint lab.

Project TOCCATA 5

3.1 Foundations and spreading of deductive program verification

Permanent researchers: S. Conchon, J.-C. Filliâtre, C. Marché, G. Melquiond, A. Paskevich
This axis covers the central theme of the team: deductive verification, from the point of view of its

foundations but also our will to spread its use in software development. The general motto we want to
defend is “deductive verification for the masses”. A non-exhaustive list of subjects we want to address is
as follows.

• The verification of general-purpose algorithms and data structures: the challenge is to discover
adequate invariants to obtain a proof, in the most automatic way as possible, in the continuation
of the current VOCaL project and the various case studies presented in Axis 4 below.

• Uniform approaches to obtain correct-by-construction programs and libraries, in particular by
automatic extraction of executable code (in OCaml, C, CakeML, etc.) from verified programs, and
including innovative general methods like advanced ghost code, ghost monitoring, etc.

• Automated reasoning dedicated to deductive verification, so as to improve proof automation;
improved combination of interactive provers and fully automated ones, proof by reflection.

• Improved feedback in case of proof failures: based on generation of counterexamples, or symbolic
execution, or possibly randomized techniques à la quickcheck.

• Reduction of the trusted computing base in our toolchains: production of certificates from au-
tomatic proofs, for goal transformations (like those done by Why3), and from the generation of
VCs

A significant part of the work achieved in this axis is related to the Why3 toolbox and its ecosystem,
displayed on Figure 1. The boxes in red background correspond to the tools we develop in the Toccata
team.

3.2 Reasoning on mutable memory in program verification

Permanent researchers: J.-C. Filliâtre, C. Marché, G. Melquiond, A. Paskevich
This axis concerns specifically the techniques for reasoning on programs where aliasing is the central

issue. It covers the methods based on type-based alias analysis and related memory models, on specific
program logics such as separation logics, and extended model-checking. It concerns the application on
analysis of C or C++ codes, on Ada codes involving pointers, but also concurrent programs in general.
The main topics planned are:

• The study of advanced type systems dedicated to verification, for controlling aliasing, and their use
for obtaining easier-to-prove verification conditions. Modern typing system in the style of Rust,
involving ownership and borrowing, will be considered.

• The design of front-ends of Why3 for the proofs of programs where aliasing cannot be fully con-
trolled statically, via adequate memory models, aiming in particular at extraction to C; and also for
concurrent programs.

• The continuation of fruitful work on concurrent parameterized systems, and its corresponding
specific SMT-based model-checking.

• Concurrent programming on weak memory models, on one hand as an extension of parameterized
systems above, but also in the specific context of OCaml multicore.

• In particular in the context of the ProofInUse joint lab, design methods for Ada, C, C++ or Java using
memory models involving fine-grain analysis of pointers. Rust programs could be considered as
well.

https://github.com/ocaml-multicore/ocaml-multicore

6 Inria Annual Report 2021

Figure 1: The Why3 ecosystem

3.3 Verification of Computer Arithmetic

Permanent researchers: S. Boldo, C. Marché, G. Melquiond
We of course want to keep this axis which is a major originality of Toccata. The main topics of the next

4 years will be:

• Fundamental studies concerning formalization of floating-point computations, algorithms, and
error analysis. Related to numerical integration, we will develop the relationships between mathe-
matical stability and floating-point stability of numerical schemes.

• A significant effort dedicated to verification of numerical programs written in C, Ada, C++. This in-
volves combining specifications in real numbers and computation in floating-point, and underlying
automated reasoning techniques with floating-point numbers and real numbers. A new approach
we have in mind concerns some variant of symbolic execution of both code and specifications
involving real numbers.

• We have not yet studied embedded systems. Our approach is first to tackle numerical filters. This
requires more results on fixed-point arithmetic and a careful study of overflows.

• Also a specific focus on arbitrary precision integer arithmetic, in the continuation of the ongoing
PhD thesis of R. Rieu-Helft.

3.4 Spreading Formal Proofs

Permanent researchers: S. Boldo, S. Conchon, J.-C. Filliâtre, C. Marché, G. Melquiond, A. Paskevich

Project TOCCATA 7

This axis covers applications in general. The applications we currently have in mind are:

• Hybrid Systems, i.e., systems mixing discrete and continuous transitions. This theme covers many
aspects such as general techniques for formally reasoning of differential equations, and extending
SMT-based reasoning. The challenge is to support both abstract mathematical reasoning and
concrete program execution (e.g., using floating-point representation). Hybrid systems will be a
common effort with other members of the future laboratory joint with LSV of ENS Cachan.

• Applied mathematics, in the continuation of the current efforts towards verification of Finite
Element Method. It has only been studied in the mathematical point of view during this period. We
plan to also consider their floating-point behavior and a demanding application is that of molecular
simulation exhibited in the new EMC2 project. The challenge here is both in the mathematics to be
formalized, in the numerical errors that have never been studied (and that may be huge in specific
cases), and in the size of the programs, which requires that our tools scale.

• Continuation of our work on analysis of shell scripts. The challenge is to be able to analyze a large
number of scripts (more than 30,000 in the corpus of Debian packages installation scripts) in an
automatic manner. An approach that will be considered is some form of symbolic execution.

• Explore proof tools for mathematics, in particular automated reasoning for real analysis (applica-
tion: formalization of the weak Goldbach conjecture), and in number theory.

• Obtain and distribute verified OCaml libraries, as expected outcome of the VOCaL project.

• Formalization of abstract interpretation and WP calculi: in the continuation of the former project
Verasco, and an ongoing project proposal joint with CEA List. The difficulty of achieving full
verification of such tools will be mitigated by use of certificate techniques.

4 Application domains

The application domains we target involve safety-critical software, that is where a high-level guarantee of
soundness of functional execution of the software is wanted. Currently our industrial collaborations or
impact mainly belong to the domain of transportation: aerospace, aviation, railway, automotive.

Generally speaking, we believe that our increasing industrial impact is a representative success for our
general goal of spreading deductive verification methods to a larger audience, and we are firmly engaged
into continuing such kind of actions in the future.

4.1 Safety-Critical Software in Transportation

Transfer to aeronautics: Airbus France Development of the control software of Airbus planes histor-
ically includes advanced usage of formal methods. A first aspect is the usage of the CompCert
verified compiler for compiling C source code. Our work in cooperation with Gallium team for the
safe compilation of floating-point arithmetic operations [3] is directly in application in this context.
A second aspect is the usage of the Frama-C environment for static analysis to verify the C source
code. In this context, both our tools Why3 and Alt-Ergo are indirectly used to verify C code.

Transfer to the community of Atelier B In the former ANR project BWare, we investigated the use of
Why3 and Alt-Ergo as an alternative back-end for checking proof obligations generated by Atelier B,
whose main applications are railroad-related. The transfer effort continues nowadays through the
FUI project LCHIP.

ProofInUse joint lab: transfer to the community of Ada development Through the creation of the ProofI-
nUse joint lab in 2014, with AdaCore company, we have a growing impact on the community of
industrial development of safety-critical applications written in Ada. See the web page for a an
overview of AdaCore’s customer projects, in particular those involving the use of the SPARK Pro
tool set. This impact involves both the use of Why3 for generating VCs on Ada source codes, and
the use of Alt-Ergo for performing proofs of those VCs.

https://www.atelierb.eu/en/
https://www.adacore.com/proofinuse
https://www.adacore.com/proofinuse
https://www.adacore.com/
https://www.adacore.com/industries

8 Inria Annual Report 2021

The impact of ProofInUse can also be measured in term of job creation: the first two ProofInUse
engineers, D. Hauzar and C. Fumex, employed initially on Inria temporary positions, have now
been hired on permanent positions in AdaCore company. It is also interesting to notice that this
effort allowed AdaCore company to get new customers, in particular the domains of application
of deductive formal verification went beyond the historical domain of aerospace: application in
automotive, cyber-security, health (artificial heart).

4.2 Formal Analysis of Debian packages

Impactful results were produced in the context of the CoLiS project for the formal analysis of Debian
packages. A first important step was the version 2 of the design of the CoLiS language done by B. Becker,
C. Marché and other co-authors [39], that includes a modified formal syntax, a extended formal seman-
tics, together with the design of concrete and symbolic interpreters. Those interpreters are specified
and implemented in Why3, proved correct (following the initial approach for the concrete interpreter
published in 2018 [58] and an approach for symbolic interpretation [38]), and finally extracted to OCaml
code.

To make the extracted code effective, it must be linked together with a library that implements a solver
for feature constraints [60], and also a library that formally specifies the behavior of basic UNIX utilities.
The latter library is documented in details in a research report [59].

A third result is a large verification campaign running the CoLiS toolbox on all the packages of the
current Debian distribution. The results of this campaign were reported in another article [37] that was
submitted to TACAS conference in 2020, and finally presented in the 2021 edition. The most visible side
effect of this experiment is the discovery of bugs: more than 150 bug reports have been filled against
various Debian packages.

4.3 Extensions of ProofInUse joint lab

The current plans for continuation of the ProofInUse joint lab is to form a ProofInUse Consortium with
an extension at a larger perimeter than Ada applications. We started to collaborate with the TrustInSoft
company for the verification of C and C++ codes, including the use of Why3 to design verified and reusable
C libraries (ongoing CIFRE PhD thesis). We also started to collaborate with Mitsubishi Electric R&D
Centre Europe in Rennes for a specific usage of Why3 for verifying embedded devices (logic controllers).
The recent best paper award at the FMICS conference is a result of this last collaboration.

5 Social and environmental responsibility

5.1 Footprint of research activities

Our research activities make use of computers for developing software and developing formal proofs.
A continuous integration methodology for mature software like Why3 is mandatory for ensuring a safe
software engineering process for maintenance and evolution. We make the necessary efforts to keep the
energy consumption of such a continuous integration process as low as possible.

Ensuring the reproducibility of proofs in formal verification is essential. It is thus mandatory to replay
such proofs regularly to make sure that our changes in our software do not loose existing proofs. For
example, we need to make sure that the case studies in formal verification that we present in our gallery
are reproducible. We also make the necessary efforts to keep the energy consumption for replaying proofs
low, by doing it only when necessary.

