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2 Overall objectives

2.1 Introduction

The joint research team, TRIPOP, between INRIA Grenoble Rhône–Alpes, Grenoble INP and CNRS, part
of the Laboratoire Jean Kuntzmann (LJK UMR 5224) is a follow up of the BIPOP team (2003–2017). The
team is mainly concerned by the modeling, the mathematical analysis, the simulation and the control
of nonsmooth dynamical systems. Nonsmooth dynamics concerns the study of the time evolution of
systems that are not smooth in the mathematical sense, i.e., systems that are characterized by a lack of
differentiability, either of the mappings in their formulations, or of their solutions with respect to time. In
mechanics, the main instances of nonsmooth dynamical systems are multibody systems with Signorini
unilateral contact, set-valued (Coulomb-like) friction and impacts. In Electronics, examples are found in
switched electrical circuits with ideal components (diodes, switches, transistors). In Control, nonsmooth
systems arise in the sliding mode control theory and in optimal control. A lot of examples can also be
found in cyber-physical systems (hybrid systems), in transportation sciences, in mathematical biology or
in finance.

2.2 General scope and motivations

Nonsmooth dynamics concerns the study of the time evolution of systems that are not smooth in
the mathematical sense, i.e., systems that are characterized by a lack of differentiability, either of the
mappings in their formulations, or of their solutions with respect to time. The class of nonsmooth
dynamical systems recovers a large variety of dynamical systems that arise in many applications. The
term “nonsmooth”, as the term “nonlinear”, does not precisely define the scope of the systems we are
interested in but, and most importantly, they are characterized by the mathematical and numerical
properties that they share. To give more insight of what are nonsmooth dynamical systems, we give in the
sequel a very brief introduction of their salient features. For more details, we refer to [1, 2] [68, 88, 46, 71,
41].

2.3 A flavor of nonsmooth dynamical systems

As a first illustration, let us consider a linear finite-dimensional system described by its state x(t ) ∈ IRn

over a time-interval t ∈ [0,T ]:

ẋ(t ) = Ax(t )+a, A ∈ IRn×n , a ∈ IRn , (1)

subjected to a set of m inequality (unilateral) constraints:

y(t ) =C x(t )+ c ≥ 0, C ∈ IRm×n , c ∈ IRm . (2)

If the constraints are physical constraints, a standard modeling approach is to augment the dynamics
in (1) by an input vector λ(t) ∈ IRm that plays the role of a Lagrange multiplier vector. The multiplier
restricts the trajectory of the system in order to respect the constraints. Furthermore, as in the continuous
optimization theory, the multiplier must be signed and must vanish if the constraint is not active. This is
usually formulated as a complementarity condition:

0 ≤ y(t ) ⊥λ(t ) ≥ 0, (3)

which models the one-sided effect of the inequality constraints. The notation y ≥ 0 holds component–
wise and y ⊥λ means yTλ= 0. All together we end up with a Linear Complementarity System (LCS) of
the form, 

ẋ(t ) = Ax(t )+a +Bλ(t )
y(t ) =C x(t )+ c
0 ≤ y(t ) ⊥λ(t ) ≥ 0

(4)
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y

λ

Figure 1: Complementarity condition 0 ≤ y ⊥λ≥ 0.

where B ∈ IRn×m is the matrix that models the input generated by the constraints. In a more general way,
the constraints may also involve the Lagrange multiplier,

y(t ) =C x(t )+ c +Dλ(t ) ≥ 0, D ∈ IRm×m , (5)

leading to a general definition of LCS as
ẋ(t ) = A x(t )+a +B λ(t )
y(t ) =C x(t )+ c +Dλ(t )
0 ≤ y(t ) ⊥λ(t ) ≥ 0.

(6)

The complementarity condition, illustrated in Figure 1 is the archetype of a nonsmooth graph that we
extensively use in nonsmooth dynamics. The mapping y 7→ λ is a multi-valued (set-valued) mapping,
that is nonsmooth at the origin. It has a lot of interesting mathematical properties and reformulations
that come mainly from convex analysis and variational inequality theory. Let us introduce the indicator
function of IR+ as

ΨIR+ (x) =
{

0 if x ≥ 0,

+∞ if x < 0.
(7)

This function is convex, proper and can be sub-differentiated [75]. The definition of the subdifferential
of a convex function f : IRm → IR is defined as:

∂ f (x) = {x? ∈ IRm | f (z) ≥ f (x)+ (z −x)>x?,∀z}. (8)

A basic result of convex analysis reads as

0 ≤ y ⊥λ≥ 0 ⇐⇒−λ ∈ ∂ΨIR+ (y) (9)

that gives a first functional meaning to the set-valued mapping y 7→λ. Another interpretation of ∂ΨIR+ is
based on the normal cone to a closed and nonempty convex set C :

NC (x) = {v ∈ IRm |v>(z −x) ≤ 0 for all z ∈ K }. (10)

It is easy to check that ∂ΨIR+ = NIR+ (x) and it follows that

0 ≤ y ⊥λ≥ 0 ⇐⇒−λ ∈ NIR+ (y). (11)

Finally, the definition of the normal cone yields a variational inequality:

0 ≤ y ⊥λ≥ 0 ⇐⇒λ>(y − z) ≤ 0,∀z ≥ 0. (12)

The relations (11) and (12) allow one to formulate the complementarity system with D = 0 as a
differential inclusion based on a normal cone (see (15)) or as a differential variational inequality. By
extending the definition to other types of convex functions, possibly nonsmooth, and using more general
variational inequalities, the same framework applies to the nonsmooth laws depicted in Figure 2 that
includes the case of piecewise smooth systems.
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The mathematical concept of solutions depends strongly on the nature of the matrix quadruplet
(A,B ,C ,D) in (6). If D is a positive definite matrix (or a P-matrix), the Linear Complementarity problem

0 ≤C x + c +Dλ⊥λ≥ 0, (13)

admits a unique solution λ(x) which is a Lipschitz continuous mapping. It follows that the Ordinary
Differential Equation (ODE)

ẋ(t ) = Ax(t )+a +Bλ(x(t )), (14)

is a standard ODE with a Lipschitz right-hand side with a C 1 solution for the initial value problem. If
D = 0, the system can be written as a differential inclusion in a normal cone as

−ẋ(t )+ Ax(t )+a ∈ B NIR+ (C x(t )), (15)

that admits a solution that is absolutely continuous if C B is a definite positive matrix and the initial
condition satisfies the constraints. The time derivative ẋ(t ) and the multiplier λ(t ) may have jumps and
are generally considered as functions of bounded variations. If C B = 0, the order of nonsmoothness
increases and the Lagrange multiplier may contain Dirac atoms and must be considered as a measure.
Higher–order index, or higher relative degree systems yield solutions in terms of distributions and
derivatives of distributions [36].

A lot of variants can be derived from the basic form of linear complementarity systems, by changing
the form of the dynamics including nonlinear terms or by changing the complementarity relation by
other multivalued maps. In particular the nonnegative orthant may be replaced by any convex closed
cone K ⊂ IRm leading to complementarity over cones

K? 3 y ⊥λ ∈ K , (16)

where K? its dual cone given by

K? = {x ∈ IRm | x>y ≥ 0 for all y ∈ K }. (17)

In Figure 2, we illustrate some other basic maps that can used for defining the relation between λ and y .
The saturation map, depicted in Figure 2(a) is a single valued continuous function which is an archetype
of piece-wise smooth map. In Figure 2(b), the relay multi-function is illustrated. If the upper and the
lower limits of λ are respectively equal to 1 and −1, we obtain the multivalued sign function defined as

Sgn(y) =


1, y > 0
[−1,1], y = 0
−1, y < 0.

(18)

Using again convex analysis, the multivalued sign function may be formulated as an inclusion into a
normal cone as

λ ∈ Sgn(y) ⇐⇒ y ∈ N[−1,1](λ). (19)

More generally, any system of the type,
ẋ(t ) = Ax(t )+a +Bλ(t )

y(t ) =C x(t )+a

−λ(t ) ∈ Sgn(y(t )),

(20)

can reformulated in terms of the following set-valued system
ẋ(t ) = Ax(t )+a +Bλ(t )

y(t ) =C x(t )+ c

−y(t ) ∈ N[−1,1]m (λ(t )).

(21)

The system (21) appears in a lot of applications; among them, we can cite the sliding mode control,
electrical circuits with relay and Zener diodes [30], or mechanical systems with friction [35].
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Figure 2: Examples of multivalued piecewise linear models
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Though this class of systems seems to be rather specific, it includes as well more general dynamical
systems such as piecewise smooth systems and discontinuous ordinary differential equations. Indeed,
the system (20) for scalars y and λ can be viewed as a discontinuous differential equation:

ẋ(t ) =
{

Ax +a +B if C x + c > 0
Ax +a −B if C x + c < 0.

(22)

One of the most well-known mathematical framework to deal with such systems is the Filippov theory [68]
that embed the discontinuous differential equations into a differential inclusion. In the case of a single
discontinuity surface given in our example by S = {x | C x + c = 0}, the Filippov differential inclusion
based on the convex hull of the vector fields in the neighborhood of S is equivalent to the use of the
multivalued sign function in (20). Conversely, as it has been shown in [38], a piecewise smooth system
can be formulated as a nonsmooth system based on products of multivalued sign functions.

2.4 Nonsmooth Dynamical systems in the large

Generally, the nonsmooth dynamical systems we propose to study mainly concern systems that possess
the following features:

1. A nonsmooth formulation of the constitutive/behavioral laws that define the system. Examples
of nonsmooth formulations are piecewise smooth functions, multi–valued functions, inequality
constraints, yielding various definitions of dynamical systems such as piecewise smooth systems,
discontinuous ordinary differential equations, complementarity systems, projected dynamical
systems, evolution or differential variational inequalities and differential inclusions (into normal
cones). Fundamental mathematical tools come from convex analysis [102, 74, 75], complementar-
ity theory [62], and variational inequalities theory [66].

