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1 Team members, visitors, external collaborators

Research Scientists
¢ Ivan Laptev [Team leader, Inria, Senior Researcher, HDR]
¢ Justin Carpentier [Inria, Researcher]
* Jean Paul Laumond [CNRS, Senior Researcher, HDR]
* Jean Ponce [Inria, Senior Researcher, on leave from Ecole Normale Supérieure, HDR]

¢ Cordelia Schmid [Inria, Senior Researcher, HDR]

Post-Doctoral Fellows
¢ Alexandre Araujo [Inria, from Oct 2021]
¢ Shizhe Chen [Inria, from Mar 2021]

¢ Olivier Flasseur [Univ de Provence, from Apr 2021]

PhD Students
e Minttu Alakuijala [Google, CIFRE]
* Antoine Bambade [Corps des Ponts et Chaussées]
e Adrien Bardes [Facebook, CIFRE]
¢ Theo Bodrito [Inria, from Nov 2021]
¢ Oumayma Bounou [Inria]
¢ Thomas Chabal [Inria, from Oct 2021]
¢ Nicolas Chahine [DXOMARK, CIFRE, from Aug 2021]
¢ Elliot Chane-Sane [Inria]
e Zerui Chen [Inria, from Sep 2021]
¢ Hugo Cisneros [CTU Prague]
¢ Yann Dubois De Mont-Marin [Inria]
» Thomas Eboli [Ecole Normale Supérieure de Paris, until Sep 2021]
¢ Aamr El Kazdadi [Inria]
¢ Alaaeldin El-Nouby [Facebook, CIFRE]
o Matthieu Futeral-Peter [Inria, from Nov 2021]
* Ricardo Jose Garcia Pinel [Inrial
¢ Pierre Louis Guhur [Univ Paris-Saclay]
¢ Yana Hasson [Inria, until Aug 2021]
e Marie Heurtevent [Inria, until Mar 2021]
¢ Wilson Jallet [Inria]

* Yann Labbe [Ecole Normale Supérieure de Paris]
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¢ Quentin Le Lidec [Inria]

¢ Guillaume Le Moing [Inria]

¢ Bruno Lecouat [Inria]

¢ Zongmian Li [Inria]

¢ Louis Montaut [CTU Prague, ENS]

¢ Adel Nabli [Inria, until Aug 2021]

¢ Alexander Pashevich [Inria, until Mar 2021]

¢ Ronan Riochet [Inria, Jan 2021]

* Robin Strudel [Ecole Normale Supérieure de Paris]

e Lucas Ventura [Ecole Nationale des Ponts et Chaussées, from Sep 2021]
¢ Elliot Vincent [Ministere de la Transition écologique et solidaire, from Sep 2021]
¢ Van Huy Vo [Valeo, CIFRE]

¢ Antoine Yang [Inria]

¢ Dimitri Zhukov [Inria, until Aug 2021]

Technical Staff
e Etienne Arlaud [Inria, Engineer, from Apr 2021]
¢ Rohan Budhiraja [Inria, Engineer, from Feb 2021]
* Wilson Jallet [Inria, Engineer, from Mar 2021 until Sep 2021, Pre-theése]
¢ Igor Kalevatykh [Inria, Engineer, until June 2021]
¢ Quentin Le Lidec [Inria, Engineer, from Apr 2021 until Sep 2021, Pre-these]

¢ Ignacio Rocco Spremolla [Inria, Engineer, until Mar 2021]

Interns and Apprentices
* Louis Bodot [Ecole Normale Supérieure de Paris, from Feb 2021 until Jul 2021]
¢ Thomas Chabal [Inria, from Apr 2021 until Sep 2021]
¢ Charlotte Perlant [Louis Vuitton, from Apr 2021 until Sep 2021]

e Charles Raude [Inria, from Jun 2021 until Sep 2021]

Administrative Assistants
e Mathieu Mourey [Inria, until Oct 2021]

¢ Scheherazade Rouag [Inria, from Oct 2021]

External Collaborators
¢ Mathieu Aubry [ENPC, HDR]
¢ Josef Sivic [CTU Prague, HDR]

¢ Gul Varol Simsekli [ENPC]
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2 Overall objectives

2.1 Statement

Building machines that can automatically understand complex visual inputs is one of the central sci-
entific challenges in artificial intelligence. Truly successful visual understanding technology will have a
broad impact in application domains as varied as defense, entertainment, healthcare, human-computer
interaction, image retrieval and data mining, industrial and personal robotics, manufacturing, scientific
image analysis, surveillance and security, and transportation.

The problem is, however, very difficult due to the large variability of the visual world and the high
complexity of the underling physical phenomena. For example, people easily learn how to perform
complex tasks such as changing a car tire or performing resuscitation by observing other people. This
involves advanced visual perception and interaction capabilities including interpreting sequences of
human actions, learning new visuomotor skills from only a few example demonstrations, grounding
instructions in appropriate scene elements and actions, and applying the learned skills in new environ-
ments and situations. Currently, however, there is no artificial system with a similar level of cognitive
visual competence. Our goal for the next 10 years is to develop models, methods and algorithms providing
sufficient level of visual intelligence to enable applications such as personal visual assistants or home
robots that will, for example, prepare a meal in response to a chat request.

Despite the tremendous progress in visual recognition in the last decade, current visual recognition
systems still require large amounts of carefully annotated training data, often use black-box architectures
that do not model the 3D physical nature of the visual world, are typically limited to simple pattern
recognition tasks such as detecting and recognizing objects from a predefined vocabulary, and do not
capture real-world semantics. We plan to address these limitations with an ambitious research program
that aims at developing models of the entire visual understanding process from image acquisition to the
high-level embodied interpretation of visual scenes. We target learnable models that require minimal
to no supervision, support complex reasoning about visual data, and are grounded in interactions with
the physical world. More concretely, we will address fundamental scientific challenges along three
research axes: (i) visual recognition in images and videos with an emphasis on weakly supervised
learning and models grounded in the physical 3D world; (ii) learning embodied visual representations for
robotic manipulation and locomotion; and (iii) image restoration and enhancement. These challenges
will be tackled by a team of researchers with core expertise in computer vision and robotics, who will
simultaneously advance both fields towards convergence. The complementary expertise in areas such as
machine learning and natural language understanding will be gained through collaboration with relevant
research teams.