As widely accepted nowadays, the major sources of environmental impact of research is travel to
international conferences by plane, and renewal of electronic devices. The number of travels we made
in 2021 remained very low with respect to previous years, of course because of the Covid pandemic.
The impact on research was mitigated thanks to the possibility of participating to conferences using
remote communication systems. We intend to continue limiting the environmental impact of our travels.
Concerning renewal of electronic devices, that is mainly laptops and monitors, we have always been
careful on keeping them usable for as long time as possible.

https://www.adacore.com/customers/toyota-itc-japan
https://www.adacore.com/customers/multi-level-security-workstation
https://www.adacore.com/customers/total-artificial-heart
https://proofinuse.gitlabpages.inria.fr/
https://trust-in-soft.com/
https://trust-in-soft.com/
https://www.mitsubishielectric-rce.eu/merce-in-france/
https://www.mitsubishielectric-rce.eu/merce-in-france/
https://toccata.gitlabpages.inria.fr/toccata/gallery/index.en.html

Project TOCCATA 9

5.2 Impact of research results

Our research results aims at improving the quality of software, in particular in mission-critical contexts.
As such, making software more safe is likely to reduce the necessity for maintenance operations and thus
reducing energy costs.

Our efforts are mostly towards ensuring the safety of functional behavior of software, but we also
increasingly consider the verification of their time or memory consumption. Reducing those would
naturally induce a reduction in energy consumption.

Our research never involve any processing of personal data, and consequently we have no concern
about preserving individual privacy, and no concern with respect to the RGPD (Règlement Général sur la
Protection des Données).

6 Highlights of the year

6.1 Agrégation d’Informatique

In the past years, increasingly more Computer Science topics have been introduced in the high school
curricula. This evolution resulted in an increasing need for teachers with high skills in that domain. The
French ministry of education has decided in 2021 to create a new discipline in the concours de l’agrégation,
which is the most selective competition for recruiting high school teachers. To prepare the first round of
this recruiting competition taking place in 2022, Sylvie Boldo has been nominated as president of the
competition committee. Notice that she is the only full-time researcher to chair an agrégation committee
this year.

6.2 Awards

VerifyThis Competition 2021 The team of Jean-Christophe Filliâtre and Andrei Paskevich got the Best
overall team award. The team of Quentin Garchery and Xavier Denis won the first place for the Best
student team award.

VerifyThis is a series of program verification competitions, which takes place annually since 2011.
The competition offers a number of challenges presented in natural language and pseudo-code.
Participants have to formalize the requirements, implement a solution, and formally verify the
implementation for adherence to the specification.

FMICS 2021 best paper Cláudio Belo Lourenço and Claude Marché, with co-authors from Mitsubishi
Electric R&D (Rennes, France) received the Best-Paper Award at the 26th International Conference
on Formal Methods for Industrial Critical Systems.

Their contribution Automated Verification of Temporal Properties of Ladder Programs was valued
by the jury as a “good example for how formal methods can be used in industrial applications” with
“industrial interest for both legacy Ladder programs and programs to be developed”.

7 New software and platforms

The following lists all the software distributed publicly and for which at least one author is member of the
team.

7.1 New software

7.1.1 Alt-Ergo

Name: Automated theorem prover for software verification

Keywords: Software Verification, Automated theorem proving

https://www.education.gouv.fr/bo/21/Hebdo45/MENH2134884A.htm
https://www.education.gouv.fr/bo/21/Hebdo45/MENH2134884A.htm
https://www.pm.inf.ethz.ch/research/verifythis/Archive/20191.html
https://www.pm.inf.ethz.ch/research/verifythis/Archive/20191.html
https://www.pm.inf.ethz.ch/research/verifythis/Archive/20191.html
https://www.pm.inf.ethz.ch/research/verifythis/Archive/20191.html
https://qonfest2021.lacl.fr/best-papers.php
https://qonfest2021.lacl.fr/best-papers.php

10 Inria Annual Report 2021

Functional Description: Alt-Ergo is an automatic solver of formulas based on SMT technology. It is
especially designed to prove mathematical formulas generated by program verification tools, such
as Frama-C for C programs, or SPARK for Ada code. Initially developed in Toccata research team,
Alt-Ergo’s distribution and support are provided by OCamlPro since September 2013.

Release Contributions: the "SAT solving" part can now be delegated to an external plugin, new experi-
mental SAT solver based on mini-SAT, provided as a plugin. This solver is, in general, more efficient
on ground problems, heuristics simplification in the default SAT solver and in the matching (instan-
tiation) module, re-implementation of internal literals representation, improvement of theories
combination architecture, rewriting some parts of the formulas module, bugfixes in records and
numbers modules, new option "-no-Ematching" to perform matching without equality reasoning
(i.e. without considering "equivalence classes"). This option is very useful for benchmarks coming
from Atelier-B, two new experimental options: "-save-used-context" and "-replay-used-context".
When the goal is proved valid, the first option allows to save the names of useful axioms into a
".used" file. The second one is used to replay the proof using only the axioms listed in the corre-
sponding ".used" file. Note that the replay may fail because of the absence of necessary ground
terms generated by useless axioms (that are not included in .used file) during the initial run.

URL: http://alt-ergo.lri.fr

Contact: Sylvain Conchon

Participants: Alain Mebsout, Évelyne Contejean, Mohamed Iguernelala, Stéphane Lescuyer, Sylvain
Conchon

Partner: OCamlPro

7.1.2 CoqInterval

Name: Interval package for Coq

Keywords: Interval arithmetic, Coq

Functional Description: CoqInterval is a library for the proof assistant Coq.

It provides several tactics for proving theorems on enclosures of real-valued expressions. The proofs
are performed by an interval kernel which relies on a computable formalization of floating-point
arithmetic in Coq.

The Marelle team developed a formalization of rigorous polynomial approximation using Taylor
models in Coq. In 2014, this library has been included in CoqInterval.

URL: https://gitlab.inria.fr/coqinterval/interval

Publications: hal-00180138, hal-00797913, hal-01086460, hal-01289616, hal-01630143

Contact: Guillaume Melquiond

Participants: Assia Mahboubi, Érik Martin-Dorel, Guillaume Melquiond, Jean-Michel Muller, Laurence
Rideau, Laurent Théry, Micaela Mayero, Mioara Joldes, Nicolas Brisebarre, Thomas Sibut-Pinote

7.1.3 Coquelicot

Name: The Coquelicot library for real analysis in Coq

Keywords: Coq, Real analysis

Functional Description: Coquelicot is library aimed for supporting real analysis in the Coq proof as-
sistant. It is designed with three principles in mind. The first is the user-friendliness, achieved
by implementing methods of automation, but also by avoiding dependent types in order to ease
the stating and readability of theorems. This latter part was achieved by defining total function

http://alt-ergo.lri.fr
https://gitlab.inria.fr/coqinterval/interval
https://hal.inria.fr/hal-00180138
https://hal.inria.fr/hal-00797913
https://hal.inria.fr/hal-01086460
https://hal.inria.fr/hal-01289616
https://hal.inria.fr/hal-01630143

Project TOCCATA 11

for basic operators, such as limits or integrals. The second principle is the comprehensiveness of
the library. By experimenting on several applications, we ensured that the available theorems are
enough to cover most cases. We also wanted to be able to extend our library towards more generic
settings, such as complex analysis or Euclidean spaces. The third principle is for the Coquelicot
library to be a conservative extension of the Coq standard library, so that it can be easily combined
with existing developments based on the standard library.

URL: http://coquelicot.saclay.inria.fr/

Contact: Sylvie Boldo

Participants: Catherine Lelay, Guillaume Melquiond, Sylvie Boldo

7.1.4 Cubicle

Name: The Cubicle model checker modulo theories

Keywords: Model Checking, Software Verification

Functional Description: Cubicle is an open source model checker for verifying safety properties of array-
based systems, which corresponds to a syntactically restricted class of parametrized transition
systems with states represented as arrays indexed by an arbitrary number of processes. Cache
coherence protocols and mutual exclusion algorithms are typical examples of such systems.

URL: http://cubicle.lri.fr/

Contact: Sylvain Conchon

Participants: Alain Mebsout, Sylvain Conchon

7.1.5 Flocq

Name: The Flocq library for formalizing floating-point arithmetic in Coq

Keywords: Floating-point, Arithmetic code, Coq

Functional Description: The Flocq library for the Coq proof assistant is a comprehensive formalization
of floating-point arithmetic: core definitions, axiomatic and computational rounding operations,
high-level properties. It provides a framework for developers to formally verify numerical applica-
tions.

Flocq is currently used by the CompCert verified compiler to support floating-point computations.

URL: http://flocq.gforge.inria.fr/

Publications: inria-00534854, hal-00743090, hal-00862689, hal-01091186, hal-01091189, hal-01632617

Contact: Sylvie Boldo

Participants: Guillaume Melquiond, Pierre Roux, Sylvie Boldo

7.1.6 Gappa

Name: The Gappa tool for automated proofs of arithmetic properties

Keywords: Floating-point, Arithmetic code, Software Verification, Constraint solving

Functional Description: Gappa is a tool intended to help formally verifying numerical programs dealing
with floating-point or fixed-point arithmetic. It has been used to write robust floating-point filters
for CGAL and it is used to verify elementary functions in CRlibm. While Gappa is intended to be
used directly, it can also act as a backend prover for the Why3 software verification plateform or as
an automatic tactic for the Coq proof assistant.

http://coquelicot.saclay.inria.fr/
http://cubicle.lri.fr/
http://flocq.gforge.inria.fr/
https://hal.inria.fr/inria-00534854
https://hal.inria.fr/hal-00743090
https://hal.inria.fr/hal-00862689
https://hal.inria.fr/hal-01091186
https://hal.inria.fr/hal-01091189
https://hal.inria.fr/hal-01632617

12 Inria Annual Report 2021

URL: https://gappa.gitlabpages.inria.fr/

Publications: inria-00070739, inria-00344518, inria-00070330, tel-01094485, inria-00071232, inria-00432726,
ensl-00379167, ensl-00200830, hal-01110666, hal-01110669, hal-01632617

Contact: Guillaume Melquiond

Participant: Guillaume Melquiond

7.1.7 Why3

Name: The Why3 environment for deductive verification

Keywords: Formal methods, Trusted software, Software Verification, Deductive program verification

Functional Description: Why3 is an environment for deductive program verification. It provides a
rich language for specification and programming, called WhyML, and relies on external theorem
provers, both automated and interactive, to discharge verification conditions. Why3 comes with a
standard library of logical theories (integer and real arithmetic, Boolean operations, sets and maps,
etc.) and basic programming data structures (arrays, queues, hash tables, etc.). A user can write
WhyML programs directly and get correct-by-construction OCaml programs through an automated
extraction mechanism. WhyML is also used as an intermediate language for the verification of C,
Java, or Ada programs.