2. A concept of solutions that does not require continuously differentiable functions of time. For
instance, absolutely continuous, Lipschitz continuous functions or functions of local bounded
variation are the basis for solution concepts. Measures or distributions are also solutions of interest
for differential inclusions or evolution variational inequalities.

2.5 Nonsmooth systems versus hybrid systems

The nonsmooth dynamical systems we are dealing with, have a nonempty intersection with hybrid
systems and cyber-physical systems, as it is briefly discussed in Sect. 3.2.4. Like in hybrid systems, nons-
mooth dynamical systems define continuous–time dynamics that can be identified to modes separated by
guards, defined by the constraints. However, the strong mathematical structure of nonsmooth dynamical
systems allows us to state results on the following points:

1. Mathematical concept of solutions: well-posedness (existence, and possibly, uniqueness properties,
(dis)continuous dependence on initial conditions).

2. Dynamical systems theoretic properties: existence of invariants (equilibria, limit cycles, periodic
solutions,. . . ) and their stability, existence of oscillations, periodic and quasi-periodic solutions
and propagation of waves.

3. Control theoretic properties: passivity, controllability, observability, stabilization, robustness.

These latter properties, that are common for smooth nonlinear dynamical systems, distinguish the
nonsmooth dynamical systems from the very general definition of hybrid or cyber-physical systems [43,
73]. Indeed, it is difficult to give a precise mathematical concept of solutions for hybrid systems since the
general definition of hybrid automata is usually too loose.

2.6 Numerical methods for nonsmooth dynamical systems

To conclude this brief exposition of nonsmooth dynamical systems, let us recall an important fact related
to numerical methods. Beyond their intrinsic mathematical interest, and the fact that they model real
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physical systems, using nonsmooth dynamical systems as a model is interesting, because it exists a large
set of robust and efficient numerical techniques to simulate them. Without entering into deeper details,
let us give two examples of these techniques:

• Numerical time integration methods: convergence, efficiency (order of consistency, stability, symplec-
tic properties). For the nonsmooth dynamical systems described above, there exist event–capturing
time–stepping schemes with strong mathematical results. These schemes have the ability to numer-
ically integrate the initial value problem without performing an event location, but by capturing
the event within a time step. We call an event, or a transition, every change into the index set of
the active constraints in the complementarity formulation or in the normal cone inclusion. Hence
these schemes are able to simulate systems with a huge number of transitions or even worth finite
accumulation of events (Zeno behavior). Furthermore, the schemes are not suffering from the
weaknesses of the standard schemes based on a regularization (smoothing) of the multi-valued
mapping resulting in stiff ordinary differential equations. For the time–integration of the initial
value problem (IVP), or Cauchy problem, a lot of improvements of the standard time–stepping
schemes for nonsmooth dynamics (Moreau–Jean time-stepping scheme) have been proposed in
the last decade, in terms of accuracy and dissipation properties [28, 29, 103, 104, 27, 61, 57, 106,
59]. An important part of these schemes has been developed by members of the BIPOP team and
has been implemented in the Siconos software (see Sect. 5).

• Numerical solution procedure for the time–discretized problem, mainly through well-identified
problems studied in the optimization and mathematical programming community. Another very
interesting feature is the fact that the discretized problem that we have to solve at each time–step is
generally a well-known problem in optimization. For instance, for LCSs, we have to solve a linear
complementarity problem [62] for which there exist efficient solvers in the literature. Comparing to
the brute force algorithm with exponential complexity that consists in enumerating all the possible
modes, the algorithms for linear complementarity problem have polynomial complexity when the
problem is monotone.

In the Axis 2 of the research program (see Sect. 3.3), we propose to perform new research on the geometric
time-integration schemes of nonsmooth dynamical systems, to develop new integration schemes for
Boundary Value Problem (BVP), and to work on specific methods for two time-discretized problems: the
Mathematical Program with Equilibrium Constraints (MPEC) for optimal control and Second Order Cone
Complementarity Problems (SOCCP) for discrete frictional contact systems.

3 Research program

3.1 Introduction

In this section, we develop our scientific program. In the framework of nonsmooth dynamical systems,
the activities of the project–team will be on focused on the following research axes:

• Axis 1: Modeling and analysis (detailed in Sect. 3.2).

• Axis 2: Numerical methods and simulation (detailed in Sect. 3.3).

• Axis 3: Automatic Control (detailed in Sect. 3.4)

These research axes will be developed with a strong emphasis on the software development and the
industrial transfer.

3.2 Axis 1: Modeling and analysis

This axis is dedicated to the modeling and the mathematical analysis of nonsmooth dynamical systems. It
consists of four main directions. Two directions are in the continuation of BIPOP activities: 1) multibody
vibro-impact systems (Sect. 3.2.1) and 2) excitable systems (Sect. 3.2.2). Two directions are completely
new with respect to BIPOP: 3) Nonsmooth geomechanics and natural hazards assessment (Sect. 3.2.3)
and 4) Cyber-physical systems (hybrid systems) (Sect. 3.2.4).
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3.2.1 Multibody vibro-impact systems

Participants: B. Brogliato, F. Bourrier, G. James, V. Acary

• Multiple impacts with or without friction : there are many different approaches to model collisions,
especially simultaneous impacts (so-called multiple impacts) [96]. One of our objectives is on one
hand to determine the range of application of the models (for instance, when can one use “simpli-
fied” rigid contact models relying on kinematic, kinetic or energetic coefficients of restitution?) on
typical benchmark examples (chains of aligned beads, rocking block systems). On the other hand,
try to take advantage of the new results on nonlinear waves phenomena, to better understand
multiple impacts in 2D and 3D granular systems. The study of multiple impacts with (unilateral)
nonlinear visco-elastic models (Simon-Hunt-Crossley, Kuwabara-Kono), or visco-elasto-plastic
models (assemblies of springs, dashpots and dry friction elements), is also a topic of interest, since
these models are widely used.

• Artificial or manufactured or ordered granular crystals, meta-materials : Granular metamaterials (or
more general nonlinear mechanical metamaterials) offer many perspectives for the passive control
of waves originating from impacts or vibrations. The analysis of waves in such systems is delicate
due to spatial discreteness, nonlinearity and non-smoothness of contact laws [100, 80, 81, 90]. We
will use a variety of approaches, both theoretical (e.g. bifurcation theory, modulation equations)
and numerical, in order to describe nonlinear waves in such systems, with special emphasis on
energy localization phenomena (excitation of solitary waves, fronts, breathers).

• Systems with clearances, modeling of friction : joint clearances in kinematic chains deserve specific
analysis, especially concerning friction modeling [42]. Indeed contacts in joints are often con-
formal, which involve large contact surfaces between bodies. Lubrication models should also be
investigated.

• Painlevé paradoxes : the goal is to extend the results in [70], which deal with single-contact systems,
to multi-contact systems. One central difficulty here is the understanding and the analysis of
singularities that may occur in sliding regimes of motion.

As a continuation of the work in the BIPOP team, our software code, Siconos (see Sect. 5) will be our
favorite software platform for the integration of these new modeling results.

3.2.2 Excitable systems

Participants: A. Tonnelier, G. James
An excitable system elicits a strong response when the applied perturbation is greater than a threshold

[93, 94, 48, 107]. This property has been clearly identified in numerous natural and physical systems. In
mechanical systems, non-monotonic friction law (of spinodal-type) leads to excitability. Similar behavior
may be found in electrical systems such as active compounds of neuristor type. Models of excitable
systems incorporate strong non-linearities that can be captured by non-smooth dynamical systems.
Two properties are deeply associated with excitable systems: oscillations and propagation of nonlinear
waves (autowaves in coupled excitable systems). We aim at understanding these two dynamical states in
excitable systems through theoretical analysis and numerical simulations. Specifically we plan to study:

• Threshold-like models in biology: spiking neurons, gene networks.

• Frictional contact oscillators (slider block, Burridge-Knopoff model).

• Dynamics of active electrical devices : memristors, neuristors.

3.2.3 Nonsmooth geomechanics and natural hazards assessment

Participants: F. Bourrier, B. Brogliato, G. James, V. Acary
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• Rockfall impact modeling : Trajectory analysis of falling rocks during rockfall events is limited by a
rough modeling of the impact phase [50, 49, 89]. The goal of this work is to better understand the
link between local impact laws at contact with refined geometries and the efficient impact laws
written for a point mass with a full reset map. A continuum of models in terms of accuracy and
complexity will be also developed for the trajectory studies. In particular, nonsmooth models of
rolling friction, or rolling resistance will be developed and formulated using optimization problems.

• Experimental validation : The participation of INRAe with F. Bourrier makes possible the exper-
imental validation of models and simulations through comparisons with real data. INRAe has a
large experience of lab and in-situ experiments for rockfall trajectories modeling [50, 49]. It is a
unique opportunity to vstrengthen our model and to prove that nonsmooth modeling of impacts is
reliable for such experiments and forecast of natural hazards.

• Rock fracturing : When a rock falls from a steep cliff, it stores a large amount of kinetic energy that
is partly dissipated though the impact with the ground. If the ground is composed of rocks and the
kinetic energy is sufficiently high, the probability of the fracture of the rock is high and yields an
extra amount of dissipated energy but also an increase of the number of blocks that fall. In this
item, we want to use the capability of the nonsmooth dynamical framework for modeling cohesion
and fracture [85, 39] to propose new impact models.