We believe that foundational research should be grounded in applications and we plan to pursue
applications with high scientific, societal, and/or economic impact in domains such as transportation;
augmented reality; education; advanced manufacturing; and quantitative visual analysis in sciences,
humanities and healthcare.

3 Research program

3.1 Visual recognition and reconstruction of images and videos

It is now possible to efficiently detect individual objects and people in cluttered images and videos.
Current methods, however, rely on large-scale, manually-annotated image collections, often use black-
box architectures that do not model the 3D physical nature of the visual world, and are typically limited
to simple pattern recognition tasks. In this part of research program, we address these fundamental
limitations. In particular, we address the following three key open challenges: (i) how to leverage available
but weak annotations including text, audio and speech, (ii) how to enable automatic reasoning about
visual data, and (iii) how to develop models grounded in the physical 3D world including learnable models
for 3D object and scene reconstruction. We also continue theoretical work aimed at understanding the
geometric underpinnings of computer vision.
Our current efforts in this area are outlined in detail in Section. 8.1.
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3.2 Learning embodied representations

Computer vision has come a long way toward understanding images and videos in terms of scene
geometry, object labels, locations and poses of people or classes of human actions. This “understanding”,
however, remains largely disconnected from reasoning about the physical world. For example, what
will happen when removing a tablecloth from a set table? What actions will be needed to resume
an interrupted meal? We believe that a true embodied understanding of dynamic scenes from visual
observations is the next major research challenge. We address this challenge by developing new models
and algorithms with an emphasis on the synergy between vision, learning, robotics and natural language
understanding. To this end, we study learning methods for motion planning and optimal control for
known environments in state space. At the same time, we develop models and algorithms for learning
visio-motor policies that do not rely on the known structure of environments and instead integrate
visual perception directly into control algorithms. We also address natural language providing additional
modality for more efficient learning and communication with emodied agents.
Our current efforts in this area are outlined in detail in Section 8.2.

3.3 Image restoration and enhancement

Although image processing is a mature field, it is more important than ever with the advent of high-quality
camera phones, scientific applications in microscopy and astronomy and, recently, the emergence of
multi-modal sensing for autonomous cars for example. In addition, it is an excellent proving ground
for learning-based techniques since (a) it is in general (relatively) easy to generate realistic corrupted
images from clean ones since reasonable models of the physical image corruption problem as often
available (Abdelhamed et al., 2019; Nah et al., 2017), and (b) it is possible to incorporate natural image
priors such as self-similarities (Buades et al., 2005) and sparsity (Mairal et al., 2009) in the modelling and
optimization processes. We have conducted work on image restoration since the time of Julien Mairal’s
PhD thesis, addressing problems such as demosaicking, denoising, inpainting, and inverse half-toning
with a combination of sparse coding/dictionary learning methods and non-local means, then moving
on to blind deblurring including motion segmentation and, more recently, deep-learning methods. In
our on-going efforts we address several challenges for learning-based approaches to image restoration:
(i) how to combine different modalities such as depth and RGB images to improve the quality of the
joint observations; (ii) how to construct tunable, fully interpretable approaches to image restoration
in a functional framework; and (iii) how to incorporate machine learning methods that go beyond the
traditional fully supervised setting into the image restoration pipeline.
Our current work in this area is outlined in detail in Section 8.3.

4 Application domains

4.1 Introduction

We believe that foundational modeling work should be grounded in applications. This includes (but is
not restricted to) the following high-impact domains.

4.2 Automated visual assistants

The modern seamless video communication has enabled new applications in education, medicine and
manufacturing, such as remote surgery or remotely-supervised product assembly. The abundance of
online instructional videos further confirms the high demand of assistance including daily tasks such as
cooking and gardening. Our work on embodied video understanding and on the joint modeling of vision
and language will support automatic visual assistants. Similar to existing driving navigation assistants,
such applications will guide people in daily living, inspection and manufacturing tasks. Some of these
applications will be pursued in our MSR-Inria collaboration.
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4.3 Robotics

In 2021, the Willow team has pursued the development of the Pinocchio library both from a scientific
and software perspective. The recent versions of Pinocchio now accounts for closed-loop mechanisms
(based on a proximal optimization), code source generation on GPUs, etc. All these new features make
Pinocchio a unique tool to efficiently control complex robotic systems such as legged robots or industrial
robots. We are now closely collaborating with Pal Robotics which plan to use Pinocchio to control its next
generation of humanoid robots called Kangaroo. In the near future, the plan is to extend Pinocchio to
become a generic-purposed and efficient robotic simulator simulating both rigid and compliant contact
interactions between a robot and its environment, with the ambition of making Pinocchio the next golden
framework for simulation in robotics, offering advanced features for optimal control, reinforcement
learning, like differentiable simulation. Such features should position Pinocchio as the central simulator
in Robotics.

4.4 Image restoration

We are pursuing applications of our image restoration work to personal photography, to enhance the
images taken by consumer cameras and smartphones by deblurring and denoising them, and improving
their spatial resolution and dynamic range. In this context, we are collaborating with DXOMark, the world
leader in smartphone camera evaluation, through a CIFRE thesis. Two of the objectives are to develop a
public database of portraits fully compliant with European GDRP regulations with informed consent from
the models, and to automate the rating of image quality using this dataset. We also apply the mixture of
physical image formation model and machine learning principles that has made our image restoration
work successful to scientific fields: We collaborate with Anne-Marie Lagrange (Observatoire de Paris),
Maud Langlois (SNRS/Observatoire de Lyon) and Julien Mairal (Inria) on direct exoplanet detection from
ground-based telescope imagery. This work also involves a post-doc, Olivier Flasseur, and a PhD Student,
Théo Bodrito. We will apply next year the same principles to molecular microscopy, in collaboration with
Jean-Baptiste Masson (Institut Pasteur).