URL: http://why3.lri.fr/

Contact: Claude Marche

Participants: Andriy Paskevych, Claude Marche, François Bobot, Guillaume Melquiond, Jean-Christophe
Filliâtre, Levs Gondelmans, Martin Clochard

Partners: CNRS, Université Paris-Sud

7.1.8 Coq

Name: The Coq Proof Assistant

Keywords: Proof, Certification, Formalisation

Scientific Description: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and
co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a
very expressive logic. The calculus allows to formalize both general mathematics and computer
programs, ranging from theories of finite structures to abstract algebra and categories to program-
ming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel
including efficient conversion tests on which are built a set of higher-level layers: a powerful proof
engine and unification algorithm, various tactics/decision procedures, a transactional document
model and, at the very top an integrated development environment (IDE).

Functional Description: Coq provides both a dependently-typed functional programming language
and a logical formalism, which, altogether, support the formalisation of mathematical theories
and the specification and certification of properties of programs. Coq also provides a large and
extensible set of automatic or semi-automatic proof methods. Coq’s programs are extractible to
OCaml, Haskell, Scheme, ...

Release Contributions: Coq version 8.14 integrates many usability improvements, as well as an impor-
tant change in the core language. The main changes include:

- The internal representation of match has changed to a more space-efficient and cleaner structure,
allowing the fix of a completeness issue with cumulative inductive types in the type-checker. The

https://gappa.gitlabpages.inria.fr/
https://hal.inria.fr/inria-00070739
https://hal.inria.fr/inria-00344518
https://hal.inria.fr/inria-00070330
https://hal.inria.fr/tel-01094485
https://hal.inria.fr/inria-00071232
https://hal.inria.fr/inria-00432726
https://hal.inria.fr/ensl-00379167
https://hal.inria.fr/ensl-00200830
https://hal.inria.fr/hal-01110666
https://hal.inria.fr/hal-01110669
https://hal.inria.fr/hal-01632617
http://why3.lri.fr/

Project TOCCATA 13

internal representation is now closer to the user-level view of match, where the argument context
of branches and the inductive binders "in" and "as" do not carry type annotations.

- A new "coqnative" binary performs separate native compilation of libraries, starting from a .vo file.
It is supported by coq_makefile.

- Improvements to typeclasses and canonical structure resolution, allowing more terms to be
considered as classes or keys.

- More control over notation declarations and support for primitive types in string and number
notations.

- Removal of deprecated tactics, notably omega, which has been replaced by a greatly improved lia,
along with many bug fixes.

- New Ltac2 APIs for interaction with Ltac1, manipulation of inductive types and printing.

Many changes and additions to the standard library in the numbers, vectors and lists libraries. A
new signed primitive integers library Sint63 is available in addition to the unsigned Uint63 library.

News of the Year: Coq version 8.14 integrates many usability improvements, as well as an important
change in the core language. See the changelog at https://coq.inria.fr/refman/changes.html#version-
8-14 for an overview of the new features and changes, along with the full list of contributors.

URL: http://coq.inria.fr/

Contact: Matthieu Sozeau

Participants: Yves Bertot, Frederic Besson, Tej Chajed, Cyril Cohen, Pierre Corbineau, Pierre Courtieu,
Maxime Denes, Jim Fehrle, Julien Forest, Emilio Jesús Gallego Arias, Gaetan Gilbert, Georges
Gonthier, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Vincent Laporte, Olivier Laurent, Assia
Mahboubi, Kenji Maillard, Érik Martin-Dorel, Guillaume Melquiond, Pierre-Marie Pedrot, Clément
Pit-Claudel, Kazuhiko Sakaguchi, Vincent Semeria, Michael Soegtrop, Arnaud Spiwack, Matthieu
Sozeau, Enrico Tassi, Laurent Théry, Anton Trunov, Li-Yao Xia, Theo Zimmermann

Partners: CNRS, Université Paris-Sud, ENS Lyon, Université Paris-Diderot

8 New results

8.1 Foundations and Spreading of Deductive Program Verification

Participants: Andrei Paskevich, Antoine Lanco, Benedikt Becker, Claude Marché,
Cláudio Belo Lourenço, Clément Pascutto, Guillaume Cluzel,
Guillaume Melquiond, Jean-Christophe Filliâtre, Léo Andrès,
Quentin Garchery, Sylvain Conchon, Sylvie Boldo, Xavier Denis,
Yacine El Haddad.

A strong call-by-need calculus T. Balabonski, A. Lanco, and G. Melquiond have devised a call-by-need
lambda-calculus that enables strong reduction (that is, reduction inside the body of abstractions)
and guarantees that arguments are only evaluated if needed and at most once [15]. This calculus
uses explicit substitutions and subsumes the existing strong-call-by-need strategy, but allows for
more reduction sequences, and often shorter ones, while preserving the neededness. The calculus
is normalizing in a strong sense: Whenever a lambda-term t admits a normal form n in the lambda-
calculus, then any reduction sequence from t in the calculus eventually reaches a representative of
the normal form n. Moreover, by adding some restrictions to it, the calculus gains the diamond
property and only performs reduction sequences of minimal length, which makes it systematically
better than the existing strategy. The Abella proof assistant has been used to formalize part of this
calculus.

http://coq.inria.fr/

14 Inria Annual Report 2021

Certificates for Logic Transformations In a context of formal program verification, using automatic
provers, the trusted code base of verification environments is typically very broad. An environment
such as Why3 implements many complex procedures: generation of verification conditions, logical
transformations of proof tasks, and interactions with external provers. Considering only the logical
transformations of Why3, their implementation already amounts to more than 17,000 lines of
OCaml code. In order to increase our confidence in the correction of such a verification tool,
Q. Garchery proposed a mechanism of certifying transformations, producing certificates that can
be validated by an external tool, according to the skeptical approach. He explored two methods to
validate certificates: one based on a dedicated verifier developed in OCaml, the other based on
the universal proof checker Dedukti. A specificity of these certificates is to be “small grains” and
composable, which makes the approach incremental, allowing to gradually add new certifying
transformations [56]. Among the new results in that topics, the approach is now supporting built-in
theories such as equality and integer arithmetic [20]. It is even possible to check certificates for
proofs by strong induction on integers.

Simpler Proofs with Decentralized Invariants When verifying programs where the data have some re-
cursive structure, it is natural to make use of global invariants that are themselves recursively
defined. Though this is mathematically elegant, this makes the proofs more complex, as the
preservation of these invariants now requires induction. In particular, this makes the proofs less
amenable to automation. An alternative is to use local invariants attached to individual compo-
nents of the structure and which only involve a bounded number of elements. These are called
decentralized invariants. When the structure is updated, the footprint of the modification only
impacts a bounded number of invariants and reestablishing them does not require induction. In
this paper [13], Filliâtre illustrates this idea on three non-trivial programs, for which fully automated
proofs are achieved.

This paper appears in a special issue “E pur si muove” of the Journal of Logical and Algebraic
Methods in Programming, that is tribute to José Manuel Esgalhado Valença on the occasion of his
jubilation.

Abstraction and Genericity in Why3 The benefits of modularity in programming — abstraction barriers,
which allow hiding implementation details behind an opaque interface, and genericity, which
allows specializing a single implementation to a variety of underlying data types — apply just as well
to deductive program verification, with the additional advantage of helping the automated proof
search procedures by reducing the size and complexity of the premises and by instantiating and
reusing once-proved properties in a variety of contexts. Filliâtre and Paskevich wrote a paper [53]
demonstrating the modularity features of WhyML, the language of the program verification tool
Why3. Instead of separating abstract interfaces and fully elaborated implementations, WhyML
uses a single concept of module, a collection of abstract and concrete declarations, and a basic
operation of cloning which instantiates a module with respect to a given partial substitution, while
verifying its soundness. This mechanism brings into WhyML both abstraction and genericity, which
is illustrated on a small verified Bloom filter implementation, translated into executable idiomatic
C code.

Explaining Counterexamples with Giant-Step Assertion Checking Identifying the cause of a proof fail-
ure during deductive verification of programs is hard: it may be due to an incorrectness in the
program, an incompleteness in the program annotations, or an incompleteness of the prover. The
changes needed to resolve a proof failure depend on its category, but the prover cannot provide
any help on the categorization. When using an SMT solver to discharge a proof obligation, that
solver can propose a model from a failed attempt, from which a possible counterexample can
be derived. But the counterexample may be invalid, in which case it may add more confusion
than help. To check the validity of a counterexample and to categorise the proof failure, B. Becker,
C. Lourenço and C. Marché propose the comparison between the run-time assertion-checking
(RAC) executions under two different semantics, using the counterexample as an oracle. The first
RAC execution follows the normal program semantics, and a violation of a program annotation
indicates an incorrectness in the program. The second RAC execution follows a novel “giant-step”
semantics that does not execute loops nor function calls but instead retrieves return values and

Project TOCCATA 15

values of modified variables from the oracle. A violation of the program annotations only observed
under giant-step execution characterizes an incompleteness of the program annotations. They
implemented this approach in Why3 and evaluated it using examples from prior literature [27, 16]

8.2 Reasoning on mutable memory in program verification

Participants: Andrei Paskevich, Benedikt Becker, Claude Marché, Cláudio Belo
Lourenço, Clément Pascutto, Guillaume Cluzel, Guillaume Melquiond,
Jean-Christophe Filliâtre, Léo Andrès, Sylvain Conchon, Xavier Denis,
Yacine El Haddad.

Deductive program verification for a language with a Rust-like typing discipline Rust is a fairly recent
programming language for system programming, bringing static guarantees of memory safety
through a strong ownership policy. This feature opens promising advances for deductive verification
of Rust code. The project underlying the PhD thesis of X. Denis, supervised by J.-H. Jourdan and
C. Marché, is to propose techniques for the verification of Rust program, using a translation
to a purely-functional language. The challenge of this translation is the handling of mutable
borrows: pointers which control of aliasing in a region of memory. To overcome this, we used a
technique inspired by prophecy variables to predict the final values of borrows [51]. This method
is implemented in a new standalone tool called Creusot. The specification language of Creusot
features the notion of prophecy mentioned above, which is central for the specification of behavior
of programs performing memory mutation. Prophecies also permit efficient automated reasoning
for verifying about such programs. Moreover, Rust provides advanced abstraction features based
on a notion of traits, extensively used in the standard library and in user code. The support for
traits is another main feature of Creusot, because it is at the heart of its approach, in particular for
providing complex abstraction of the functional behavior of programs [30].

8.3 Verification of Computer Arithmetic

Participants: Claude Marché, Diane Gallois-Wong, Guillaume Melquiond,
Houda Mouhcine, Louise Ben Salem-Knapp, Sylvie Boldo.