• Rock/forest interaction : To prevent damages and incidents to infrastructures, a smart use of the
forest is one of the ways to control trajectories (decrease of the run-out distance, jump heights and
the energy) of the rocks that fall under gravity [63, 65]. From the modeling point of view and to be
able to improve the protective function of the forest, an accurate modeling of impacts between
rocks and trees is required. Due to the aspect ratio of the trees, they must be considered as flexible
bodies that may be damaged by the impact. This new aspect offers interesting modeling research
perspectives.

More generally, our collaboration with INRAe opens new long term perspectives on granular flows
applications such as debris and mud flows, granular avalanches and the design of structural protections.
The numerical methods that go with these new modeling approaches will be implemented in our software
code, Siconos (see Sect.5)

3.2.4 Cyber-physical systems (hybrid systems)

Participants: V. Acary, B. Brogliato, C. Prieur, A. Tonnelier
Nonsmooth systems have a non-empty intersection with hybrid systems and cyber–physical systems.

However, nonsmooth systems enjoy strong mathematical properties (concept of solutions, existence and
uniqueness) and efficient numerical tools. This is often the result of the fact that nonsmooth dynamical
systems are models of physical systems, and then, take advantage of their intrinsic property (conservation
or dissipation of energy, passivity, stability). A standard example is a circuit with n ideal diodes. From
the hybrid point of view, this circuit is a piecewise smooth dynamical system with 2n modes, that can
be quite cumbersome to enumerate in order to determinate the current mode. As a nonsmooth system,
this circuit can be formulated as a complementarity system for which there exist efficient time–stepping
schemes and polynomial time algorithms for the computation of the current mode. The key idea of this
research action is to take benefit of this observation to improve the hybrid system modeling tools.

Research actions: There are two main actions in this research direction that will be implemented
in the framework of the Inria Project Lab (IPL “ Modeliscale”, see modeliscale website for partners and
details of the research program):

• Structural analysis of multimode DAE : When a hybrid system is described by a Differential
Algebraic Equation (DAE) with different differential indices in each continuous mode, the structural
analysis has to be completely rethought. In particular, the re-initialization rule, when a switching occurs
from a mode to another one, has to be consistently designed. We propose in this action to use our
knowledge in complementarity and (distribution) differential inclusions [36] to design consistent re-
initialization rule for systems with nonuniform relative degree vector (r1,r2, . . . ,rm) and ri 6= r j , i 6= j .

• Cyber–physical in hybrid systems modeling languages : Nowadays, some hybrid modeling lan-
guages and tools are widely used to describe and to simulate hybrid systems (MODELICA, SIMULINK, and

https://team.inria.fr/modeliscale/
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see [60] for references therein). Nevertheless, the compilers and the simulation engines behind these
languages and tools suffer from several serious weaknesses (failure, weird output or huge sensitivity to
simulation parameters), especially when some components, that are standard in nonsmooth dynamics,
are introduced (piecewise smooth characteristic, unilateral constraints and complementarity condition,
relay characteristic, saturation, dead zone, . . . ). One of the main reasons is the fact that most of the
compilers reduce the hybrid system to a set of smooth modes modeled by differential algebraic equations
and some guards and reinitialization rules between these modes. Sliding mode and Zeno–behaviour
are really harsh for hybrid systems and relatively simple for nonsmooth systems. With B. Caillaud (Inria
HYCOMES) and M. Pouzet (Inria PARKAS), we propose to improve this situation by implementing a
module able to identify/describe nonsmooth elements and to efficiently handle them with SICONOS as
the simulation engine. They have already carried out a first implementation [58] in Zelus, a synchronous
language for hybrid system. Removing the weaknesses related to the nonsmoothness of solutions should
improve hybrid systems towards robustness and certification.

• A general solver for piecewise smooth systems This direction is the continuation of the promis-
ing result on modeling and the simulation of piecewise smooth systems [38]. As for general hybrid
automata, the notion or concept of solutions is not rigorously defined from the mathematical point
of view. For piecewise smooth systems, multiplicity of solutions can happen and sliding solutions are
common. The objective is to recast general piecewise smooth systems in the framework of differential
inclusions with Aizerman–Pyatnitskii extension [38, 68]. This operation provides a precise meaning to
the concept of solutions. Starting from this point, the goal is to design and study an efficient numerical
solver (time–integration scheme and optimization solver) based on an equivalent formulation as mixed
complementarity systems of differential variational inequalities. We are currently discussing the issues in
the mathematical analysis. The goal is to prove the convergence of the time–stepping scheme to get an
existence theorem. With this work, we should also be able to discuss the general Lyapunov stability of
stationary points of piecewise smooth systems.

3.3 Axis 2: Numerical methods and simulation

This axis is dedicated to the numerical methods and simulation for nonsmooth dynamical systems. As
we mentioned in the introduction, the standard numerical methods have been largely improved in terms
of accuracy and dissipation properties in the last decade. Nevertheless, the question of the geometric
time–integration techniques remains largely open. It constitutes the objective of the first research
direction in Sect. 3.3.1. Beside the standard IVP, the question of normal mode analysis for nonsmooth
systems is also a research topic that emerged in the recent years. More generally, the goal of the second
research direction (Sect. 3.3.2) is to develop numerical methods to solve boundary value problems in
the nonsmooth framework. This will serve as a basis for the computation of the stability and numerical
continuation of invariants. Finally, once the time-integration method is chosen, it remains to solve the
one-step nonsmooth problem, which is, most of time, a numerical optimization problem. In Sect. 3.3.3,
we propose to study two specific problems with a lot of applications: the Mathematical Program with
Equilibrium Constraints (MPEC) for optimal control, and Second Order Cone Complementarity Problems
(SOCCP) for discrete frictional contact systems. After some possible prototypes in scripting languages
(Python and Matlab), we will be attentive that all these developments of numerical methods will be
integrated in Siconos.

3.3.1 Geometric time–integration schemes for nonsmooth Initial Value Problem (IVP)

Participants: V. Acary, B. Brogliato, G. James, F. Pérignon
The objective of this research item is to continue to improve classical time–stepping schemes for nons-
mooth systems to ensure some qualitative properties in discrete-time. In particular, the following points
will be developed

• Conservative and dissipative systems. The question of the energy conservation and the preservation
of dissipativity properties in the Willems sense [72] will be pursued and extended to new kinds
of systems (nonlinear mechanical systems with nonlinear potential energy, systems with limited
differentiability (rigid impacts vs. compliant models)).

http://zelus.di.ens.fr
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• Lie–group integration schemes for finite rotations for the multi-body systems extending recent
progresses in that directions for smooth systems [44].

• Conservation and preservation of the dispersion properties of the (non)-dispersive system.

3.3.2 Stability and numerical continuation of invariants

Participants: G. James, V. Acary, A. Tonnelier, F. Pérignon,
By invariants, we mean equilibria, periodic solutions, limit cycles or waves. Our preliminary work on

this subject raised the following research perspectives:

• Computation of periodic solutions of discrete mechanical systems . The modal analysis, i.e., a
spectral decomposition of the problem into linear normal modes is one of the basic tools for
mechanical engineers to study dynamic response and resonance phenomena of an elastic structure.
Since several years, the concept of nonlinear normal modes [86], that is closely related to the
computation of quasi-periodic solutions that live in a nonlinear manifold, has emerged as the
nonlinear extension of the modal analysis. One of the fundamental question is: what remains
valid if we add unilateral contact conditions ? The computation of nonsmooth modes amounts to
computing periodic solutions, performing the parametric continuation of solution branches and
studying the stability of these branches.

This calls for time integration schemes for IVP an BVP that satisfy some geometric criteria: con-
servation of energy, reduced numerical dispersion, symplecticity as we described before. Though
the question of conservation of energy for unilateral contact has been discussed in [27], the other
questions remain open. For the shooting technique and the study of stability, we need to compute
the Jacobian matrix of the flow with respect to initial conditions, the so-called saltation matrix [87,
97] for nonsmooth flows. The eigenvalues of this matrix are the Floquet multipliers that give some
information on the stability of the periodic solutions. The question of an efficient computation of
this matrix is also an open question. For the continuation, the question is also largely open since
the continuity of the solutions with respect to the parameters is not ensured.

• Extension to elastic continuum media . This is a difficult task. First of all, the question of the
mathematical model for the dynamic continuum problem with unilateral contact raises some
problems of well–posedness. For instance, the need for an impact law is not clear in some cases.
If we perform a semi–discretization in space with classical techniques (Finite Element Methods,
Finite Difference Schemes), we obtain a discrete system for which the impact law is needed. Besides
all the difficulties that we enumerate for discrete systems in the previous paragraph, the space
discretization also induces numerical dispersion that may destroy the periodic solutions or renders
their computation difficult. The main targeted applications for this research are cable–systems,
string musical instruments, and seismic response of electrical circuit breakers with Schneider
Electric.

• Computation of solutions of nonsmooth time Boundary Value Problems (BVP) (collocation, shoot-
ing) . The technique developed in the two previous items can serve as a basis for the development
of more general solvers for nonsmooth BVP that can be for instance found when we solve optimal
control problems by direct or indirect methods, or the computation of nonlinear waves. Two
directions can be envisaged:

– Shooting and multiple shooting techniques. In such methods, we reformulate the BVP into
a sequence of IVPs that are iterated through a Newton based technique. This implies the
computation of Jacobians for nonsmooth flows, the question of the continuity w.r.t to initial
condition and the use of semi-smooth Newton methods.