5 Social and environmental responsibility

Artificial intelligence holds great potential for improving our environment, for example, by reducing
energy consumption and optimizing energy production. Computer vision, in particular, can be used to
monitor emissions from coal plants and to track forest growth using satellite imagery. Autonomous drones
can monitor and prevent failures of pipelines, power lines, power plants and other remote installations.
However, as larger and more powerful Al models require increased compute power at training and
inference, Al itself stands for an increasingly high carbon footprint. One direction of our research aims
to develop efficient and low-resource neural network models. To this end we have proposed Cross-
Covariance Image Transformers [27] that avoid quadratic complexity in terms of image size. We have also
developed efficient text-to-visual retrieval with transformers in [23].

6 Highlights of the year

6.1 Awards
¢ PAMI Distinguished Researcher Award, 2021 for C. Schmid.

¢ Winner of the REVERIE / Soon Challenge, in conjunction with ICCV 2021 for S. Chen, I. Laptev and
C. Schmid.

L]

AFRIF PhD Thesis Prize 2021 for Ignacio Rocco.
¢ QOutstanding reviewer at ICCV 2021 for Y. Hasson.

¢ Best poster prize at the 2nd International Workshop on Al for Robotics, Naver Labs Europe 2021 for
J. Sivic and J. Carpentier.
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7 New software and platforms

7.1 New software
7.1.1 Pinocchio
Name: Pinocchio

Keywords: Robotics, Biomechanics, Mechanical multi-body systems

Functional Description: Pinocchio instantiates state-of-the-art Rigid Body Algorithms for poly-articulated
systems based on revisited Roy Featherstone’s algorithms. In addition, Pinocchio instantiates ana-
lytical derivatives of the main Rigid-Body Algorithms like the Recursive Newton-Euler Algorithms
or the Articulated-Body Algorithm. Pinocchio is first tailored for legged robotics applications, but it
can be used in extra contexts. It is built upon Eigen for linear algebra and FCL for collision detection.
Pinocchio comes with a Python interface for fast code prototyping.

URL: https://github.com/stack-of-tasks/pinocchio
Contact: Justin Carpentier

Partner: CNRS

7.1.2 Segmenter

Name: Segmenter: Transformer for Semantic Segmentation
Keywords: Semantic Segmentation, Image segmentation

Functional Description: Image segmentation aims at precisely localizing objects in an image. Each
pixel of an image is associated to a class, typically a person, a car, a bike etc. This is a fundamental
problem in computer vision that has numerous applications such as autonomous driving, robotics
or medical imagery.

Publication: hal-03481207
Contact: Robin Strudel

Participants: Robin Strudel, Ricardo Garcia Pinel, Ivan Laptev, Cordelia Schmid

7.1.3 VLN-HAMT

Name: History Aware Multimodal Transformer for Vision-and-Language Navigation
Keyword: Computer vision

Functional Description: Open source release of the software package for the NeurIPS’21 paper by Chen
et al. "History Aware Multimodal Transformer for Vision-and-Language Navigation". This release
provides a full implementation of the method, including code for training models, and testing on
standard datasets, as well as trained models.

URL: https://cshizhe.github.io/projects/vln_hamt.html
Publication: hal-03464975
Contact: Shize Chen

Participants: Shize Chen, Pierre-Louis Guhur, Cordelia Schmid, Ivan Laptev


https://github.com/stack-of-tasks/pinocchio
https://hal.inria.fr/hal-03481207
https://cshizhe.github.io/projects/vln_hamt.html
https://hal.inria.fr/hal-03464975
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7.1.4 Goal-Conditioned Reinforcement Learning with Imagined Subgoals

Keywords: Robotics, Reinforcement learning, Deep learning

Functional Description: Code associated with the paper "Goal-Conditioned Reinforcement Learning
with Imagined Subgoals”

URL: https://github.com/elliotchanesane31/RIS
Publication: hal-03470313
Contact: Elliot Chane-Sane

Participants: Elliot Chane-Sane, Cordelia Schmid, Ivan Laptev

7.1.5 hybrid-nca-evocraft

Name: Open-ended creation of hybrid creatures with Neural Cellular Automata
Keywords: Cellular automaton, Evolution, Evolutionary Algorithms

Functional Description: Our algorithm is based on Neural Cellular Automata (NCA), a CA-based neural
network model inspired by morphogenesis. We chose to work with cellular automata, as we're
interested in models where complexity can be spontaneously increasing over time, which is a
property that traditional models (like neural networks) do not have. We train a NCA to grow
different patterns from various seeds (or "genomes") in 2 or 3 dimensions. Once the training is
done, we load the model in Minecraft and have players modify the genomes. They can be mutated
or merged to create an endless stream of novel growing patterns. The resulting patterns depend
both on the genome and the growth rules learned offline by the NCA, which can be unpredictable
and surprising.

The repository contains link to pre-trained models in 2D and 3D as well as Colab notebooks links
to train you own NCA.

The current codebase is very simplistic and therefore not very usable, because that’s only what I
needed to run my experiments and try several things. I plan to make it more usable in the near
future.