Plotting in a formally verified way An invaluable feature of computer algebra systems is their ability to
plot the graph of functions. Unfortunately, when one is trying to design a library of mathematical
functions, this feature often falls short, producing incorrect and potentially misleading plots, due
to accuracy issues inherent to this use case. G. Melquiond has extended the CoqInterval library so
as to turn the Coq proof assistant into a tool for plotting function graphs that are guaranteed to be
correct, by using reliable polynomial approximations [22].

Some Formal Tools for Computer Arithmetic: Flocq and Gappa S. Boldo and G. Melquiond have devel-
oped several tools to help the user in writing proofs regarding computer arithmetic, e.g., certifying
a bound on a round-off error, while aiming at a high level of guarantee. Flocq is a library of mathe-
matical definitions and theorems for the Coq proof assistant; Gappa is meant to compute bounds
of values and errors, while producing the corresponding formal proof. Despite their age, they are
still relevant nowadays [17].

Round-Off Errors and Hydrodynamics The growth of the computing capacities makes it possible to
obtain more and more precise simulation results, often calculated in binary64. However, exascale
is pushing back the known limits and the problems of accumulating round-off errors could come
back and require to increase further the precision. But working with extended precision, regardless
of the method used, has a significant cost in memory, computation time and energy. It is therefore
important to measure the robustness of the binary64 format by anticipating the future computing
resources in order to ensure its durability in numerical simulations. For this purpose, W. Weens,

16 Inria Annual Report 2021

T. Vazquez-Gonzalez and L. Ben Salem-Knapp performed a set of numerical experiments [25].
Those were performed with weak floats which were specifically designed to conduct an empirical
study of round-off errors in hydrodynamic simulations and to build an error model that extracts
the part due to round-off error in the results. This model confirms that errors remain dominated
by the scheme errors in the performed numerical experiments. Other numerical experiments
have been done in order to check whether binary64 provides enough accuracy in the context of
hydrodynamics exascale computations [23].

Numerical simulations are carefully-written programs, and their correctness is based on mathemat-
ical results. Nevertheless, those programs rely on floating-point arithmetic and the corresponding
round-off errors are often ignored. L. Ben Salem-Knapp, S. Boldo and W. Weens studied a specific
simple scheme applied to advection, that is a particular equation from hydrodynamics dedicated
to the transport of a substance. Their work shows a tight bound on the round-off error of the
1-dimensional and 2-dimensional upwind schemes, with an error roughly proportional to the num-
ber of steps. The error bounds are generic with respect to the floating-point format and exceptional
behaviors are taken into account. Some experiments give an insight of the quality of the bounds
[28].

Emulating round-to-nearest-ties-to-zero "augmented" floating- point operations The 2019 version of
the IEEE 754 Standard for Floating-Point Arithmetic recommends that new “augmented” operations
should be provided for the binary formats. These operations use a new “rounding direction”: round
to nearest ties-to-zero. S. Boldo, C. Lauter, and J.-M. Muller show how they can be implemented
using the currently available operations, using round-to-nearest ties-to-even with a partial formal
proof of correctness [12].

Computable analysis and notions of continuity in Coq We give a number of formal proofs of theorems
from the field of computable analysis. Many of our results specify executable algorithms that work
on infinite inputs by means of operating on finite approximations and are proven correct in Coq
in the sense of computable analysis. We also formalize proofs of non-computational results that
support the correctness of our definitions. These include that the information theoretic notion
of continuity used in the library is equivalent to the metric notion of continuity on Baire space, a
complete comparison of the different concepts of continuity that arise from metric and represented-
space structures and the discontinuity of the unrestricted limit operator on the real numbers and
the task of selecting an element of a closed subset of the natural numbers [14].

A Coq Formalization of Lebesgue Integration of Nonnegative Functions Integration, just as much as
differentiation, is a fundamental calculus tool that is widely used in many scientific domains.
Formalizing the mathematical concept of integration and the associated results in a formal proof
assistant helps in providing the highest confidence on the correctness of numerical programs
involving the use of integration, directly or indirectly. By its capability to extend the (Riemann)
integral to a wide class of irregular functions, and to functions defined on more general spaces
than the real line, the Lebesgue integral is perfectly suited for use in mathematical fields such as
probability theory, numerical mathematics, and real analysis. In this article, we present the Coq
formalization of σ-algebras, measures, simple functions, and integration of non-negative measur-
able functions, up to the full formal proofs of the Beppo Levi Theorem (monotone convergence)
and Fatou’s Lemma. More than a plain formalization of the known literature, we present several
design choices made to balance the harmony between mathematical readability and usability of
Coq theorems [11].

8.4 Spreading Formal Proofs

Project TOCCATA 17

Participants: Andrei Paskevich, Antoine Lanco, Benedikt Becker, Claude Marché,
Cláudio Belo Lourenço, Clément Pascutto, Diane Gallois-Wong,
Guillaume Cluzel, Guillaume Melquiond, Houda Mouhcine,
Jean-Christophe Filliâtre, Louise Ben Salem-Knapp, Léo Andrès,
Quentin Garchery, Sylvain Conchon, Sylvie Boldo, Xavier Denis,
Yacine El Haddad.

Verification of Ladder programs Programmable Logic Controllers (PLCs) are industrial digital com-
puters used as automation controllers in manufacturing processes. The Ladder language is a
programming language used to develop PLC software. The aim of this work is to prove that a given
Ladder program conforms to an expected temporal behavior given as a timing chart, describing
scenarios of execution. C. Lourenço and C. Marché, in collaboration with Mitsubishi Electric R&D
Centre Europe, developed an approach to translate the Ladder code and the timing chart into a
program for the Why3 environment. The ultimate goal is two-fold: first, by obtaining a complete
proof, one can verify the conformance of the Ladder code with respect to the timing chart with
a high degree of confidence. Second, when the proof is not fully completed, one can obtain a
counterexample, illustrating a possible execution scenario of the Ladder code which does not
conform to the timing chart [32, 21].

Runtime Assertion Checking for OCaml Runtime assertion checking (RAC) is a convenient set of tech-
niques that lets developers abstract away the process of verifying the correctness of their programs
by writing formal specifications and automating their verification at runtime. In this work [18],
Filliâtre and Pascutto present Ortac, a runtime assertion checking tool for OCaml libraries and
programs. OCaml is a functional programming language in which idioms rely on an expressive
type system, modules, and interface abstractions. Ortac consumes interfaces annotated with type
invariants and function contracts and produces code wrappers with the same signature that check
these specifications at runtime. It provides a flexible framework for traditional assertion checking,
monitoring misbehaviors without interruptions, and automated fuzz testing for OCaml programs.
This work presents an overview of Ortac features and highlights its main design choices.

Leveraging Formal Specifications to Generate Fuzzing Suites When testing a library, developers typi-
cally first have to capture the semantics they want to check. They then write the code implementing
these tests and find relevant test cases that expose possible misbehaviours. In this work, N. Osborne
and C. Pascutto present a tool that automatically takes care of these last two steps by automatically
generating fuzz testing suites from OCaml interfaces annotated with formal behavioral specifica-
tions. They also show some ongoing experiments on the capabilities and limitations of fuzzing
applied to real-world libraries [24]

Formal Analysis of Debian packages Several new results were produced in the context of the CoLiS
project for the formal analysis of Debian packages. A first important step is the version 2 of the
design of the CoLiS language done by B. Becker, C. Marché and other co-authors [39], that includes
a modified formal syntax, a extended formal semantics, together with the design of concrete and
symbolic interpreters. Those interpreters are specified and implemented in Why3, proved correct
(following the initial approach for the concrete interpreter published in 2018 [58] and the recent
approach for symbolic interpretation mentioned above [38]), and finally extracted to OCaml code.

To make the extracted code effective, it must be linked together with a library that implements a
solver for feature constraints [60], and also a library that formally specifies the behavior of basic
UNIX utilities. The latter library is documented in details in a research report [59].

A third result is a large verification campaign running the CoLiS toolbox on all the packages of the
current Debian distribution. The results of this campaign were reported in another article [37] that
was presented at TACAS conference in 2021. The most visible side effect of this experiment is the
discovery of bugs: more than 150 bugs report have been filled against various Debian packages. A
journal paper reporting updated experimental results using an improved implementation of the
platform, and on the new Debian stable distribution, is under submission.

18 Inria Annual Report 2021

9 Bilateral contracts and grants with industry

We have bilateral contracts which are closely related to a joint effort called the ProofInUse consortium.
The objective of ProofInUse is to provide verification tools, based on mathematical proof, to industry
users. These tools are aimed at replacing or complementing the existing test activities, whilst reducing
costs.

This consortium is a follow-up of the former LabCom ProofInUse between Toccata and the SME
AdaCore, funded by the ANR programme “Laboratoires communs”, from April 2014 to March 2017.

9.1 ProofInUse-AdaCore Collaboration

Participants: Claude Marché (contact), Jean-Christophe Filliâtre, Andrei Paskevich,
Guillaume Melquiond, Benedikt Becker.

This collaboration is a joint effort of the Inria project-team Toccata and the AdaCore company which
provides development tools for the Ada programming language. It is funded by a 5-year bilateral contract
from Jan 2019 to Dec 2023.

The SME AdaCore is a software publisher specializing in providing software development tools
for critical systems. A previous successful collaboration between Toccata and AdaCore enabled Why3
technology to be put into the heart of the AdaCore-developed SPARK technology.

The objective of ProofInUse-AdaCore is to significantly increase the capabilities and performances
of the Spark/Ada verification environment proposed by AdaCore. It aims at integration of verification
techniques at the state-of-the-art of academic research, via the generic environment Why3 for deductive
program verification developed by Toccata.

9.2 ProofInUse-MERCE Collaboration

Participants: Claude Marché (contact), Guillaume Melquiond, Cláudio Belo
Lourenço, Yacine El Haddad.

This bilateral contract is part of the ProofInUse effort. This collaboration joins efforts of the Inria
project-team Toccata and the company Mitsubishi Electric R&D (MERCE) in Rennes. It is funded by a
bilateral contract of 3 years and 6 months from Nov 2019 to April 2023.

MERCE has strong and recognized skills in the field of formal methods. In the industrial context of
the Mitsubishi Electric Group, MERCE has acquired knowledge of the specific needs of the development
processes and meets the needs of the group in different areas of application by providing automatic
verification and demonstration tools adapted to the problems encountered.

The objective of ProofInUse-MERCE is to significantly improve on-going MERCE tools regarding the
verification of Programmable Logic Controllers and also regarding the verification of numerical C codes.

9.3 ProofInUse-TrustInSoft Collaboration

Participants: Claude Marché (contact), Guillaume Melquiond, Guillaume Cluzel.