– Finite differences and collocations techniques. In such methods, the discretization will result
into a large sparse optimization problems to solve. The open questions are as follows: a) the
study of convergence, b) how to locally improve the order if the solution is locally smooth,
and c) how to take benefit of spectral methods.
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• Continuation techniques of solutions with respect to a parameter. Standard continuation technique
requires smoothness. What types of methods can be extended in the nonsmooth case (arc-length
technique, nonsmooth (semi-smooth) Newton, Asymptotical Numerical Methods (ANM))

3.3.3 Numerical optimization for discrete nonsmooth problems

Participants: V. Acary, M. Brémond, F. Pérignon, B. Brogliato, C. Prieur

• Mathematical Program with Equilibrium Constraints (MPEC) for optimal control . The discrete
problem that arises in nonsmooth optimal control is generally a MPEC [108]. This problem is
intrinsically nonconvex and potentially nonsmooth. Its study from a theoretical point of view
has started 10 years ago but there is no consensus for its numerical solving. The goal is to work
with world experts of this problem (in particular M. Ferris from Wisconsin University) to develop
dedicated algorithms for solving MPEC, and provide to the optimization community challenging
problems.

• Second Order Cone Complementarity Problems (SOCCP) for discrete frictional systems : After
some extensive comparisons of existing solvers on a large collection of examples [33, 31], the
numerical treatment of constraints redundancy by the proximal point technique and the aug-
mented Lagrangian formulation seems to be a promising path for designing new methods. From
the comparison results, it appears that the redundancy of constraints prevents the use of second
order methods such as semi–smooth Newton methods or interior point methods. With P. Armand
(XLIM, U. de Limoges), we propose to adapt recent advances for regularizing constraints for the
quadratic problem [69] for the second-order cone complementarity problem. The other question is
the improvement of the efficiency of the algorithms by using accelerated schemes for the proximal
gradient method that come from large–scale machine learning and image processing problems.
Learning from the experience in large–scale machine learning and image processing problems, the
accelerated version of the classical gradient algorithm [95] and the proximal point algorithm [45],
and many of their further extensions, could be of interest for solving discrete frictional contact
problems. Following the visit of Y. Kanno (University of Tokyo) and his preliminary experience on
frictionless problems, we will extend its use to frictional contact problem. When we face large-scale
problems, the main available solvers is based on a Gauss–Seidel strategy that is intrinsically sequen-
tial. Accelerated first-order methods could be a good alternative to take benefit of the distributed
scientific computing architectures.

3.4 Axis 3: Automatic Control

Participants: B. Brogliato, C. Prieur, V. Acary, F. Miranda-Villatoro
This last axis is dedicated to the automatic control of nonsmooth dynamical systems, or the nons-

mooth control of smooth systems. The first item concerns the discrete-time sliding mode control for
which significant results on the implicit implementation have been obtained in the BIPOP team. The idea
is to pursue this research towards state observers and differentiators (Sect 3.4.1). The second direction
concerns the optimal control which brings of nonsmoothness in their solution and their formulation.
After the preliminary work in BIPOP on the quadratic optimal control of Linear Complementarity sys-
tems(LCS), we propose to go further to the minimal time problem, to impacting systems and optimal
control with state constraints (Sect. 3.4.2). In Sect 3.4.3, the objective is to study the control of nonsmooth
systems that contain unilateral constraint, impact and friction. The targeted systems are cable–driven
systems, multi-body systems with clearances and granular materials. In Sect 3.4.4, we will continue our
work on the higher order Moreau sweeping process. Up to now, the work of BIPOP was restricted to
finite-dimensional systems. In Sect 3.4.5, we propose to extend our approach to the control of elastic
structures subjected to contact unilateral constraints.

It is noteworthy that most of the problems listed below, will make strong use of the numerical tools
analyzed in Axis 2, and of the Modeling analysis of Axis 1. For instance all optimal control problems yield
BVPs. Control of granular materials will undoubtedly use models and numerical simulation developed in
Axis 1 and 2. And so on. It has to be stressed that the type of nonsmooth models we are working with,
deserve specific numerical algorithms which cannot be found in commercial software packages. One of
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the goals is to continue to extend our software package Siconos, and in particular the siconos/control
toolbox with these developments.

3.4.1 Discrete-time Sliding-Mode Control (SMC) and State Observers (SMSO)

• SMSO, exact differentiators: we have introduced and obtained significant results on the implicit
discretization of various classes of sliding-mode controllers [34, 37, 76, 91, 52], with successful
experimental validations [77, 76, 78, 111]. Our objective is to prove that the implicit discretization
can also bring advantages for sliding-mode state observers and Levant’s exact differentiators,
compared with the usual explicit digital implementation that generates chattering. In particular
the implicit discretization guarantees Lyapunov stability and finite-time convergence properties
which are absent in explicit methods.

• High-Order SMC (HOSMC): this family of controllers has become quite popular in the sliding-mode
scientific community since its introduction by Levant in the nineties. We want here to continue the
study of implicit discretization of HOSMC (twisting, super-twisting algorithms) and especially we
would like to investigate the comparisons between classical (first order) SMC and HOSMC, when
both are implicitly discretized, in terms of performance, accuracy, chattering suppression. Another
topic of interest is stabilization in finite-time of systems with impacts and unilateral constraints, in
a discrete-time setting.

3.4.2 Optimal Control

• Linear Complementarity Systems (LCS) : With the PhD thesis of A. Vieira, we have started to study
the quadratic optimal control of LCS. Our objective is to go further with minimum-time problems.
Applications of LCS are mainly in electrical circuits with set-valued components such as ideal
diodes, transistors, etc. Such problems naturally yield MPEC when numerical solvers are sought. It
is therefore intimately linked with Axis 2 objectives.

• Impacting systems : the optimal control of mechanical systems with unilateral constraints and
impacts, largely remains an open issue. The problem can be tackled from various approaches:
vibro-impact systems (no persistent contact modes) that may be transformed into discrete-time
mappings via the impact Poincaré map; or the classical integral action minimization (Bolza prob-
lem) subjected to the complementarity Lagrangian dynamics including impacts.

• State constraints, generalized control : this problem differs from the previous two, since it yields
Pontryagin’s first order necessary conditions that take the form of an LCS with higher relative degree
between the complementarity variables. This is related to the numerical techniques for the higher
order sweeping process [36].

3.4.3 Control of nonsmooth discrete Lagrangian systems

• Cable–driven systems: these systems are typically different from the cable-car systems, and are
closer in their mechanical structure to so-called tensegrity structures. The objective is to actuate a
system via cables supposed in a first instance to be flexible (slack mode) but non-extensible in their
longitudinal direction. This gives rise to complementarity conditions, one big difference with usual
complementarity Lagrangian systems being that the control actions operate directly in one of the
complementary variables (and not in the smooth dynamics as in cable-car systems). Therefore
both the cable models and the control properties are expected to differ a lot from what we may use
for cableway systems (for which guaranteeing a positive cable tension is usually not an issue, hence
avoiding slack modes, but the deformation of the cables due to the nacelles and cables weights, is
an important factor). Tethered systems are a close topic.

• Multi-body systems with clearances: our approach is to use models of clearances with dynamical
impact effects, i.e. within Lagrangian complementarity systems. Such systems are strongly under-
actuated due to mechanical play at the joints. However their structure, as underactuated systems,
is quite different from what has been usually considered in the Robotics and Control literature. In
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the recent past we have proposed a thorough numerical robustness analysis of various feedback
collocated and non-collocated controllers (PD, linearization, passivity-based). We propose here to
investigate specific control strategies tailored to such underactuated systems [51].

• Granular systems: the context is the feedback control of granular materials. To fix the ideas, one
may think of a “juggling” system whose “object” (uncontrolled) part consists of a chain of aligned
beads. Once the modeling step has been fixed (choice of a suitable multiple impact law), one has
to determine the output to be controlled: all the beads, some of the beads, the chain’s center of
mass (position, velocity, vibrational magnitude and frequency), etc. Then we aim at investigating
which type of controller may be used (output or state feedback, “classical” or sinusoidal input
with feedback through the magnitude and frequency) and especially which variables may be
measured/observed (positions and/or velocities of all or some of the beads, position and/or
velocity of the chain’s center of gravity). This topic follows previous results we obtained on the
control of juggling systems [53], with increasing complexity of the “object”’s dynamics. The next
step would be to extend to 2D and then 3D granular materials. Applications concern vibrators,
screening, transport in mining and manufacturing processes.

• Stability of structures: our objective here is to study the stability of stacked blocks in 2D or 3D, and
the influence on the observed behavior (numerically and/or analytically) of the contact/impact
model.

3.4.4 Switching LCS and DAEs, higher-order sweeping process (HOSwP)

• We have gained a strong experience in the field of complementarity systems and distribution
differential inclusions [36, 54], that may be seen as some kind of switching DAEs. We plan to go
further with non-autonomous HOSwP with switching feedback inputs and non-uniform vector
relative degrees. Switching linear complementarity systems can also be studied, though the exact
relationships between both point of views remain unclear at the present time. This axis of research
is closely related to cyber-physical systems in section 3.2.

3.4.5 Control of Elastic (Visco-plastic) systems with contact, impact and friction

• Stabilization, trajectory tracking: until now we have focused on the stability and the feedback
control of systems of rigid bodies. The proposal here is to study the stabilization of flexible systems
(for instance, a “simple” beam) subjected to unilateral contacts with or without set-valued friction
(contacts with obstacles, or impacts with external objects line particle/beam impacts). This gives
rise to varying (in time and space) boundary conditions. The best choice of a good contact law is a
hard topic discussed in the literature.