URL: https://hugocisneros.com/blog/open-ended-creation-of-hybrid-creatures-with
-neural-cellular-automata/

Contact: Hugo Cisneros

7.1.6 CCVS: Context-aware Controllable Video Synthesis

Keywords: Computer vision, Video synthesis, Deep learning

Functional Description: Code, results and models associated with the paper "CCVS: Context-aware
Controllable Video Synthesis"

URL: https://16lemoing.github.io/ccvs/
Publication: hal-03292031
Contact: Guillaume Le Moing

Participants: Jean Ponce, Cordelia Schmid


https://github.com/elliotchanesane31/RIS
https://hal.inria.fr/hal-03470313
https://hugocisneros.com/blog/open-ended-creation-of-hybrid-creatures-with-neural-cellular-automata/
https://hugocisneros.com/blog/open-ended-creation-of-hybrid-creatures-with-neural-cellular-automata/
https://16lemoing.github.io/ccvs/
https://hal.inria.fr/hal-03292031
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7.1.7 BurstSR
Name: Super-resolution from image bursts
Keyword: Image processing

Functional Description: This is a research prototpye allowing to take as input a sequence of raw or rgb
images produced by a smartphone or digital camera. This code produces a high quality color
images with higher resolution.

Contact: Bruno Lecouat

7.1.8 LOD
Name: Large-Scale Unsupervised Object Discovery
Keywords: Unsupervised learning, Computer vision

Scientific Description: Paper: Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova,
Cordelia Schmid, Patrick Pérez, Jean Ponce In Proc. NeurIPS 2021, Canada. Hal: hal-03541587

Functional Description: Implementation of the method proposed in Large-Scale Unsupervised Object
Discovery. Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce. In Proc. NeurIPS
2021, Canada.

Contact: Van Vo

7.1.9 LOST
Name: Localizing Objects with Self-Supervised Transformers and no Labels
Keyword: Computer vision

Scientific Description: Localizing Objects with Self-Supervised Transformers and no Labels. Oriane
Siméoni, Gilles Puy, Huy V. Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud
Marlet, Jean Ponce. In Proc. BMVC 2021, United Kingdom.

Functional Description: Implementation of the method proposed in Localizing Objects with Self-Supervised
Transformers and no Labels, Oriane Siméoni, Gilles Puy, Huy V. Vo, Simon Roburin, Spyros Gidaris,
Andrei Bursuc, Patrick Pérez, Renaud Marlet, Jean Ponce, in Proc. BMVC 2021, United Kingdom.

Publication: hal-03541602

Contact: Van Vo

7.1.10 LeSegWeakMultiTask
Name: Improving Weakly Supervised Lesion Segmentation using Multi-Task Learning
Keyword: Computer vision

Scientific Description: Improving Weakly Supervised Lesion Segmentation using Multi-Task Learning.
Tianshu Chu, Xinmeng Li, Huy V. Vo, Ronald Summers, Elena Sizikova MIDL 2021 - Medical Imaging
with Deep Learning, Jul 2021, Lubeck, Germany

hal: hal-03478040

Functional Description: Implementation of the method proposed in Improving Weakly Supervised
Lesion Segmentation using Multi-Task Learning. Tianshu Chu, Xinmeng Li, Huy V. Vo, Ronald
Summers, Elena Sizikova MIDL 2021 - Medical Imaging with Deep Learning, Jul 2021, Lubeck,
Germany

Publication: hal-03541602

Contact: Van Vo


https://hal.inria.fr/hal-03541602
https://hal.inria.fr/hal-03541602
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7.1.11 airbert

Name: Airbert
Keywords: Computer vision, Natural language processing, Machine learning, Robotics

Functional Description: Open source release of the software package for the ICCV’21 paper by Guhur et
al. "Airbert: In-domain Pretraining for Vision-and-Language Navigation". This release provides a
full implementation of the method, including code for training models, and testing on standard
datasets, as well as trained models.

Contact: Pierre-Louis Guhur

7.1.12 Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Keywords: Computer vision, Natural language processing, Deep learning

Functional Description: Code, datasets and models associated with the paper "Just Ask: Learning to
Answer Questions from Millions of Narrated Videos"

URL: https://github.com/antoyang/just-ask

Contact: Antoine Yang

7.2 New platforms

Together with SED we are bulding the new robotics laboratory at Inria Paris located on the 5th floor of the
C building. This laboratory is currently composed of two robotic anthropomorphic arms for manipulation
experiments mounted on a fixed frame basement, as well as the Tigao++ robot. In 2021 we have aquired
two SOLO quadruped robots that will enable our future research and experiments with locomotion and
navigation.

8 Newresults

8.1 Visual recognition and reconstruction of images and videos

8.1.1 Large-Scale Unsupervised Object Discovery

Participants: Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Perez, Jean Ponce.

Existing approaches to unsupervised object discovery (UOD) do not scale up to large datasets without
approximations that compromise their performance. We propose in [31] a novel formulation of UOD as
aranking problem, amenable to the arsenal of distributed methods available for eigenvalue problems
and link analysis. Through the use of self-supervised features, we also demonstrate the first effective
fully unsupervised pipeline for UOD. Extensive experiments on COCO and Openlmages show that, in the
single-object discovery setting where a single prominent object is sought in each image, the proposed
LOD (Large-scale Object Discovery) approach is on par with, or better than the state of the art for medium-
scale datasets (up to 120K images), and over 37% better than the only other algorithms capable of scaling
up to 1.7M images. In the multi-object discovery setting where multiple objects are sought in each image,
the proposed LOD is over 14% better in average precision (AP) than all other methods for datasets ranging
from 20K to 1.7M images. Using self-supervised features, we also show that the proposed method obtains
state-of-the-art UOD performance on Openlmages. Figure 1 shows some qualitative results of LOD on
the Open Images dataset. Our code is publicly available at https://github. com/huyvvo/LOD.


https://github.com/antoyang/just-ask
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Figure 1: Examples where our method (LOD) succeeds (left) and fails (right) to discover ground-truth
objects in the Open Images dataset. Ground-truth objects are in yellow, our predictions are in red. LOD
discovers both the larger objects (people in the first and sixth images, food items in the second and third
images) and the smaller ones (tennis balls and racquet in the first image). It may fail when objects are too
small or sometimes returns object parts instead of entire objects. Note that there is some ambiguity in
what parts of the image are labelled as ground truth objects. For example, the leaves in the bottom left
image are not labelled as objects, while the flowers are.