This bilateral contract is part of the ProofInUse effort. This collaboration joins efforts of the Inria
project-team Toccata and the company TrustInSoft in Paris. It is funded by a bilateral contract of 24
months from Dec 2020 to Nov 2022.

TrustInSoft is an SME that offers the TIS-Analyzer environment for analysis of safety and security
properties of source codes written in C and C++ languages. A version of TIS-Analyzer is available online,
under the name TaaS (TrustInSoft as a Service).

https://proofinuse.gitlabpages.inria.fr/
http://www.spark-2014.org/proofinuse
https://taas.trust-in-soft.com/

Project TOCCATA 19

The objective of ProofInUse-TrustInSoft is to integrate Deductive Verification in the platform TIS-
Analyzer, with a special interest in the generation of counterexample to help the user in case of proof
failure.

9.4 CEA-DAM Collaboration

Participants: Sylvie Boldo (contact), Louise Ben Salem-Knapp.

A contract has been signed in 2021 between the CEA-DAM (“Direction des applications militaires”)
and Toccata about the management of the PhD thesis of Louise Ben Salem-Knapp with William Weens
(CEA-DAM) and Guillaume Perrin (CEA-DAM). The PhD has stopped in October 2021, also ending the
contract.

This topic of the PhD is between computer science and applied mathematics. We consider algorithms
from numerical analysis and verify their good behavior on computers. This behavior, proven by supposing
that the computations are perfect, could be put in fault by the problems of round-off errors and of
overflows due to computations in floating-point arithmetic. We plan to study the impact of round-
off errors in a hydrodynamic code. Hydrodynamics is the skeleton model of many physical models
used in industry. It contains numerous technical, mathematical and numerical difficulties, which does
not prevent its massive use in the simulation industry on increasingly complex problems. Today, the
resolution of such problems requires the use of super-calculators, as well as the implementation of
algorithms adapted to massively parallel calculation. The very large number of calculations required to
produce results raises the question of their numerical quality.

9.5 CIFRE contract with Tarides company

Participants: Jean-Christophe Filliâtre (contact), Clément Pascutto.

Clément Pascutto started a CIFRE PhD in June 2020, under then supervision of Jean-Christophe
Filliâtre (at Toccata) and Thomas Gazagnaire (at Tarides). The subject of the PhD is the dynamic and
deductive verification of OCaml programs and its application to distributed data structures.

9.6 CIFRE contract with OCamlPro company

Participants: Jean-Christophe Filliâtre (contact), Léo Andrès.

Léo Andrès started a CIFRE PhD in October 2021, under the supervision of Jean-Christophe Filliâtre
(at Toccata) and Pierre Chambart and Vincent Laviron (at OCamlPro). The subject of the PhD is the
design, formalization, and implementation of a garbage collector for WebAssembly.

10 Partnerships and cooperations

10.1 European initiatives

10.1.1 FP7 & H2020 projects

EMC2, ERC Synergy project

Title: Extreme-scale Mathematically-based Computational Chemistry

Duration: November 2019 – April 2026

20 Inria Annual Report 2021

Coordinators: E. Cances, L. Grigori, Y. Maday, and J. P. Piquemal

Partners:

• LJLL and LCT, Sorbonne Université (France)

• Cermics, École Nationale des Ponts et Chaussées (France)

Inria contact: Laura Grigori

Website

EMC2 is an ERC Synergy project that aims to overcome some of the current limitations in the field of
molecular simulation and aims to provide academic communities and industrial companies with new
generation, dramatically faster and quantitatively reliable molecular simulation software. This will enable
those communities to address major technological and societal challenges of the 21st century in health,
energy and the environment for instance.

FRESCO, ERC Consolidator project

Title: Fast and Reliable Symbolic Computation

Duration: November 2021 – October 2026

Coordinator: Assia Mahboubi

Website

Using computers to formulate conjectures and consolidate proof steps pervades all mathematics
fields, even the most abstract. Most computer proofs are produced by symbolic computations, using
computer algebra systems. However, these systems suffer from severe, intrinsic flaws, rendering com-
putational correction and verification challenging. The FRESCO project aims to shed light on whether
computer algebra could be both reliable and fast. Researchers will disrupt the architecture of proof
assistants, which serve as the best tools for representing mathematics in silico, enriching their pro-
gramming features while preserving their compatibility with their logical foundations. They will also
design novel mathematical software that should feature a high-level, performance-oriented programming
environment for writing efficient code to boost computational mathematics.

10.2 National initiatives

10.2.1 ANR NuSCAP

Participants: Guillaume Melquiond (contact), Sylvie Boldo.

The last twenty years have seen the advent of computer-aided proofs in mathematics and this trend
is getting more and more important. They request various levels of numerical safety, from fast and
stable computations to formal proofs of the computations. Hovewer, the necessary tools and routines
are usually ad hoc, sometimes unavailable, or inexistent. On a complementary perspective, numerical
safety is also critical for complex guidance and control algorithms, in the context of increased satellite
autonomy. We plan to design a whole set of theorems, algorithms and software developments, that will
allow one to study a computational problem on all (or any) of the desired levels of numerical rigor. Key
developments include fast and certified spectral methods and polynomial arithmetic, with subsequent
formal verifications. There will be a strong feedback between the development of our tools and the
applications that motivate it.

The project led by École Normale Supérieure de Lyon (LIP) has started in February 2021 and lasts
for 4 years. Partners: Inria (teams Aric, Galinette, Lfant, Marelle, Toccata), École Polytechnique (LIX),
Sorbonne Université (LIP6), Université Sorbonne Paris Nord (LIPN), CNRS (LAAS).

https://erc-emc2.eu/
https://fresco.gitlabpages.inria.fr/
https://nuscap.gitlabpages.inria.fr/index.html

Project TOCCATA 21

11 Dissemination

Participants: Andrei Paskevich, Antoine Lanco, Claude Marché, Diane Gallois-Wong,
Guillaume Melquiond, Jean-Christophe Filliâtre, Quentin Garchery,
Sylvain Conchon, Sylvie Boldo, Xavier Denis.

11.1 Administration, Collective Responsibilities

• S. Boldo has been nominated president of the (first) concours de l’agrégation d’informatique that
will recruit French computer science teachers for high school in 2022.

• S. Boldo, deputy scientific director (DSA) of Inria Saclay research center, until June 21.

• S. Boldo, member of the council of the Computer Science Graduate School of Université Paris-Saclay
(and co-head for open science).

• S. Boldo, member of the (national) Inria IES commission (”commission pour l’information et
l’édition scientifique”) about scientific edition and publication models.

• S Boldo, member of the CLFP (“commission locale de formation permanente”).

• S. Boldo, member of the CoDiReV Paris-Saclay (committee of the research heads of the Paris-Saclay
components and partners) until June 21.

• S. Boldo, deputy member of the CFVU Paris-Saclay (“commission de la formation et de la vie
universitaire”) until June 21.

• S. Boldo, member of the partners commission for the Digicosme Labex (“comité des tutelles du
labex Digicosme”) until June 21.

• S. Boldo, member of the crisis unit of Inria Saclay until June 21.

• G. Melquiond, member of the scientific commission of Inria Saclay, in charge of selecting candidates
for PhD grants, Post-doc grants, temporary leaves from universities (“délégations”).

• G. Melquiond, elected member of the ED STIC doctoral school from Université Paris-Saclay, in
charge of selecting candidates for PhD grants and monitoring PhD students.

• G. Melquiond, member of Inria’s MissionJC (Jeunes Chercheurs), in charge of funding thematic
research schools.

• G. Melquiond, responsible of Inria Saclay’s FpR (Formation par la Recherche), in charge of funding
participation of PhD students to thematic research schools.

• A. Paskevich, member of the CCSU (“commission consultative de spécialistes de l’université”),
section 27, of Université Paris-Saclay.

11.2 Promoting scientific activities

Chair of conference program committees

• A. Paskevich, 6th Workshop on Formal Integrated Development Environment, F-IDE’2021

https://www.inria.fr/fr/sylvie-boldo-presidente-premiere-agregation-informatique

22 Inria Annual Report 2021

Member of the conference program committees

• S. Boldo, 2021 IEEE Symposium on Computer Arithmetic, ARITH’2021 (and will be in 2022)

• S. Boldo, 13th NASA Formal Methods Symposium, NFM’2021 (and will be in 2022)

• S. Boldo, 2022 Certified Programs and Proofs, CPP’2022

• S. Boldo, 13th International Conference on Interactive Theorem Proving, ITP’2022

• J.-C. Filliâtre, Verification, Model Checking, and Abstract Interpretation, VMCAI 2021

• J.-C. Filliâtre, 13th NASA Formal Methods Symposium, NFM’2021

• J.-C. Filliâtre, XXV Brazilian Symposium on Programming Languages, SBLP 2021

• J.-C. Filliâtre, Symposium on Languages, Applications and Technologies, SLATE 2021

• G. Melquiond, 28th IEEE Symposium on Computer Arithmetic, ARITH’2021

11.2.1 Journal

Member of the editorial boards

• J.-C. Filliâtre, member of the editorial board of Journal of Functional Programming.

• G. Melquiond, member of the editorial board of Reliable Computing.

• A. Paskevich, member of the editorial board of Formal Methods in System Design.

11.2.2 Invited talks

• X. Denis: “Deductive verification of Rust programs”, Workshop Langages, Verification et Preuves,
Mar. 12, 2021

• X. Denis: “Creusot: A prototype tool for verification of Rust software”, Workshop RustVerify, Apr 12,
2021

• J.-C. Filliâtre: “Gospel, un langage de spécification pour OCaml”, Workshop Langages, Verification
et Preuves, Mar. 12, 2021

• Q. Garchery: “Génération et vérification de certificats pour les transformations logiques”, Workshop
Langages, Verification et Preuves, Nov. 23, 2021

11.2.3 Leadership within the scientific community

• S. Boldo, elected chair of the ARITH working group of the GDR-IM (a CNRS subgroup of computer
science) with L.-S. Didier (Univ. Toulon).

• S. Boldo, steering committee member of the IEEE International Symposium on Computer Arith-
metic.

• J.-C. Filliâtre, chair of IFIP WG 1.9/2.15 verified Software.

https://groupes.renater.fr/wiki/lvp/public/2103journee
https://sites.google.com/view/rustverify2021/home
https://groupes.renater.fr/wiki/lvp/public/2103journee
https://groupes.renater.fr/wiki/lvp/public/2103journee
https://groupes.renater.fr/wiki/lvp/public/2109journee
https://groupes.renater.fr/wiki/lvp/public/2109journee

Project TOCCATA 23

11.2.4 Scientific expertise

• S. Boldo, member of the HCERES evaluation committee for the LaBRI laboratory in Bordeaux,
January 18–21.