• Cableway systems (STRMTG, POMA): cable-car systems present challenging control problems be-
cause they usually are underactuated systems, with large flexibilities and deformations. Simplified
models of cables should be used (Ritz-Galerkin approach), and two main classes of systems may
be considered: those with moving cable and only actuator at the station, and those with fixed
cable but actuated nacelles. It is expected that they possess quite different control properties and
thus deserve separate studies. The nonsmoothness arises mainly from the passage of the nacelles
on the pylons, which induces frictional effects and impacts. It may certainly be considered as a
nonsmooth set-valued disturbance within the overall control problem.

4 Application domains

4.1 Domain 1

Nonsmooth dynamical systems arise in a lot of application fields. We briefly expose here some appli-
cations that have been treated in the BIPOP team and that we will continue in the TRIPOP team, as
a validation for the research axes and also in terms of transfer. In mechanics, the main instances of
nonsmooth dynamical systems are multibody systems with Signorini’s unilateral contact, set-valued
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(Coulomb-like) friction and impacts, or in continuum mechanics, ideal plasticity, fracture or damage.
Some illustrations are given in Figure 5(a-f). Other instances of nonsmooth dynamical systems can also
be found in electrical circuits with ideal components (see Figure 5(g)) and in control theory, mainly
with sliding mode control and variable structure systems (see Figure 5(h)). More generally, every time
a piecewise, possibly set–valued, model of systems is invoked, we end up with a nonsmooth system.
This is the case, for instance, for hybrid systems in nonlinear control or for piecewise linear modeling
of gene regulatory networks in mathematical biology (see Figure 5(i)). Another common example of
nonsmooth dynamics is also found when the vector field of a dynamical system is defined as a solution of
an optimization problem under constraints, or a variational inequality. Examples of this kind are found in
the optimal control theory, in dynamic Nash equilibrium or in the theory of dynamic flows over networks.

5 New software and platforms

5.1 New software

5.1.1 SICONOS

Name: Modeling, simulation and control of nonsmooth dynamical systems

Keywords: NSDS, MEMS, DCDC, SD, Collision, Friction, Mechanical multi-body systems

Scientific Description: The aim of this work is to provide a common platform for the simulation, model-
ing, analysis and control of abstract nonsmooth dynamical systems. Besides usual quality attributes
for scientific computing software, we want to provide a common framework for various scientific
fields, to be able to rely on the existing developments (numerical algorithms, description and mod-
eling software), to support exchanges and comparisons of methods, to disseminate the know-how
to other fields of research and industry, and to take into account the diversity of users (end-users,
algorithm developers, framework builders) in building expert interface in Python. After the require-
ments elicitation phase, the Siconos Software project has been divided into 5 work packages which
are identified to software products:

• SICONOS/NUMERICS This library contains a set of numerical algorithms, already well identified,
to solve non smooth dynamical systems. This library is written in low-level languages (C,F77) in
order to ensure numerical efficiency and the use of standard libraries (Blas, Lapack, . . . )

• SICONOS/KERNEL This module is an object-oriented structure (C++) for the modeling and the
simulation of abstract dynamical systems. It provides the users with a set of classes to describe
their nonsmooth dynamical system (dynamical systems, interactions, nonsmooth laws, . . . ) and
to perform a numerical time integration and solving.

• SICONOS/FRONT-END. This module is mainly an auto-generated wrapper in Python which
provides a user-friendly interface to the Siconos libraries. A scilab interface is also provided in the
Front-End module.

• SICONOS/CONTROL This part is devoted to the implementation of control strategies of non
smooth dynamical systems.

• SICONOS/MECHANICS. This part is dedicated to the modeling and the simulation of multi-body
systems with 3D contacts, impacts and Coulomb’s friction. It uses the Siconos/Kernel as simulation
engine but relies on a industrial CAD library (OpenCascade and pythonOCC) to deal with complex
body geometries and to compute the contact locations and distances between B-Rep description
and on Bullet for contact detection between meshes.

Functional Description: Siconos is an open-source scientific software primarily targeted at modeling
and simulating nonsmooth dynamical systems in C++ and in Python:

- Mechanical systems (rigid or solid) with unilateral contact and Coulomb friction and impact
(nonsmooth mechanics, contact dynamics, multibody systems dynamics or granular materials).
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Circuit breakers mechanisms [42]

Granular flows

Robots (ESA ExoMars Rover [32])

Rockfall [50, 49, 65]

Figure 3: Application fields of nonsmooth dynamics (mechanics)
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Frictional interface and solitary waves in the Burridge-Knopoff model [93]

Sliding blocks

Figure 4: Application fields of nonsmooth dynamics (waves)
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- Switched Electrical Circuit such as electrical circuits with ideal and piecewise linear components:
power converter, rectifier, Phase-Locked Loop (PLL) or Analog-to-Digital converter.

- Sliding mode control systems.

- Biology (Gene regulatory network). Other applications are found in Systems and Control (hybrid
systems, differential inclusions, optimal control with state constraints), Optimization (Comple-
mentarity systems and Variational inequalities), Fluid Mechanics, and Computer Graphics.

Release Contributions: Main changes:

[numerics] add sparse linear solver with a sparse rhs based on csparse [numerics] new implemen-
tation of NM_LU_solve and NM_Cholesky_solve [kernel] new implementation of linear solvers
in SimpleMatrix The class SimpleMatrix owns a internal NumericsMatrix thats is used for linear
system solving, based on Siconos/Numerics [numerics] add balancing matrice framework [nu-
merics] add freezing contacts in Gauss seidel solvers [externals] add LDL support [mechanics]
modify broadphase for Bullet [numerics] render the truncation in NM_entry [numerics] add matrix
versioning [misc] automates the generation of docker end-user images ’siconos-ready’ [misc] build
with ninja

URL: https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/

Contact: Vincent Acary

Participants: Franck Pérignon, Maurice Bremond, Vincent Acary

6 New results

6.1 Nonlinear waves in granular chains

Participants: Guillaume James, Bernard Brogliato, Kirill Vorotnikov.

Granular chains made of aligned beads interacting by contact (e.g. Newton’s cradle) are widely studied
in the context of impact dynamics and acoustic metamaterials. In order to describe the response of
such systems to impacts or vibrations, it is important to analyze different wave effects such as the
propagation of compression waves (solitary waves or fronts) or localized oscillations (traveling breathers),
or the scattering of vibrations through the chain. Such phenomena are strongly influenced by contact
nonlinearities (Hertz force), spatial inhomogeneities and dissipation.

In the works [83, 82], we analyze nonlinear oscillations in chains of impact oscillators, such as localized
oscillations (breathers). In [83], the oscillations are obtained by continuation from the limit of vanishing
coupling. In [82], a multiscale expansion is used to approximate breather waves generated by impacts in
granular chains with local potentials.

In the works [84, 18, 19, 9], we investigate the propagation of impacts in chains of beads with contact
damping, using both analytical and numerical approaches. In [84], we show that the Kuwabara-Kono (KK)
viscoelastic contact law is equivalent at leading order to a numerical dissipation for some classical first-
order time-integration schemes. This result allows to simulate KK dissipation using numerical dissipation,
without incorporating the nonsmooth terms of the KK model in dynamical equations. Conversely, it shows
that studying the effects of KK dissipation on wave profiles allows to determine the effects of numerical
dissipation. In [9], we show that granular chains with KK dissipation sustain traveling compression
fronts that do not propagate steadily in nondissipative chains. The wave profiles are approximated using
a special kind of multiscale expansion adapted to the strongly nonlinear contact forces, leading to a
logarithmic KdV-Burgers equation (or a logarithmic Burgers equation for overdamped fronts).

In [18, 19], we derive an analytical approximation of the restitution coefficient for two-bead viscoelas-
tic impacts under constant external loading. This allows in particular to approximate the critical damping
above which beads do not detach after impact.

https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/
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6.2 Systemic risk

Participants: Arnaud Tonnelier, Vincent Acary.

The overexploitation of natural resources questions the long-term sustainability of our society. Recently, a
simple nature-society interrelations model, called the HANDY model, has been proposed by Montesharrei
et al (2014) to address this concern with a special emphasis on the role of the stratification of the society.
We analyse the dynamics of this model and we explore the influence of two parameters: the nature
depletion rate and the inequality factor. We characterize the asymptotic states of the system through
a bifurcation analysis and we derive several quantitative results on the trajectories. We examine the
possible collapses, sustainable equilibria and oscillations. We show that some collapses are irreversible
and, depending on the wealth production factor, a bistability regime between a sustainable equilibrium
and cycles of collapse-and-regeneration can be obtained. We discuss the possible policies to avoid
dramatic scenarios. Part of this work was the subject of Camille Julliard’s master’s internship and results
are presented in an article in preparation.

6.3 Hybrid Differential Algebraic equations

Participants: Vincent Acary, Bernard Brogliato, Alexandre Rocca.

In [101], we study differential algebraic equations with constraints defined in a piecewise manner using
a conditional statement. Such models classically appear in systems where constraints can evolve in a
very small time frame compared to the observed time scale. The use of conditional statements or hybrid
automata are a powerful way to describe such systems and are, in general, well suited to simulation
with event driven numerical schemes. However, such methods are often subject to chattering at mode
switch in presence of sliding modes, or can result in Zeno behaviours. In contrast, the representation of
such systems using differential inclusions and method from non-smooth dynamics are often closer to
the physical theory but may be harder to interpret. Associated time-stepping numerical methods have
been extensively used in mechanical modelling with success and then extended to other fields such as
electronics and system biology. In a similar manner to the previous application of non-smooth methods
to the simulation of piecewise linear ODEs, non-smooth event-capturing numerical scheme are applied
to piecewise linear DAEs. In particular, the study of a 2-D dynamical system of index-2 with a switching
constraint using set-valued operators, is presented. In [6] and in [17], we study classes of differential-
algebraic linear complementarity systems which possess some passivity properties. Specifically, the
implicit Euler time-discretisation is analysed: the one-step nonsmooth problem’s wellposedness is shown,
then the convergence of the discrete solutions is studied. Examples are in circuits with nonsmooth
components (like ideal diodes).