8.1.2 Localizing Objects with Self-Supervised Transformers and no Labels

Participants: Oriane Simeoni, Gilles Puy, Huy V. Vo, Simon Roburin, Spyros Gidaris,
Andrei Bursuc, Patrick Perez, Renaud Marlet, Jean Ponce.

Localizing objects in image collections without supervision can help to avoid expensive annotation
campaigns. In [29] we propose a simple approach to this problem, that leverages the activation features
of a vision transformer pre-trained in a self-supervised manner. Our method, LOST, does not require any
external object proposal nor any exploration of the image collection; it operates on a single image. Yet,
we outperform state-of-the-art object discovery methods by up to 8 CorLoc points on PASCAL VOC 2012.
We also show that training a class-agnostic detector on the discovered objects boosts results by another 7
points. Moreover, we show promising results on the unsupervised object discovery task. Figure 2 shows
some qualitative results of LOST on unsupervised single-object discovery, multi-object discovery and
object detection. The code to reproduce our results can be found at https://github.com/valeoai/L
0ST.

Figure 2: Three applications of LOST to unsupervised single-object discovery (left), multi-object discovery
(middle) and object detection (right). In the latter case, objects discovered by LOST are clustered into
categories, and cluster labels are used to train a classical object detector. Although large image collections
are used to train the underlying image representation and the detector, no annotation is ever used in the
pipeline.

8.1.3 VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning


https://github.com/valeoai/LOST
https://github.com/valeoai/LOST
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Participants: Adrien Bardes, Jean Ponce, Yann LeCun.

Recent self-supervised methods for image representation learning maximize the agreement between
embedding vectors produced by encoders fed with different views of the same image. The main challenge
is to prevent a collapse in which the encoders produce constant or non-informative vectors. In our
work [9], we introduce VICReg (Variance-Invariance-Covariance Regularization), a method that explicitly
avoids the collapse problem with two regularizations terms applied to both embeddings separately: (1)
a term that maintains the variance of each embedding dimension above a threshold, (2) a term that
decorrelates each pair of variables. Unlike most other approaches to the same problem, VICReg does
not require techniques such as: weight sharing between the branches, batch normalization, feature-wise
normalization, output quantization, stop gradient, memory banks, etc., and achieves results on par with
the state of the art on several downstream tasks. The architecture of VICReg is presented in Figure 3.
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Figure 3: VICReg: joint embedding architecture with variance, invariance and covariance regularization.
Given a batch of images I, two batches of different views X and X’ are mapped to embeddings Z and
Z'. The distance between two embeddings from the same image is minimized, the variance of each
embedding variable over a batch is maintained above a threshold, and the covariance between pairs of
embedding variables over a batch are attracted to zero, decorrelating the variables from each other.

8.1.4 XCiT: Cross-Covariance Image Transformers

Participants: Alaaeldin El-Nouby, Hugo Touvron, Mathilde Caron, Piotr Bojanowski,
Matthijs Douze, Armand Joulin, Ivan Laptev, Natalia Neverova,
Gabriel Synnaeve, Jakob Verbeek, Herve Jegou.

Following their success in natural language processing, transformers have recently shown much
promise for computer vision. The self-attention operation underlying transformers yields global in-
teractions between all tokens, i.e. words or image patches, and enables flexible modelling of image
data beyond the local interactions of convolutions. This flexibility, however, comes with a quadratic
complexity in time and memory, hindering application to long sequences and high-resolution images.
In [27] we propose a "transposed" version of self-attention that operates across feature channels rather
than tokens, where the interactions are based on the cross-covariance matrix between keys and queries.
The resulting cross-covariance attention (XCA) has linear complexity in the number of tokens, and allows
efficient processing of high-resolution images. Our cross-covariance image transformer (XCiT) is built
upon XCA. It combines the accuracy of conventional transformers with the scalability of convolutional
architectures. An overview of XCiT is presented in Figure 4. We validate the effectiveness and generality
of XCiT by reporting excellent results on multiple vision benchmarks, including image classification and
self-supervised feature learning on ImageNet- 1k, object detection and instance segmentation on COCO,
and semantic segmentation on ADE20k.
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Figure 4: Our XCiT layer consists of three main blocks, each preceded by LayerNorm and followed
by a residual connection: (i) the core cross-covariance attention (XCA) operation, (ii) the local patch
interaction (LPI) module, and (iii) a feed-forward network (FFN). By transposing the query-key interaction,
the computational complexity of XCA is linear in the number of data elements N , rather than quadratic
as in conventional self-attention.

8.1.5 JustAsk: Learning to Answer Questions from Millions of Narrated Videos

Participants: Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev,
Cordelia Schmid.

Recent methods for visual question answering rely on large-scale annotated datasets. Manual an-
notation of questions and answers for videos, however, is tedious, expensive and prevents scalability.
In [32], we propose to avoid manual annotation and generate a large-scale training dataset for video
question answering making use of automatic cross-modal supervision. We leverage a question generation
transformer trained on text data and use it to generate question-answer pairs from transcribed video
narrations. Given narrated videos, we then automatically generate the HowToVQA69M dataset with
69M video-question-answer triplets. Figure 5 presents some examples of generated samples. To handle
the open vocabulary of diverse answers in this dataset, we propose a training procedure based on a
contrastive loss between a video-question multi-modal transformer and an answer transformer. We intro-
duce the zero-shot VideoQA task and show excellent results, in particular for rare answers. Furthermore,
we demonstrate our method to significantly outperform the state of the art on MSRVTT-QA, MSVD-QA,
ActivityNet-QA and How2QA. Finally, for a detailed evaluation we introduce iVQA, a new VideoQA dataset
with reduced language biases and high-quality redundant manual annotations.

8.1.6 Thinking Fast and Slow: Efficient Text-to-Visual Retrieval with Transformers

Participants: Antoine Miech, Jean-Baptiste Alayrac, Ivan Laptev, Josef Sivic, An-
drew Zisserman.