• S. Boldo, vice-president of the Inria CRCN-ISFP recruitment committee for Inria Saclay – Île-de-
France research center.

• S. Boldo, member of the Inria DR recruitment committee (written part only)

• S. Boldo, member of the Inria PEDR committees

• S. Boldo, member of the Scientific Council of CentraleSupélec (until June 21)

• J.-C. Filliâtre, grading the entrance examination at X/ENS (“option informatique”).

• C. Marché, president of the Inria CRCN-ISFP recruitment committee for Inria-Paris-Rocquencourt
research center.

• G. Melquiond, grading the entrance examination at X/ENS (“option informatique”).

11.3 Teaching - Supervision - Juries

11.3.1 Teaching

• S. Boldo, Floating-point Arithmetic and Beyond, 6h, M2, École Normale Supérieure de Lyon, France.

• S. Conchon and J.-C. Filliâtre, DIU Enseigner l’Informatique au Lycée, 2 weeks, rectorat de Versailles
(together with T. Balabonski and K. Nguyen).

• J.-C. Filliâtre, Langages de programmation et compilation, 25h, L3, École Normale Supérieure,
France.

• J.-C. Filliâtre, Les bases de l’algorithmique et de la programmation, 15h, L3, École Polytechnique,
France.

• J.-C. Filliâtre, Compilation, 18h, M1, École Polytechnique, France.

• Q. Garchery, Compilation, 24h, L3, Université Paris-Saclay, France.

• Q. Garchery, Programmation Fonctionnelle Avancée, 24h, L3, Université Paris-Saclay, France.

• Q. Garchery, Algorithmique, 10h, 2nd year, Polytech, Université Paris-Saclay, France.

• A. Lanco, Projet, 20h, L3, Université Paris-Saclay, France.

• A. Lanco, Compilation, 24h, L3, Université Paris-Saclay, France.

• C. Marché, Proofs of Programs, 12h, M2, Master Parisien de Recherche en Informatique (MPRI).

• G. Melquiond, Initiation à la recherche, 12h, M1, MPRI, École Normale Supérieure Paris-Saclay,
France.

• G. Melquiond, Floating-point Arithmetic and Beyond, 12h, M2, École Normale Supérieure de Lyon,
France.

• A. Paskevich, Vérification Déductive, 12h, M1, MPRI, Université Paris-Saclay, France.

• A. Paskevich, Principes de systèmes d’exploitation, 40h+54h, DUT2, IUT d’Orsay, Université Paris-
Saclay, France.

https://marche.gitlabpages.inria.fr/lecture-deductive-verif/

24 Inria Annual Report 2021

11.3.2 Supervision

• PhD: D. Gallois-Wong, “Vérification formelle et filtres numériques”, since Oct. 2017, supervised by
S. Boldo and T. Hilaire, defended in March 2021 [26].

• PhD in progress: Q. Garchery, “Certification de la génération et de la transformation d’obligations
de preuve”, since Oct. 2018, supervised by C. Keller, C. Marché and A. Paskevich.

• PhD in progress: A. Lanco, “Stratégies pour la réduction forte”, since Oct. 2019, supervised by
T. Balabonski and G. Melquiond.

• PhD in progress: C. Pascutto, “Runtime and Deductive Verification of OCaml programs and appli-
cations to Mergeable Data Structures”, since June 2020, supervised by J.-C. Filliâtre.

• PhD stopped: L. Ben Salem-Knapp, “Erreurs d’arrondi sur un code d’hydrodynamique”, from Oct.
2020 to Oct. 2021, supervised by S. Boldo, W. Weens and G. Perrin.

• PhD in progress: X. Denis, “Deductive program verification for Rust”, since Oct. 2020, supervised
by J.-H. Jourdan and C. Marché.

• PhD in progress: L. Andrès, “Formalization of a garbage collector for WebAssembly”, since Oct.
2021, supervised by J.-C. Filliâtre.

11.3.3 Juries

• S. Boldo, member and reviewer of the habilitation (HDR) committee of Assia Mahboubi (Jan 5)

• S. Boldo, member and president of the PhD defense of Maxime Jacquemin (U. Paris-Saclay, July 15)

11.4 Popularization

11.4.1 Interventions

• S. Boldo, participant of a speed-dating with high school female students during the RJMI (Rencontres
des Jeunes Mathématiciennes et Informaticiennes) organized online by Inria Saclay (Feb 26)

• S. Boldo, animation of a stand for the Inria Saclay - Île-de-France Fête de la science (Oct 8)

12 Scientific production

12.1 Major publications

[1] B. Becker, N. Jeannerod, C. Marché, Y. Régis-Gianas, M. Sighireanu and R. Treinen. ‘Analysing
installation scenarios of Debian packages’. In: Tools and Algorithms for the Construction and
Analysis of Systems. TACAS 2020 - 26th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Vol. 12079. Lecture Notes in Computer Science. The
conference took place on-line, because it couldn’t be held in Dublin, Ireland, 17th Apr. 2020,
pp. 235–253. DOI: 10.1007/978-3-030-45237-7_14. URL: https://hal.archives-ouvertes
.fr/hal-02355602.

[2] F. Bobot, J.-C. Filliâtre, C. Marché and A. Paskevich. ‘Let’s Verify This with Why3’. In: International
Journal on Software Tools for Technology Transfer (STTT) 17.6 (2015), pp. 709–727. URL: http://ha
l.inria.fr/hal-00967132/en.

[3] S. Boldo, J.-H. Jourdan, X. Leroy and G. Melquiond. ‘Verified Compilation of Floating-Point Compu-
tations’. In: Journal of Automated Reasoning 54.2 (Feb. 2015), pp. 135–163. URL: https://hal.inr
ia.fr/hal-00862689.

[4] S. Boldo and G. Melquiond. Computer Arithmetic and Formal Proofs: Verifying Floating-point
Algorithms with the Coq System. ISTE Press - Elsevier, Dec. 2017. URL: https://hal.inria.fr/h
al-01632617.

https://doi.org/10.1007/978-3-030-45237-7_14
https://hal.archives-ouvertes.fr/hal-02355602
https://hal.archives-ouvertes.fr/hal-02355602
http://hal.inria.fr/hal-00967132/en
http://hal.inria.fr/hal-00967132/en
https://hal.inria.fr/hal-00862689
https://hal.inria.fr/hal-00862689
https://hal.inria.fr/hal-01632617
https://hal.inria.fr/hal-01632617

Project TOCCATA 25

[5] M. Clochard, L. Gondelman and M. Pereira. ‘The Matrix Reproved’. In: Journal of Automated
Reasoning 60.3 (2018), pp. 365–383. URL: https://hal.inria.fr/hal-01617437.

[6] S. Conchon, M. Iguernlala, K. Ji, G. Melquiond and C. Fumex. ‘A Three-tier Strategy for Reasoning
about Floating-Point Numbers in SMT’. In: Computer Aided Verification. 2017. URL: https://hal
.inria.fr/hal-01522770.

[7] J.-C. Filliâtre, L. Gondelman and A. Paskevich. ‘The Spirit of Ghost Code’. In: Formal Methods in
System Design 48.3 (2016), pp. 152–174. URL: https://hal.archives-ouvertes.fr/hal-0139
6864v1.

[8] A. Mahboubi, G. Melquiond and T. Sibut-Pinote. ‘Formally Verified Approximations of Definite
Integrals’. In: Journal of Automated Reasoning 62.2 (Feb. 2019), pp. 281–300. DOI: 10.1007/s1081
7-018-9463-7. URL: https://hal.inria.fr/hal-01630143.

[9] G. Melquiond and R. Rieu-Helft. ‘A Why3 Framework for Reflection Proofs and its Application
to GMP’s Algorithms’. In: 9th International Joint Conference on Automated Reasoning. Ed. by D.
Galmiche, S. Schulz and R. Sebastiani. Lecture Notes in Computer Science. Oxford, United Kingdom,
July 2018. URL: https://hal.inria.fr/hal-01699754.

[10] P. Roux, M. Iguernlala and S. Conchon. ‘A Non-linear Arithmetic Procedure for Control-Command
Software Verification’. In: 24th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS). Thessalonique, Greece, Apr. 2018. URL: https://hal.archi
ves-ouvertes.fr/hal-01737737.

12.2 Publications of the year

International journals

[11] S. Boldo, F. Clément, F. Faissole, V. Martin and M. Mayero. ‘A Coq Formalization of Lebesgue
Integration of Nonnegative Functions’. In: Journal of Automated Reasoning (2021). DOI: 10.1007
/s10817-021-09612-0. URL: https://hal.inria.fr/hal-03471095.

[12] S. Boldo, C. Q. Lauter and J.-M. Muller. ‘Emulating round-to-nearest ties-to-zero "augmented"
floating-point operations using round-to-nearest ties-to-even arithmetic’. In: IEEE Transactions on
Computers 70.7 (July 2021), pp. 1046–1058. DOI: 10.1109/TC.2020.3002702. URL: https://hal
.archives-ouvertes.fr/hal-02137968.

[13] J.-C. Filliâtre. ‘Simpler Proofs with Decentralized Invariants’. In: Journal of Logical and Algebraic
Methods in Programming 121 (June 2021). URL: https://hal.inria.fr/hal-02518570.

[14] F. Steinberg, L. Théry and H. Thies. ‘Computable analysis and notions of continuity in Coq’. In:
Logical Methods in Computer Science (12th May 2021). URL: https://hal.inria.fr/hal-03324
295.

International peer-reviewed conferences

[15] T. Balabonski, A. Lanco and G. Melquiond. ‘A strong call-by-need calculus’. In: Proceedings of the
6th International Conference on Formal Structures for Computation and Deduction. FSCD 2021
- 6th International Conference on Formal Structures for Computation and Deduction. Vol. 195.
Leibniz International Proceedings in Informatics 9. Buenos Aires, Argentina, July 2021, pp. 1–22.
DOI: 10.4230/LIPIcs.FSCD.2021.9. URL: https://hal.inria.fr/hal-03149692.

[16] B. Becker, C. B. Lourenço and C. Marché. ‘Explaining Counterexamples with Giant-Step Assertion
Checking’. In: F-IDE 2021 - 6th Workshop on Formal Integrated Development Environments.
Virtual, United States: Electronic Proceedings in Theoretical Computer Science, May 2021. DOI:
10.4204/EPTCS.338.10. URL: https://hal.inria.fr/hal-03217393.