6.4 Numerical analysis of multibody mechanical systems with constraints

Participants: Vincent Acary, Maurice Brémond, Paul Armand, Franck Bourrier, Char-
lélie Bertrand.

This scientific theme concerns the numerical analysis of mechanical systems with bilateral and uni-
lateral constraints, with or without friction [1]. They form a particular class of dynamical systems whose
simulation requires the development of specific methods for analysis and dedicated simulators [64].

6.4.1 Numerical solvers for frictional contact problems.
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Participants: Vincent Acary, Maurice Brémond, Paul Armand.

In [40], we review several formulations of the discrete frictional contact problem that arises in space and
time discretized mechanical systems with unilateral contact and three-dimensional Coulomb’s friction.
Most of these formulations are well–known concepts in the optimization community, or more generally,
in the mathematical programming community. To cite a few, the discrete frictional contact problem can
be formulated as variational inequalities, generalized or semi–smooth equations, second–order cone
complementarity problems, or as optimization problems such as quadratic programming problems
over second-order cones. Thanks to these multiple formulations, various numerical methods emerge
naturally for solving the problem. We review the main numerical techniques that are well-known in the
literature and we also propose new applications of methods such as the fixed point and extra-gradient
methods with self-adaptive step rules for variational inequalities or the proximal point algorithm for
generalized equations. All these numerical techniques are compared over a large set of test examples
using performance profiles. One of the main conclusion is that there is no universal solver. Nevertheless,
we are able to give some hints to choose a solver with respect to the main characteristics of the set of tests.

Recently, new developments have been carried out on two new applications of well-known numerical
methods in Optimization:

• Interior point methods With the visit of Paul Armand, Université de Limoges, we co-supervise a M2
internship, Maksym Shpakovych on the application of interior point methods for quadratic problem
with second-order cone constraints. The results are encouraging [105],[26] and a publication in
computational mechanics is in progress.

• Alternating Direction Method of Multipliers. In collaboration with Yoshihiro Kanno, University of
Tokyo, the use of the Alternating Direction Method of Multipliers (ADMM) has been adapted to the
discrete frictional contact problems. With the help of some acceleration and restart techniques for
first-order optimization methods and a residual balancing technique for adapting the proximal
penalty parameter, the method proved to be efficient and robust on our test bench examples. A
publication is also in preparation on this subject.

6.4.2 Modeling and numerical methods for frictional contact problems with rolling resistance

Participants: Vincent Acary, Franck Bourrier.

In [3], the Coulomb friction model is enriched to take into account the resistance to rolling, also
known as rolling friction. Introducing the rolling friction cone, an extended Coulomb’s cone and its dual,
a formulation of the Coulomb friction with rolling resistance as a cone complementarity problem is
shown to be equivalent to the standard formulation of the Coulomb friction with rolling resistance. Based
on this complementarity formulation, the maximum dissipation principle and the bi-potential function
are derived. Several iterative numerical methods based on projected fixed point iterations for variational
inequalities and block-splitting techniques are given. The efficiency of these method strongly relies on
the computation of the projection onto the rolling friction cone. In this article, an original closed-form
formulae for the projection on the rolling friction cone is derived. The abilities of the model and the
numerical methods are illustrated on the examples of a single sphere sliding and rolling on a plane, and
of the evolution of spheres piles under gravity.

6.4.3 Numerical modeling of rockfall trajectory

Participants: Vincent Acary, Franck Bourrier.
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Rockfall propagation models are routinely used for the quantitative assessment of rockfall hazard.
Their capacities and limitations remain difficult to assess due to the limited amount of exhaustive
experimental data at the slope scale.

The article [5] presents experiments of block propagation performed in a quarry located in Authume
(France). A total of more than one hundred blocks were released on two propagation paths. The propa-
gation of the blocks was assessed by measuring the block stopping points as well as their kinematics at
specific locations of the paths, called evaluation screens. Significant variability of the stopping points and
of the block kinematics at the evaluation screens was observed and preferential transit and deposit zones
were highlighted. The analysis of the results showed predominant effect of topography, in particular that
related to topographical discontinuities. Significant influence of local and small scale parameters (e.g.
block orientation, local topography) was also highlighted. These conclusions are of particular interest
for researchers or practitioners who would like to assess the relevance of propagation modelling tools
considering this complex study site. In this configuration, the quality of block propagation simulations
should notably rely on the accuracy of digital terrain models, and on the integration of local conditions
effects using physically based approaches.

Complementary with the research held in [5], the predictive capabilities of block propagation models
after a preliminary calibration phase is investigated. It is focused on models integrating the shape of
blocks since, despite their sound physical bases, they remain less used than lumped-mass approaches
due to their more recent popularisation. We first performed an expert-based calibration based on the
use of the 2D model and, second, evaluated the predictive capabilities of the calibrated model in 2D and
in 3D using the remaining part of the experimental results. The calibrated model simulations predict
the main characteristics of the propagation : after a calibration phase on sufficient amount of soil types,
the model may be used in a predictive manner. The adequacy between 2D and 3D simulations also
favors applicability of the model since easier and faster calibrations based on 2D simulations only can be
envisaged. As classically observed for block propagation models, the model is not sufficient to predict the
details of the velocity and stopping points but provides accurate prediction of the global ranges of these
quantities, in particular of the extreme values. To lift these limitations in terms of predictive capabilities,
more advanced calibration procedures based on optimization techniques can constitute a promising
perspective as it is studied in [4].

6.4.4 Numerical modeling of fracture in solids

Participants: Vincent Acary, Franck Bourrier, Nicholas Collins-Craft.

In [20], a new extrinsic cohesive model is developed together with a consistent time–stepping scheme
to simulate fracture in quasi-brittle material like rock or concrete. An extrinsic cohesive zone model with
a novel unload-reload behaviour is developed in the framework of non-smooth mechanics. The model is
extended to include the effects of dynamics with impact, and is discretised in such a way that it can be
written as a Linear Complementarity Problem (LCP). This LCP is proved to be well-posed, and to respect
the discrete energy balance of the system. Finally, the LCP system is validated numerically, in both statics
and dynamics, by simple test cases, and more involved finite element simulations that correspond to
standard test geometries in the literature. The results correspond well with those of other authors, while
also demonstrating the simulations’ ability to resolve with relatively large time steps while respecting the
energetic balance.

6.4.5 Finite element modeling of cable structures

Participants: Vincent Acary, Charlélie Bertrand.

Standard finite element discretization for cable structures suffer from several drawbacks. The first
one is related to the mechanical assumption that the cable can not support compression. Standard for-
mulations do not take into account this assumption. The second drawback comes from the high stiffness
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of the cable model when we deal with large lengths with high Young modulus such as cable ropeways
installations. In this context, standard finite element applications cannot avoid compressive solutions
and have huge difficulties to converge. In a forthcoming paper, we propose to a formulation based on
a piecewise linear modeling of the cable constitutive behavior where the elasticity in compression is
canceled. Furthermore, a dimensional analysis help us to formulate a problem that is well-balanced and
the conditioning of the problem is diminished. The finite element discretization of this problem yields a
robust method where convergence is observed with the number of elements and the nonlinear solver
based on nonsmooth Newton strategy is converging up to tight tolerances. The convergence with the
number of element allows one to refine the mesh as much as we want that will be of utmost importance
for applications with contact and friction. Indeed, a fine discretization with respect to the whole length of
the cable will be possible in the contact zone. This work has been the object of the following publication
[47]. In [14], consistent reduced order modeling has been proposed and comparisons with the model
developped in [47] has been performed.

6.5 Analysis and Control of Set-Valued Systems

Participants: Bernard Brogliato, Christophe Prieur, Vincent Acary, Mohammad Ra-
sool Mojallizadeh, Félix Miranda-Villatoro.

6.5.1 Discrete-time differentiators

The article [11] deals with the problem of online differentiation of noisy signals. In this context, several
types of differentiators including linear, sliding-mode based, adaptive, Kalman, and ALIEN differentiators
are studied through mathematical analysis and numerical experiments. To resolve the drawbacks of the
exact differentiators, new implicit and semi-implicit discretization schemes are proposed in this work to
suppress the digital chattering caused by the wrong time-discretization of set-valued functions as well as
providing some useful properties, e.g., finite-time convergence, invariant sliding-surface, exactness. A
complete comparative analysis is presented in the manuscript to investigate the behavior of the discrete-
time differentiators in the presence of several types of noises, including white noise, sinusoidal noise,
and bell-shaped noise. Many details such as quantization effect and realistic sampling times are taken
into account to provide useful information based on practical conditions. Many comments are provided
to help the engineers to tune the parameters of the differentiators.

In [25], the experimental analysis of discrete-time differentiators implemented in closed-loop control
systems is achieved. To this end, two laboratory setups, namely an electro-pneumatic system and a
rotary inverted pendulum have been used to implement 25 different differentiators. Since the selected
laboratory setups behave differently in the case of dynamic response and noise characteristics, it is
expected that the results remain valid for a wide range of control applications. The validity of several
theoretical results, which have been already reported in the literature using mathematical analysis and
numerical simulations, has been investigated, and several comments are provided to allow one to select
an appropriate differentiation scheme in practical closed-loop control systems.