Our objective in [23] is language-based search of large-scale image and video datasets. The mapping
of text and vision to a joint embedding space, a.k.a. dual encoders, is an attractive approach for this task
as it enables scalable and efficient retrieval for billions of images using approximate nearest neighbour
search. An alternative approach of using vision-text transformers with cross-attention gives considerable
improvements in accuracy over the joint embeddings, but is often inapplicable in practice for large-scale
retrieval given the cost of the cross-attention mechanisms required for each sample at test time. This work
combines the best of both worlds. We make the following three contributions. First, we equip transformer-
based models with a new fine-grained cross-attention architecture, providing significant improvements
in retrieval accuracy whilst preserving scalability. Second, we introduce a generic approach for combining
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Speech: Fold them in half again, to Speech: The sound is amzing on this

make a triangle. piano.
Generated Question: How do Generated Question: What kind
you make a triangle? of instrument is the sound of?
Generated Answer: Fold them Generated Answer: Piano

in half again

Figure 5: Two examples from our automatically generated HowToVQA69M dataset. Given videos with transcribed
narration, we leverage language models and cross-modal supervision to obtain large-scale VideoQA data.

a Fast dual encoder model with our Slow but accurate transformer-based model via distillation and
re-ranking. Finally, we validate our approach on the Flickr30K image dataset where we show an increase
in inference speed by several orders of magnitude while having results competitive to the state of the art.
We also extend our method to the video domain, improving the state of the art on the VATEX dataset. An
overview of our approach is presented in Figure 6.
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bike with a cat

A man rides a
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Figure 6: On the left, the Fast models, a.k.a dual encoders, independently process the input image and text to
compute a similarity score via a single dot product, which can be efficiently indexed and is thus amenable to large-
scale search. On the right, the Slow models, a.k.a cross-attention models, jointly process the input image and text
with cross-modal attention to compute a similarity score. Fast and indexable models are improved by Slow models
via distillation at training time (offline). Slow models are accelerated and improved with the distilled Fast approaches
using a re-ranking strategy at query time.

8.1.7 Segmenter: Transformer for Semantic Segmentation

Participants: Robin Strudel, Ricardo Garcia, Ivan Laptev, Cordelia Schmid.

Semantic Segmentation as a sequence-to-sequence problem with Vision Transformers. Image seg-
mentation is often ambiguous at the level of individual image patches and requires contextual information
to reach label consensus. In [30] we introduce Segmenter, a transformer model for semantic segmenta-
tion. In contrast to convolution-based methods, our approach allows to model global context already at
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the first layer and throughout the network. We build on the recent Vision Transformer (ViT) and extend it
to semantic segmentation. To do so, we rely on the output embeddings corresponding to image patches
and obtain class labels from these embeddings with a point-wise linear decoder or a mask transformer
decoder. We leverage models pre-trained for image classification and show that we can fine-tune them
on moderate sized datasets available for semantic segmentation. The linear decoder allows to obtain
excellent results already, but the performance can be further improved by a mask transformer generating
class masks. We conduct an extensive ablation study to show the impact of the different parameters, in
particular the performance is better for large models and small patch sizes. Segmenter attains excellent
results for semantic segmentation. It outperforms the state of the art on both ADE20K and Pascal Context
datasets and is competitive on Cityscapes. Figure 7 presents an overview of our method.
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Figure 7: Overview of our approach Segmenter. (Left) Encoder: The image patches are projected to a
sequence of embeddings and then encoded with a transformer. (Right) Decoder: A mask transformer
takes as input the output of the encoder and class embeddings to predict segmentation masks.

8.1.8 Synthetic Humans for Action Recognition from Unseen Viewpoints

Participants: Gul Varol, Ivan Laptev, Cordelia Schmid, Andrew Zisserman.

In [5] we use synthetic training data to improve the performance of human action recognition for
viewpoints unseen during training. Although synthetic data has been shown to be beneficial for tasks such
as human pose estimation, its use for RGB human action recognition is relatively unexplored. We make
use of the recent advances in monocular 3D human body reconstruction from real action sequences to
automatically render synthetic training videos for the action labels. We make the following contributions:
(i) we investigate the extent of variations and augmentations that are beneficial to improving performance
at new viewpoints. We consider changes in body shape and clothing for individuals, as well as more
action relevant augmentations such as non-uniform frame sampling, and interpolating between the
motion of individuals performing the same action; (ii) We introduce a new dataset, SURREACT, that allows
supervised training of spatio-temporal CNNs for action classification; (iii) We substantially improve the
state-of-the-art action recognition performance on the NTU RGB+D and UESTC standard human action
multi-view benchmarks; Finally, (iv) we extend the augmentation approach to in-the-wild videos from a
subset of the Kinetics dataset to investigate the case when only one-shot training data is available, and
demonstrate improvements in this case as well. Figure 8 illustrates our approach.

8.1.9 Differentiable Rendering with Perturbed Optimizers
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Figure 8: We estimate 3D shape from real videos and automatically render synthetic videos with action
labels. We explore various augmentations for motions, viewpoints, and appearance. Training temporal
CNNs with this data significantly improves the action recognition from unseen viewpoints.

Participants: Quentin Le Lidec, Ivan Laptev, Cordelia Schmid, Justin Carpentier.