[17] S. Boldo and G. Melquiond. ‘Some Formal Tools for Computer Arithmetic: Flocq and Gappa’. In:
ARITH 2021 - 28th IEEE International Symposium on Computer Arithmetic. Online, Italy, June
2021. URL: https://hal.inria.fr/hal-03233227.

https://hal.inria.fr/hal-01617437
https://hal.inria.fr/hal-01522770
https://hal.inria.fr/hal-01522770
https://hal.archives-ouvertes.fr/hal-01396864v1
https://hal.archives-ouvertes.fr/hal-01396864v1
https://doi.org/10.1007/s10817-018-9463-7
https://doi.org/10.1007/s10817-018-9463-7
https://hal.inria.fr/hal-01630143
https://hal.inria.fr/hal-01699754
https://hal.archives-ouvertes.fr/hal-01737737
https://hal.archives-ouvertes.fr/hal-01737737
https://doi.org/10.1007/s10817-021-09612-0
https://doi.org/10.1007/s10817-021-09612-0
https://hal.inria.fr/hal-03471095
https://doi.org/10.1109/TC.2020.3002702
https://hal.archives-ouvertes.fr/hal-02137968
https://hal.archives-ouvertes.fr/hal-02137968
https://hal.inria.fr/hal-02518570
https://hal.inria.fr/hal-03324295
https://hal.inria.fr/hal-03324295
https://doi.org/10.4230/LIPIcs.FSCD.2021.9
https://hal.inria.fr/hal-03149692
https://doi.org/10.4204/EPTCS.338.10
https://hal.inria.fr/hal-03217393
https://hal.inria.fr/hal-03233227

26 Inria Annual Report 2021

[18] J.-C. Filliâtre and C. Pascutto. ‘Ortac: Runtime Assertion Checking for OCaml’. In: RV’21 - 21st
International Conference on Runtime Verification. Los Angeles, CA, United States, 11th Oct. 2021.
URL: https://hal.inria.fr/hal-03252901.

[19] J.-C. Filliâtre and A. Paskevich. ‘Abstraction and Genericity in Why3’. In: ISoLA 2021 - 9th Inter-
national Symposium On Leveraging Applications of Formal Methods, Verification and Validation.
Vol. 12476. Rhodes, Greece, 2020. DOI: 10.1007/978-3-030-61362-4_7. URL: https://hal.in
ria.fr/hal-02696246.

[20] Q. Garchery. ‘A Framework for Proof-carrying Logical Transformations’. In: Proof eXchange for
Theorem Proving. Vol. 336. Electronic Proceedings in Theoretical Computer Science. Virtual, United
States: EPTCS, 7th July 2021, pp. 5–23. DOI: 10.4204/EPTCS.336.2. URL: https://hal.archive
s-ouvertes.fr/hal-03349223.

[21] C. Lourenço, D. Cousineau, F. Faissole, C. Marché, D. Mentré and H. Inoue. ‘Automated Verification
of Temporal Properties of Ladder Programs’. In: FMICS 2021 - Formal Methods for Industrial
Critical Systems. Vol. 12863. Lecture Notes in Computer Science. Paris, France, 2021. DOI: 10.1007
/978-3-030-85248-1_2. URL: https://hal.inria.fr/hal-03281580.

[22] G. Melquiond. ‘Plotting in a Formally Verified Way’. In: Proceedings of the 6th Workshop on
Formal Integrated Development Environment. Vol. 338. Electronic Proceedings in Theoretical
Computer Science. Online, United States, May 2021, pp. 39–45. DOI: 10.4204/EPTCS.338.6. URL:
https://hal.inria.fr/hal-03168208.

Conferences without proceedings

[23] L. Ben Salem-Knapp, T. Vazquez-Gonzalez and W. Weens. ‘La double précision suffit-elle à l’exascale
?’ In: AFADL 2021 - 20èmes journées Approches Formelles dans l’Assistance au Développement de
Logiciels. Vannes, France, 16th June 2021. URL: https://hal.inria.fr/hal-03351615.

[24] N. Osborne and C. Pascutto. ‘Leveraging Formal Specifications to Generate Fuzzing Suites’. In:
OCaml Users and Developers Workshop, co-located with the 26th ACM SIGPLAN International
Conference on Functional Programming. Virtual, United States, 22nd Aug. 2021. URL: https://ha
l.inria.fr/hal-03328646.

[25] W. Weens, T. Vazquez-Gonzalez and L. B. Salem-Knapp. ‘Modeling round-off errors in hydrody-
namic simulations’. In: NSV 2021 - 14th International Workshop on Numerical Software Verification.
Los Angeles, United States, 18th July 2021. URL: https://hal.inria.fr/hal-03351754.

Doctoral dissertations and habilitation theses

[26] D. Gallois-Wong. ‘Coq formalization of digital filter algorithms computed using finite precision
arithmetic’. Université Paris-Saclay, 4th Mar. 2021. URL: https://tel.archives-ouvertes.fr
/tel-03202580.

Reports & preprints

[27] B. Becker, C. Belo Lourenço and C. Marché. Giant-step Semantics for the Categorisation of Coun-
terexamples. RR-9407. Inria, Apr. 2021, p. 43. URL: https://hal.inria.fr/hal-03213438.

[28] L. Ben Salem-Knapp, S. Boldo and W. Weens. Bounding the Round-Off Error of the Upwind Scheme
for Advection. 31st Aug. 2021. URL: https://hal.inria.fr/hal-03329933.

[29] S. Boldo, F. Clément and L. Leclerc. A Coq Formalization of the Bochner integral. 7th Jan. 2022. URL:
https://hal.inria.fr/hal-03516749.

[30] X. Denis, J.-H. Jourdan and C. Marché. The Creusot Environment for the Deductive Verification of
Rust Programs. RR-9448. Inria Saclay - Île de France, 2021. URL: https://hal.inria.fr/hal-03
526634.

[31] J.-C. Filliâtre. Compte-rendu de fin de projet ANR-15-CE25-0008 "VOCaL": Programme CE25 2015.
LMF - Laboratoire Méthodes Formelles, June 2021. URL: https://hal.inria.fr/hal-03326775.

https://hal.inria.fr/hal-03252901
https://doi.org/10.1007/978-3-030-61362-4_7
https://hal.inria.fr/hal-02696246
https://hal.inria.fr/hal-02696246
https://doi.org/10.4204/EPTCS.336.2
https://hal.archives-ouvertes.fr/hal-03349223
https://hal.archives-ouvertes.fr/hal-03349223
https://doi.org/10.1007/978-3-030-85248-1_2
https://doi.org/10.1007/978-3-030-85248-1_2
https://hal.inria.fr/hal-03281580
https://doi.org/10.4204/EPTCS.338.6
https://hal.inria.fr/hal-03168208
https://hal.inria.fr/hal-03351615
https://hal.inria.fr/hal-03328646
https://hal.inria.fr/hal-03328646
https://hal.inria.fr/hal-03351754
https://tel.archives-ouvertes.fr/tel-03202580
https://tel.archives-ouvertes.fr/tel-03202580
https://hal.inria.fr/hal-03213438
https://hal.inria.fr/hal-03329933
https://hal.inria.fr/hal-03516749
https://hal.inria.fr/hal-03526634
https://hal.inria.fr/hal-03526634
https://hal.inria.fr/hal-03326775

Project TOCCATA 27

[32] C. Lourenço, D. Cousineau, F. Faissole, C. Marché, D. Mentré and H. Inoue. Formal Analysis of
Ladder Programs using Deductive Verification. RR-9402. Inria, Apr. 2021, p. 25. URL: https://hal
.inria.fr/hal-03199464.

[33] A. Paskevich. Continuation Passing as an Abstract Syntax for Deductive Verification. 19th Jan. 2021.
URL: https://hal.inria.fr/hal-03115120.

12.3 Cited publications

[34] A. Ayad and C. Marché. ‘Multi-Prover Verification of Floating-Point Programs’. In: Fifth Interna-
tional Joint Conference on Automated Reasoning. Ed. by J. Giesl and R. Hähnle. Vol. 6173. Lecture
Notes in Artificial Intelligence. Edinburgh, Scotland: Springer, July 2010, pp. 127–141. URL: http:
//hal.inria.fr/inria-00534333.

[35] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds and C. Tinelli.
‘CVC4’. In: Computer Aided Verification. Vol. 6806. Lecture Notes in Computer Science. Springer,
2011, pp. 171–177.

[36] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy and V. Prevosto. ACSL: ANSI/ISO C Specifica-
tion Language, version 1.4. 2009.

[37] B. Becker, N. Jeannerod, C. Marché, Y. Régis-Gianas, M. Sighireanu and R. Treinen. ‘Analysing
installation scenarios of Debian packages’. In: Tools and Algorithms for the Construction and
Analysis of Systems. Vol. 12079. Lecture Notes in Computer Science. 2020, pp. 235–253. URL: https:
//hal.archives-ouvertes.fr/hal-02355602.

[38] B. Becker and C. Marché. ‘Ghost Code in Action: Automated Verification of a Symbolic Interpreter’.
In: Verified Software: Tools, Techniques and Experiments. Ed. by S. Chakraborty and J. A.Navas.
Vol. 12031. Lecture Notes in Computer Science. New York, United States, July 2019. URL: https:
//hal.inria.fr/hal-02276257.

[39] B. Becker, C. Marché, N. Jeannerod and R. Treinen. Revision 2 of CoLiS language: formal syntax,
semantics, concrete and symbolic interpreters. Technical Report. HAL Archives Ouvertes, Oct. 2019.
URL: https://hal.inria.fr/hal-02321743.

[40] P. Behm, P. Benoit, A. Faivre and J.-M. Meynadier. ‘METEOR : A successful application of B in a
large project’. In: Proceedings of FM’99: World Congress on Formal Methods. Ed. by J. M. Wing,
J. Woodcock and J. Davies. Lecture Notes in Computer Science (Springer-Verlag). Springer Verlag,
Sept. 1999, pp. 369–387.

[41] S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond and P. Weis. ‘Formal Proof of a Wave
Equation Resolution Scheme: the Method Error’. In: Proceedings of the First Interactive Theorem
Proving Conference. Ed. by M. Kaufmann and L. C. Paulson. Vol. 6172. LNCS. Edinburgh, Scotland:
Springer, July 2010, pp. 147–162. URL: http://hal.inria.fr/inria-00450789/.

[42] S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond and P. Weis. ‘Wave Equation Numer-
ical Resolution: a Comprehensive Mechanized Proof of a C Program’. In: Journal of Automated
Reasoning 50.4 (Apr. 2013), pp. 423–456. URL: http://hal.inria.fr/hal-00649240/en/.

[43] S. Boldo, J.-C. Filliâtre and G. Melquiond. ‘Combining Coq and Gappa for Certifying Floating-
Point Programs’. In: 16th Symposium on the Integration of Symbolic Computation and Mechanised
Reasoning. Vol. 5625. Lecture Notes in Artificial Intelligence. Grand Bend, Canada: Springer, July
2009, pp. 59–74.