6.5.2 Robust sliding-mode control: continuous and discrete-time

The implicit method for the time-discretization of set-valued sliding-mode controllers was introduced
in [34, 37]. The backstepping approach is used in [92] to design a continuous-time and a discrete-time
nested set-valued controller that is able to reject unmatched disturbances (a problem that is known to
be tough in the sliding-mdoe control community). In [99, 98] we continue the analysis of the implicit
discretization of set-valued systems, this time oriented towards the consistency of time-discretizations
for homogeneous systems, with one discontinuity at zero (sometimes called quasi-continuous, strangely
enough). The discrete-time analysis of the twisting and the super-twisting algorithms are tackled in [79,
55]. A tutorial/survey of the implicit Euler method applied to set-valued sliding-mode control can be
found in [8]. In [12], we propose an upgrade of a linear controller to a set-valued sliding-mode controller,
and we study the discrete-time implementation. Experimental validations are made on a laboratory setup
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available at INRIA Lille (an inverted rotary pendulum). In [22], the sliding-mode control of a nonsmooth
hydraulic actuator is analysed. The implicit Euler discretisation is carefully studied.

6.5.3 Analysis of set-valued Lur’e dynamical systems

Lur’e systems are very popular in the Automatic Control field since their introduction by Lur’e in 1944. In
[56] we propose a very complete survey/tutorial on the set-valued version of such dynamical systems
(in finite dimension) which mainly consist of the negative feedback interconnection of an ODE with a
maximal monotone set-valued operator. The first studies can be traced back to Yakubpovich in 1963
who analysed the stability of a linear time invariant system with positive real constraints, in negative
feedback connection with a hysteresis operator. About 600 references are analysed from the point of view
of the mathematical formalisms (Moreau’s sweeping process, evolution variational inequalities, projected
dynamical systems, complementarity dynamical systems, maximal monotone differential inclusions,
differential variational inequalities), the relationships between these formalisms, the numerous fields of
application, the well-posedness issues (existence, uniqueness and continuous dependence of solutions),
and the stability issues (generalized equations for fixed points, Lyapunov stability, invariance principles).
In [7], we propose a pedagogical survey about the use of passivity (in Willems’ sense) in the well-posedness
analysis of set-valued Lur’e systems.

6.5.4 Optimal control of LCS

The quadratic and minimum time optimal control of LCS as in (6) is tackled in [109, 110]. This work relies
on the seminal results by Guo and ye (SIAM 2016), and aims at particularizing their results for LCS, so that
they become numerically tractable and one can compute optimal controllers and optimal trajectories.
The basic idea is to take advantage of the complementarity, to construct linear complementarity problems
in the Pontryagin’s necessary conditions which can then be integrated numerically, without having to
guess a priori the switching instants (the optimal controller can eb discontinuous and the optimal
trajectories can visit several modes of the complementarity conditions). In [24] we study the optimal
control of complementarity Lagrangian systems. The analysis is based on the transformation of the
system with impacts, into a system without impacts, using an equivalent Filippov’s differential inclusion
with absolutely continuous solutions. The difficulty is in the correct design of the sliding surface so that
the post-impact velocity is computed corectly.

6.5.5 Bifurcations of equilibria in LCS

It is well-known that linear complementarity systems can undergo bifurcations at which equilibria, limit
cycle, or chaotic solutions can appear, dissappear or change stability. From a control viewpoint, it is
important to know the range of parameters for which such changes take place. The work [23] addresses
this issue by proposing a novel notion of equivalence between LCPs (linear complementarity problems)
that permits to make a classification of steady state bifurcations in dynamic LCS. The proposed approach
takes advantage of the geometric structure of the problem and allows to closely mimic the bifurcation
theory of smooth maps. This type of results allows us, for instance, to design LCSs with asymptotic
behaviors showing multiple steady states, as is the case in negative resistance circuits. In addition, a full
classification of bifurcations for the planar LCP is provided.

6.5.6 Dissipative systems

The third edition of the book Dissipative Systems Analysis and Control has been released . Also a short
proof of equivalence of so-called side conditions for strictly positive real (SPR) transfer functions is
done in [67], closing a long debate in the Automatic Control community about the frequency-domain
characterization of SPR transfer matrices. An erratum/addendum for the third edition of our monograph
on dissipative systems, is available at [15].

6.6 Impact modelling

https://www.springer.com/gp/book/9783030194192
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Participants: Bernard Brogliato, Guillaume James.

In [18, 19], we study the derivation of approximations of the coefficient of restitution associated with
a class of nonlinear spring/dashpot contact/impact models (the most well-known being the so-called
Simon-Hunt-Crossley, and Kuwabara-Kono models). The originality of our work (compared to previous
results obtained by authors like Poschel and Brilliantov) is that the external load which acts on the
system during the collision, is taken into account. This load can influence the restitution coefficient. The
approximated expressions are obtained by careful analysis of suitable expansions. A piece of code which
allows one to calculate the coefficients has been developed.

7 Bilateral contracts and grants with industry

Participants: Vincent Acary, Bernard Brogliato, Christophe Prieur.

7.1 Bilateral grants with industry

Schneider Electric

This action started in 2001 with the post-doc of V. Acary co–supported by Schneider Electric and CNRS.
With some brief interruptions, this action is still active and should further continue. It concerns mainly the
simulation and modeling of multi–body systems with contact, friction and impacts with the application
for the virtual prototyping of electrical circuit breakers.

During these years, various forms of collaborations have been held. Two PhD thesis have been granted
by Schneider Electric (D.E. Taha and N. Akhakdar) accompanied with research contracts between INRIA
and Schneider Electric. Schneider Electric participated also the ANR project Saladyn as a main partner.

Without going into deep details of the various actions over the years, the major success of this
collaboration is the statistical tolerance analysis of the functional requirements of the circuit breakers
with respect to clearance in joints and geometrical tolerances on the parts. Starting from the geometrical
descriptions (CAD files) of a mechanism with prescribed tolerances on the manufacturing process, we
perform worst-case analysis and Monte–Carlo simulations of the circuit breaker with Siconos and we
record the variations in the functional requirements. The difficulty in such simulations are the modeling
of contact with friction that models the joints with clearances. The results of these analysis enable
Schneider Electric to define the manufacturing precision that has a huge impact of the production cost
(Schneider Electric produces several millions of C60-type circuit breaker per year). Note that it is not
possible to perform such simulations with the existing software codes of the market.

At the beginning, our interlocutor at Schneider Electric was the innovation (R&D) department. Now,
we are working and discussing with the business unit, Division Power and Dinnov (M. Abadie, E. Boume-
diene, X. Herreros) in charge of designing and producing the circuit–breakers. The targeted users are the
R&D engineers of Schneider Electric that use simulation tools for designing new models or improving
existing circuit breakers. This collaboration continues with new modeling and simulation challenges
(flexible parts, multiple impact laws) with the CIFRE PhD of Rami Sayoud.

STRMTG. Service Technique des remontées mécaniques et des transports guidés.

We have started with STRMTG a research contract about modelling, simulation and control of cable-
transport systems. In such systems, the question of the coupling between the nonlinear dynamics of
cables and their supports with unilateral contact and friction appears now to be determinant in order to
increase the performances of the cableway systems, especially for urban transportation systems.
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8 Partnerships and cooperations

Participants: Vincent Acary, Franck Bourrier, Bernard Brogliato, Felix Miranda, Mo-
hammad Rasool Mojallizadeh.

8.1 International initiatives

8.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an Inria
International Program

Inria Project Lab (IPL): ModeliScale, Languages and Compilation for Cyber-Physical System Design.

The project gathers researchers from three Inria teams, and from three other research labs in Grenoble
and Paris area (see table 1).

Name Team Inria Center or Laboratory
Vincent Acary Bipop Inria Grenoble Rhône Alpes
Bernard Brogliato
Albert Benveniste Hycomes Inria Rennes
Benoît Caillaud Bretagne Atlantique
Khalil Ghorbal
Marc Pouzet Parkas ENS
Tim Bourke Inria Paris
Goran Frehse Tempo Verimag-univ. Grenoble Alpes
Antoine Girard L2S-CNRS, Saclay
Eric Goubault Cosynus LIX, École Polytechnique,
Sylvie Putot Saclay

Table 1: Member of IPL Modeliscale

The main objective of ModeliScale is to advance modeling technologies (languages, compile-time
analyses, simulation techniques) for CPS combining physical interactions, communication layers and
software components. We believe that mastering CPS comprising thousands to millions of components
requires radical changes of paradigms. For instance, modeling techniques must be revised, especially
when physics is involved. Modeling languages must be enhanced to cope with larger models. This can
only be done by combining new compilation techniques (to master the structural complexity of models)
with new mathematical tools (new numerical methods, in particular).

ModeliScale gathers a broad scope of experts in programming language design and compilation
(reactive synchronous programming), numerical solvers (nonsmooth dynamical systems) and hybrid
systems modeling and analysis (guaranteed simulation, verification). The research program is carried
out in close cooperation with the Modelica community as well as industrial partners, namely, Dassault
Systèmes as a Modelica/FMI tool vendor, and EDF and Engie as end users.

8.2 National initiatives

ANR project Digitslid

B. Brogliato coordinates the ANR project Digitslid (PRC, ANR-18-CE40-0008-01), Differentiateurs et
commandes homogenes par modes glissants en temps discret: l’approche implicite. Partners: LS2N
(Ecole Centrale de Nantes), INRIA Lille Nord Europe (team Non-A-Post), and Tripop. October 2018-
September 2021. 12 participants overall (3 post-doc students recruited by the project, 3 Ph.D. students
supported by other means). Total financial support by the ANR: 338 362 euros (100 762 for Tripop, 18
months of post-doc).

https://team.inria.fr/modeliscale/
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FUI Modeliscale

FUI Modeliscale web site
The ModeliScale FUI focuses on the modeling, simulation and analysis of large cyber-physical systems.