Reasoning about 3D scenes from their 2D image projections is one of the core problems in computer
vision. Solutions to this inverse and ill-posed problem typically involve a search for models that best
explain observed image data. Notably, images depend both on the properties of observed scenes and on
the process of image formation. Hence, if optimization techniques should be used to explain images, it is
crucial to design differentiable functions for the projection of 3D scenes into images, also known as differ-
entiable rendering. Previous approaches to differentiable rendering typically replace non-differentiable
operations by smooth approximations, impacting the subsequent 3D estimation. In our work [21] we
take a more general approach and study differentiable renderers through the prism of randomized op-
timization and the related notion of perturbed optimizers. In particular, our work highlights the link
between some well-known differentiable renderer formulations and randomly smoothed optimizers,
and introduces differentiable perturbed renderers. We also propose a variance reduction mechanism to
alleviate the computational burden inherent to perturbed optimizers and introduce an adaptive scheme
to automatically adjust the smoothing parameters of the rendering process. We apply our method to 3D
scene reconstruction and demonstrate its advantages on the tasks of 6D pose estimation and 3D mesh
reconstruction. By providing informative gradients that can be used as a strong supervisory signal, we
demonstrate the benefits of perturbed renderers to obtain more accurate solutions when compared to
the state-of-the-art alternatives using smooth gradient approximations. An overview of our approach is
illustrated in Figure 9.

8.1.10 CCVS: Context-aware Controllable Video Synthesis

Participants: Guillaume Le Moing, Jean Ponce, Cordelia Schmid.



Project WILLOW 17

Perturbation Aggregation
along depth axis |

1] f |

=

~ /

Pixel maps with Perturbed Smooth
\ perturbed depth maps aggregated map

Y, \xwl

Figure 9: Tllustration of the differentiable perturbed aggregation process. The rasterization step is made
differentiable in a similar way.

Feeding machines with extensive video content, and teaching them to create new samples on their
own, may deepen their understanding of both the physical and social worlds. In [24] we introduces a
self-supervised learning approach to the synthesis of new video clips from old ones, with several new key
elements for improved spatial resolution and realism: It conditions the synthesis process on contextual
information for temporal continuity and ancillary information for fine control. The prediction model
is doubly autoregressive, in the latent space of an autoencoder for forecasting, and in image space for
updating contextual information, which is also used to enforce spatio-temporal consistency through a
learnable optical flow module. Adversarial training of the autoencoder in the appearance and temporal
domains is used to further improve the realism of its output. A quantizer inserted between the encoder
and the transformer in charge of forecasting future frames in latent space (and its inverse inserted between
the transformer and the decoder) adds even more flexibility by affording simple mechanisms for handling
multimodal ancillary information for controlling the synthesis process (e.g., a few sample frames, an
audio track, a trajectory in image space) and taking into account the intrinsically uncertain nature of the
future by allowing multiple predictions. Experiments with an implementation of the proposed approach
give very good qualitative and quantitative results on multiple tasks and standard benchmarks. Some
video samples synthesized by our approach can be found in Figure 10. Code, pretrained models, and
additional video samples are available at https://16lemoing.github.io/ccvs.

Figure 10: Qualitative samples on future video prediction from 5 input frames on the Kinetics dataset.

8.1.11 Estimating 3D Motion and Forces of Human-Object Interactions from Internet Videos


https://16lemoing.github.io/ccvs
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Participants: Zongmian Li, Jiri Sedlar, Justin Carpentier, Ivan Laptev, Nico-
las Mansard, Josef Sivic.

In [4], we introduce a method to automatically reconstruct the 3D motion of a person interacting with
an object from a single RGB video. As shown in Figure 11, our method estimates the 3D poses of the person
together with the object pose, the contact positions and the contact forces exerted on the human body.
The main contributions of this work are three-fold. First, we introduce an approach to jointly estimate
the motion and the actuation forces of the person on the manipulated object by modeling contacts and
the dynamics of the interactions. This is cast as a large-scale trajectory optimization problem. Second, we
develop a method to automatically recognize from the input video the 2D position and timing of contacts
between the person and the object or the ground, thereby significantly simplifying the complexity of
the optimization. Third, we validate our approach on a recent video+MoCap dataset capturing typical
parkour actions, and demonstrate its performance on a new dataset of Internet videos showing people
manipulating a variety of tools in unconstrained environments.

Figure 11: Our method automatically estimates the 3D motion and forces of object manipulation action
from a single video. Top row: sample frames from an input video. Bottom row: the estimated person-
object 3D motion and 6D contact forces (yellow arrows for linear forces, white arrows for torques).

8.2 Learning embodied representations

8.2.1 Online Learning and Control of Dynamical Systems from Sensory Input

Participants: Oumayma Bounou, Jean Ponce, Justin Carpentier.

Identifying an effective model of a dynamical system from sensory data and using it for future state
prediction and control is challenging. Recent data-driven algorithms based on Koopman theory are
a promising approach to this problem, but they typically never update the model once it has been
identified from a relatively small set of observation, thus making long-term prediction and control
difficult for realistic systems, in robotics or fluid mechanics for example. This paper introduces a novel
method for learning an embedding of the state space with linear dynamics from sensory data. Unlike
previous approaches, the dynamics model can be updated online and thus easily applied to systems with
non-linear dynamics in the original configuration space. Our approach proposed in [11] is evaluated
empirically on several classical dynamical systems and sensory modalities, with good performance on
long-term prediction and control. An overview of our approach is illustrated in Figure 12.
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Figure 12: General overview of the proposed pipeline: the measurements [dy, ..., dr] are first encoded
with @y to codes [z, ..., zr]. Only the m first codes are used to estimate the linear system dynamics A.
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8.2.2 Goal-Conditioned Reinforcement Learning with Imagined Subgoals

Participants: Elliot Chane-Sane, Cordelia Schmid, Ivan Laptev.

Goal-conditioned reinforcement learning endows an agent with a large variety of skills, but it often
struggles to solve tasks that require more temporally extended reasoning. In [13], we propose to incorpo-
rate imagined subgoals into policy learning to facilitate learning of complex tasks. Imagined subgoals
are predicted by a separate high-level policy, which is trained simultaneously with the policy and its
critic. This high-level policy predicts intermediate states halfway to the goal using the value function as a
reachability metric. We don't require the policy to reach these subgoals explicitly. Instead, we use them to
define a prior policy, and incorporate this prior into a KL-constrained policy iteration scheme to speed
up and regularize learning. Imagined subgoals are used during policy learning, but not during test time,
where we only apply the learned policy. We evaluate our approach on complex robotic navigation and
manipulation tasks and show that it outperforms existing methods by a large margin. Figure 13 presents
an illustration of the approach.
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Figure 13: Illustration of the KL-regularized policy learning using imagined subgoals. (Left): The policy
fails to reach a distant goal, yet it can reach a closer subgoal. Our approach automatically generates
imagined subgoals for a task and uses such subgoals to direct the policy search during training. (Right):
At test time, the resulting flat policy can reach arbitrarily distant goals without relying on subgoals.