[44] S. Boldo and C. Marché. ‘Formal verification of numerical programs: from C annotated programs
to mechanical proofs’. In: Mathematics in Computer Science 5 (4 2011), pp. 377–393. URL: http:
//hal.inria.fr/hal-00777605.

[45] S. Boldo and T. M. T. Nguyen. ‘Proofs of numerical programs when the compiler optimizes’. In:
Innovations in Systems and Software Engineering 7 (2 2011), pp. 151–160. URL: http://hal.inria
.fr/hal-00777639.

https://hal.inria.fr/hal-03199464
https://hal.inria.fr/hal-03199464
https://hal.inria.fr/hal-03115120
http://hal.inria.fr/inria-00534333
http://hal.inria.fr/inria-00534333
https://hal.archives-ouvertes.fr/hal-02355602
https://hal.archives-ouvertes.fr/hal-02355602
https://hal.inria.fr/hal-02276257
https://hal.inria.fr/hal-02276257
https://hal.inria.fr/hal-02321743
http://hal.inria.fr/inria-00450789/
http://hal.inria.fr/hal-00649240/en/
http://hal.inria.fr/hal-00777605
http://hal.inria.fr/hal-00777605
http://hal.inria.fr/hal-00777639
http://hal.inria.fr/hal-00777639

28 Inria Annual Report 2021

[46] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino and E. Poll. ‘An
overview of JML tools and applications’. In: International Journal on Software Tools for Technology
Transfer (STTT) 7.3 (June 2005), pp. 212–232.

[47] A. Charguéraud, J.-C. Filliâtre, C. B. Lourenço and M. Pereira. ‘GOSPEL — Providing OCaml with a
Formal Specification Language’. In: FM 2019 23rd International Symposium on Formal Methods.
Ed. by A. McIver and M. ter Beek. Porto, Portugal, Oct. 2019. URL: https://hal.inria.fr/hal-0
2157484.

[48] M. Clochard, C. Marché and A. Paskevich. ‘Deductive Verification with Ghost Monitors’. In: Princi-
ples of Programming Languages. New Orleans, United States, 2020. URL: https://hal.inria.fr
/hal-02368284.

[49] S. Conchon, A. Coquereau, M. Iguernlala and A. Mebsout. ‘Alt-Ergo 2.2’. In: SMT Workshop: In-
ternational Workshop on Satisfiability Modulo Theories. Oxford, United Kingdom, July 2018. URL:
https://hal.inria.fr/hal-01960203.

[50] S. Dailler, D. Hauzar, C. Marché and Y. Moy. ‘Instrumenting a Weakest Precondition Calculus for
Counterexample Generation’. In: Journal of Logical and Algebraic Methods in Programming 99
(2018), pp. 97–113. URL: https://hal.inria.fr/hal-01802488.

[51] X. Denis. Deductive program verification for a language with a Rust-like typing discipline. Internship
report. Université de Paris, Sept. 2020. URL: https://hal.archives-ouvertes.fr/hal-02962
804.

[52] F. de Dinechin, C. Lauter and G. Melquiond. ‘Certifying the floating-point implementation of an
elementary function using Gappa’. In: IEEE Transactions on Computers 60.2 (2011), pp. 242–253.
URL: http://hal.inria.fr/inria-00533968/en/.

[53] J.-C. Filliâtre and A. Paskevich. ‘Abstraction and Genericity in Why3’. In: 9th International Sympo-
sium On Leveraging Applications of Formal Methods, Verification and Validation (ISoLA). Ed. by T.
Margaria and B. Steffen. Vol. 12476. Lecture Notes in Computer Science. Rhodes, Greece: Springer,
Oct. 2020, pp. 122–142. URL: https://hal.inria.fr/hal-02696246.

[54] C. Fumex, C. Dross, J. Gerlach and C. Marché. ‘Specification and Proof of High-Level Functional
Properties of Bit-Level Programs’. In: 8th NASA Formal Methods Symposium. Ed. by S. Rayadurgam
and O. Tkachuk. Vol. 9690. Lecture Notes in Computer Science. Minneapolis, MN, USA: Springer,
June 2016, pp. 291–306. URL: https://hal.inria.fr/hal-01314876.

[55] C. Fumex, C. Marché and Y. Moy. ‘Automating the Verification of Floating-Point Programs’. In:
Verified Software: Theories, Tools, and Experiments. Revised Selected Papers Presented at the 9th
International Conference VSTTE. Ed. by A. Paskevich and T. Wies. Lecture Notes in Computer
Science 10712. Heidelberg, Germany: Springer, Dec. 2017. URL: https://hal.inria.fr/hal-01
534533/.

[56] Q. Garchery, C. Keller, C. Marché and A. Paskevich. ‘Des transformations logiques passent leur
certicat’. In: Trente-et-unièmes Journées Francophones des Langages Applicatifs. Ed. by Z. Dargaye
and Y. Régis-Gianas. Gruissan, France, Jan. 2020. URL: https://hal.inria.fr/hal-02384946.

[57] S. de Gouw, J. Rot, F. S. de Boer, R. Bubel and R. Hähnle. ‘OpenJDK’s Java.utils.Collection.sort() Is
Broken: The Good, the Bad and the Worst Case’. In: Computer Aided Verification: 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. Ed. by D.
Kroening and C. S. Păsăreanu. Cham: Springer International Publishing, 2015, pp. 273–289.

[58] N. Jeannerod, C. Marché and R. Treinen. ‘A Formally Verified Interpreter for a Shell-like Program-
ming Language’. In: Verified Software: Theories, Tools, and Experiments. Revised Selected Papers
Presented at the 9th International Conference VSTTE. Ed. by A. Paskevich and T. Wies. Lecture Notes
in Computer Science 10712. Heidelberg, Germany: Springer, Dec. 2017. URL: https://hal.inria
.fr/hal-01534747.

[59] N. Jeannerod, Y. Régis-Gianas, C. Marché, M. Sighireanu and R. Treinen. Specification of UNIX
Utilities. Technical Report. HAL Archives Ouvertes, Oct. 2019. URL: https://hal.inria.fr/hal-
02321691.

https://hal.inria.fr/hal-02157484
https://hal.inria.fr/hal-02157484
https://hal.inria.fr/hal-02368284
https://hal.inria.fr/hal-02368284
https://hal.inria.fr/hal-01960203
https://hal.inria.fr/hal-01802488
https://hal.archives-ouvertes.fr/hal-02962804
https://hal.archives-ouvertes.fr/hal-02962804
http://hal.inria.fr/inria-00533968/en/
https://hal.inria.fr/hal-02696246
https://hal.inria.fr/hal-01314876
https://hal.inria.fr/hal-01534533/
https://hal.inria.fr/hal-01534533/
https://hal.inria.fr/hal-02384946
https://hal.inria.fr/hal-01534747
https://hal.inria.fr/hal-01534747
https://hal.inria.fr/hal-02321691
https://hal.inria.fr/hal-02321691

Project TOCCATA 29

[60] N. Jeannerod and R. Treinen. ‘Deciding the First-Order Theory of an Algebra of Feature Trees with
Updates’. In: 9th International Joint Conference on Automated Reasoning. Oxford, United Kingdom,
July 2018. URL: https://hal.archives-ouvertes.fr/hal-01807474.

[61] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch and S. Winwood. ‘seL4: Formal verification of an OS
kernel’. In: Communications of the ACM 53.6 (June 2010), pp. 107–115.

[62] X. Leroy. ‘A formally verified compiler back-end’. In: Journal of Automated Reasoning 43.4 (2009),
pp. 363–446. URL: http://hal.inria.fr/inria-00360768/en/.

[63] É. Martin-Dorel and G. Melquiond. ‘Proving Tight Bounds on Univariate Expressions with Elemen-
tary Functions in Coq’. In: Journal of Automated Reasoning (2016). URL: https://hal.inria.fr
/hal-01086460.

[64] L. de Moura and N. Bjørner. ‘Z3, An Efficient SMT Solver’. In: TACAS. Vol. 4963. Lecture Notes in
Computer Science. Springer, 2008, pp. 337–340.

[65] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre, G. Melquiond, N.
Revol and S. Torres. Handbook of Floating-point Arithmetic (2nd edition). Birkhäuser Basel, July
2018. URL: https://hal.inria.fr/hal-01766584.

[66] T. M. T. Nguyen and C. Marché. ‘Hardware-Dependent Proofs of Numerical Programs’. In: Certified
Programs and Proofs. Ed. by J.-P. Jouannaud and Z. Shao. Lecture Notes in Computer Science.
Springer, Dec. 2011, pp. 314–329. URL: http://hal.inria.fr/hal-00772508.

https://hal.archives-ouvertes.fr/hal-01807474
http://hal.inria.fr/inria-00360768/en/
https://hal.inria.fr/hal-01086460
https://hal.inria.fr/hal-01086460
https://hal.inria.fr/hal-01766584
http://hal.inria.fr/hal-00772508

	Project-Team TOCCATA
	Team members, visitors, external collaborators
	Overall objectives
	Presentation

	Research program
	Foundations and spreading of deductive program verification
	Reasoning on mutable memory in program verification
	Verification of Computer Arithmetic
	Spreading Formal Proofs

	Application domains
	Safety-Critical Software in Transportation
	Formal Analysis of Debian packages
	Extensions of ProofInUse joint lab

	Social and environmental responsibility
	Footprint of research activities
	Impact of research results

	Highlights of the year
	Agrégation d'Informatique
	Awards

	New software and platforms
	New software
	Alt-Ergo
	CoqInterval
	Coquelicot
	Cubicle
	Flocq
	Gappa
	Why3
	Coq

	New results
	Foundations and Spreading of Deductive Program Verification
	Reasoning on mutable memory in program verification
	Verification of Computer Arithmetic
	Spreading Formal Proofs

	Bilateral contracts and grants with industry
	ProofInUse-AdaCore Collaboration
	ProofInUse-MERCE Collaboration
	ProofInUse-TrustInSoft Collaboration
	CEA-DAM Collaboration
	CIFRE contract with Tarides company
	CIFRE contract with OCamlPro company

	Partnerships and cooperations
	European initiatives
	FP7 & H2020 projects

	National initiatives
	ANR NuSCAP

	Dissemination
	Administration, Collective Responsibilities
	Promoting scientific activities
	Journal
	Invited talks
	Leadership within the scientific community
	Scientific expertise

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Interventions

	Scientific production
	Major publications
	Publications of the year
	Cited publications