It federates the research activities of several teams, covering a broad spectrum of topics, namely hybrid
systems modeling & verification, numerical analysis, programming language design and automatic
control. Our research agenda includes the following tracks:

• New compilation techniques for Modelica modelers: structural analysis of multimode DAE (Dif-
ferential Algebraic Equations) systems, modular compilation, combining state-machines and
non-smooth dynamical systems (complementarity dynamical systems and Filippov differential
inclusions), contract-based specification of cyber-physical systems requirements, requirements
capture using under-/over-determined DAE systems.

• Simulation of large cyber-physical systems: distributed simulation, discretization methods for
non-smooth dynamical systems, space-/time-adaptive discretization methods for multimode DAE
systems, quantized state solvers (QSS).

• Guaranteed numerics: guaranteed simulation of non-smooth and hybrid dynamical systems,
numerical methods preserving invariant properties of hybrid systems, contract-based reasoning
methods.

Project Levage, IRT NanoElec, Grenoble

This project deals with the modeling and control of overhead cranes, in collaboration with Schneider
Electric. It involves M.R. Mojallizadeh (two-year contract funded by the IRT), B. Brogliato and C. Prieur.
The major objective is to better understand how to minimize sway effects that may be created during
operation. The major issues for modeling are how to choose in the set of finite-dimensional (pendulum-
like), infinite-dimensional (string or wave equations), and finite-element-method based, models. One
major issue for feedback control, concerns the choice of the measured cable angles.

Project SsONDS LabEx PERSIVAL ANR-15-IDEX-02 and ANR-11-LABX-0025-01

Self-sustained Oscillations in Nonsmooth Dynamical Systems. October 2021 - September 2024. INRIA
Grenoble TRIPOP team (F. Miranda-Villatoro, B. Brogliato) and Gipsa-Lab UGA (F. Ferrante). Coordinated
by F. Miranda-Villatoro. The SsONDS project aims at developing theoretical methods for the analysis,
design, and control of systems with robust self-sustained oscillations in environments with uncertainties
(as for instance, lack of knowledge of certain parameters of the model, or the presence of external
disturbances). Potential applications include the design of central pattern generators (CPGs) for motion
control, and mathematical analysis of models from computational biology. Total fundings for TRIPOP =
99 keuros.

8.3 Regional initiatives

Smart Protect

The project aims to develop and test an innovative structure for protection against natural hazards.
It is funded by the Auvergne Rhône-Alpes region as part of the R&D operation BOOSTER 2019. The
partnerships (GEOLITHE INNOV, GEOLITHE, MYOTIS, INRIA and INRAE) and the operational solutions
and tools developed as part of the "Smart-Protect" project will constitute major advances in the methods
and means for the natural risk management, both nationally and internationally. GEOLITHE INNOV is
leader of the SMART-PROTECT collaborative project. The financial support for INRIA is devoted to the
post-doc of Nicholas Collins Craft for the study and the development of cohesive zone model for fracture
mechanics simulation.

https://team.inria.fr/modeliscale/
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OCIRN

The OCIRN Project is supported and accompanied by the Auvergne Rhône-Alpes Region. The partners
of the project are Géolithe, CAN, INRIA, department of Isère, Halias Technologies and INDURA cluster.
The general ambition of the OCIRN project is to support the development of the natural gravity hazards
sector in the development and integration of new digital practices. Natural gravity hazards are a growing
concern in the context of global warming generating an increase in the frequency and intensity of events,
combined with the reduction of societal and economic tolerance of these risks. A functional ambition of
the project is to contribute to the integrated and reasoned management of natural gravitational risks,
coordinated with the projects of development of the territories, in order to allow important progress
in the reduction of the risks, the continuity of service of the installations and the optimization of the
operations of mitigation and protection. The OCIRN project aims at 3 major objectives:

1. The capitalization of data and the improvement of information flows between the actors of natural
risks via the digital platform.

2. The sharing of the uses of innovative software of simulation and modeling via the software bricks
of simulation and modeling on digital platform.

3. The homogenization and standardization of practices through the application of methods chosen
by the sector (C2ROP) via the methodological software bricks on the digital platform.

These three objectives are addressed through access to shared tools on a scalable and collaborative
digital platform made available to the sector. In addition, related training, data collection and processing
services will be set up.

9 Dissemination

Participants: Vincent Acary, Franck Bourrier, Bernard Brogliato, Felix Miranda.

9.1 Promoting scientific activities

9.1.1 Scientific events: organisation

Member of the organizing committees

• Vincent Acary is co-organisor (with O. Bruls and R. Leine) of the mini-symposium Nonsmooth
Dynamics, 10th Nonlinear Dynamics Conference (ENOC 2022), Lyon, July 2022.

• B. Brogliato is organising a mini-symposium at ENOC 2022 (Lyon, July 2022).

9.1.2 Journal

Member of the editorial boards

• Vincent Acary is Technical Managing editor and co-founder of the Journal of Theoretical, Computa-
tional and Applied Mechanics, which is a scholarly journal, provided on a Fair Open Access basis,
without cost to both readers and authors. The Journal aims to select publications of the highest
scientific calibre in the form of either original research papers or reviews.

• Franck Bourrier is associate editor of the journal Landslides

http://jtcam.episciences.org
http://jtcam.episciences.org
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Reviewer - reviewing activities

• Vincent Acary was reviewer for Multibody Systems Dynamics, Mechanical Systems and Signal
Processing, Computational Mechanics, SIAM Journal on Control and Optimization, Nonlinear
Dynamics, Systems and Control Letters

• Franck Bourrier was reviewer for Natural Hazards and Earth Systems Sciences, European Journal
of Environmental and Civil Engineering, Landslides, Computer and Geotechnics, Plant and Soils,
Nature Communications

9.1.3 Leadership within the scientific community

• Vincent Acary is the coordinator with R. Leine of the European Network for Nonsmooth Dynamics
ENNSD

• Vincent Acary is a member of Comité National Francais de Mécanique CNFM that is the national
instance member of IUTAM, the International Union of Theoretical and Applied Mechanics.

9.1.4 Scientific expertise

• Vincent Acary was expert of a Fondecyt project (Chile) and a MIAI project of UGA.

• Franck Bourrier was expert of the Fonds national suisse (FNS)

9.2 Teaching - Supervision - Juries

9.2.1 Teaching

• Licence : G. James, Introduction to Numerical Methods, 31 hETD, L3, Grenoble INP - Pagora (1st
year).

• Licence : G. James, Normed Vector Spaces, 26 hETD, L2, Prépa INP, Grenoble.

• Master : G. James, Numerical Methods, 91 hETD, M1, Grenoble INP - Ensimag (1st year).

• Master : G. James, Dynamical Systems, 45 hETD, M1, Grenoble INP - Ensimag (2nd year).

• Master : Vincent Acary, 17H éq TD Systèmes dynamiques, ENSIMAG 2A.

• Licence : Franck Bourrier, 30H éq TD Slope Stabilitiy, IUT GCCD 2nd year, Université Grenoble
Alpes.

• Master : Franck Bourrier, 5H éq TD Modélisation des chutes de blocs, Master GAIA, Université
Savoie Mont-Blanc.

• Master : Franck Bourrier, 30H éq TD Slope Stabilitiy, Polytech’ Grenoble 4th year, Université
Grenoble Alpes.

• Licence : Félix Miranda-Villatoro, 32H TD, Real Analysis, 1st year, Université Grenoble Alpes.

• Master : Félix Miranda-Villatoro, 32 H TD, Numerical Optimization, 1st year, Grenoble INP, Univer-
sité Grenoble Alpes

• European Summer School: Bernard Brogliato (May 2021). 20h. European Embedded Control
Institute, International Graduate School on Control. In collaboration with A. Tanwani (LAAS-CNRS,
Toulouse, France). Set-valued Lur’e Dynamical Systems.

https://tripop.gitlabpages.inria.fr/ennsd/
https://cnfm.wordpress.com
https://iutam.org
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9.2.2 Supervision

• B. Brogliato and F. Miranda-Villatoro supervise the Ph.D. thesis of Aya Younes.

• G. James and B. Brogliato supervise the post-doc intern of A. Chatterjee.

• V. Acary and F. Bourrier supervise the post-doc intern of N. Collins Craft.

• V. Acary and F. Bourrier supervise the PhD thesis of B. Viano.

• V. Acary and P. Armand supervise the PhD thesis of H.M. Nguyen.

• V. Acary and C.H. Lamarque (ENTPE) supervise the PhD thesis of C. Bertrand.

9.2.3 Juries

• Vincent Acary was president of the Jury of the PhD Thesis of Thomas Langlade on 22th October
2021. (Vulnerability and risk analyzes of structures subjected to earthquake-induced building
pounding with a non-smooth contact dynamics method, ED162 : Mécanique, Energétique, Génie
Civil, Acoustique de Lyon/ Université de Lyon et INSA de Lyon).

• Vincent Acary was referee of the PhD Thesis of Marianne Souaiby on 15th October 2021 ( Lyapunov
Functions and Ensemble Approximations for Constrained Systems using Semidefinite Program-
ming, INSA Toulouse)

• Franck Bourrier was referee of the PhD Thesis of Rime Chehade on 2nd December 2021 (Développe-
ment d’un modèle numérique d’impact pour la quantification de la vulnérabilité du bâti exposé au
risque de coulées de débris et crues éclair , Université Clermont Auvergne)

• Franck Bourrier was referee of the PhD Thesis of Davide Guccione (An experimental investiga-
tion offragmentation occurrence and outcome in the context of rockfall, University of Newcastle,
Australia)
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