8.2.3 Single-view robot pose and joint angle estimation via render & compare

Participants: Yann Labbe, Justin Carpentier, Mathieu Aubry, Josef Sivic.
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In [20], we introduce RoboPose, a method to estimate the joint angles and the 6D camera-to-robot
pose of a known articulated robot from a single RGB image. This is an important problem to grant
mobile and itinerant autonomous systems the ability to interact with other robots using only visual
information in non-instrumented environments, especially in the context of collaborative robotics. It
is also challenging because robots have many degrees of freedom and an infinite space of possible
configurations that often result in self-occlusions and depth ambiguities when imaged by a single camera.
The contributions of this work are three-fold. First, we introduce a new render & compare approach for
estimating the 6D pose and joint angles of an articulated robot that can be trained from synthetic data,
generalizes to new unseen robot configurations at test time, and can be applied to a variety of robots.
Second, we experimentally demonstrate the importance of the robot parametrization for the iterative
pose updates and design a parametrization strategy that is independent of the robot structure. Finally,
we show experimental results on existing benchmark datasets for four different robots and demonstrate
that our method significantly outperforms the state of the art. Code and pre-trained models are available
on the project webpage https://www.di.ens.fr/willow/research/robopose/. The method is illustrated in
Figure 14.

RGB image

RoboPose

Joint angle
measurements 3 RoboPose

Joint angles

RGB image r

Figure 14: RoboPose. (a) Given a single RGB image of a known articulated robot in an unknown configu-
ration (left), RoboPose estimates the joint angles and the 6D camera-to-robot pose (rigid translation and
rotation) providing the complete state of the robot within the 3D scene, here illustrated by overlaying the
articulated CAD model of the robot over the input image (right). (b) When the joint angles are known at
test-time (e.g. from internal measurements of the robot), RoboPose can use them as an additional input
to estimate the 6D camera-to-robot pose to enable, for example, visually guided manipulation without
fiducial markers.

8.2.4 Airbert: In-domain Pretraining for Vision-and-Language Navigation

Participants: Pierre-Louis Guhur, Makarand Tapaswi, Shizhe Chen, Ivan Laptev,
Cordelia Schmid.

Vision-and-language navigation (VLN) aims to enable embodied agents to navigate in realistic envi-
ronments using natural language instructions. Given the scarcity of domain-specific training data and the
high diversity of image and language inputs, the generalization of VLN agents to unseen environments
remains challenging. Recent methods explore pretraining to improve generalization, however, the use
of generic image-caption datasets or existing small scale VLN environments is suboptimal and results
in limited improvements. In [16], we introduce BnB, a large scale and diverse in-domain VLN dataset.
Figure 15 illustrates our approach to the generation of path-instruction pairs using BnB. We further
propose a shuffling loss that improves the learning of temporal order inside PI pairs. We use BnB to
pretrain our Airbert model that can be adapted to discriminative and generative settings and show that
it outperforms state of the art for Room-to-Room (R2R) navigation and Remote Referring Expression
(REVERIE) benchmarks. Moreover, our in-domain pretraining significantly increases performance on
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a challenging few-shot VLN evaluation, where we train the model only on VLN instructions from a few
houses.

-3

Living room Open kitchen
opening to the with seating (no caption)
garden for 4

A path-instruction pair is created by choosing image-caption pairs
from a BnB listing

A Captionless
insertion

Concatenating captions
Living room opening to the garden, open kitchen with seating for 4 and bedroom desk

Instruction rephrasing (fill-in-the-blank templates)
Walk between living room opening to the garden and make a sharp turn right. Walk
down open kitchen with seating for 4 and stop on bedroom desk

Instruction generation (using a speaker-like model)
Exit the living room and walk through the bedroom. Stop in front of the two chairs,

Figure 15: Building path-instruction pairs from the BnB datasets is significantly improving performance
for vision-language-and-navigation tasks in unseen environments.

8.2.5 History Aware Multimodal Transformer for Vision-and-Language Navigation

Participants: Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, Ivan Laptev.

Vision-and-language navigation (VLN) aims to build autonomous visual agents that follow instruc-
tions and navigate in real scenes. To remember previously visited locations and actions taken, most
approaches to VLN implement memory using recurrent states. In this work [14], we introduce a History
Aware Multimodal Transformer (HAMT) to incorporate a long-horizon history into multimodal decision
making. HAMT efficiently encodes all the past panoramic observations via a hierarchical vision trans-
former (ViT), which first encodes individual images with ViT, then models spatial relation between images
in a panoramic observation and finally takes into account temporal relation between panoramas in the
history. It, then, jointly combines text, history and current observation to predict the next action. We
first train HAMT end-to-end using several proxy tasks including single step action prediction and spatial
relation prediction, and then use reinforcement learning to further improve the navigation policy. HAMT
achieves new state of the art on a broad range of VLN tasks, including VLN with fine-grained instructions
(R2R, RxR), high-level instructions (R2R-Last, REVERIE), dialogs (CVDN) as well as long-horizon VLN
(R4R, R2R-Back). We demonstrate HAMT to be particularly effective for navigation tasks with longer
trajectories. Figure 16 presents qualitative results of our method.

8.2.6 Differentiable simulation for physical system identification



22 Inria Annual Report 2021

step 0 panorama view

£

step 4 pancrama view

Ty

Instruction: “Walk straight until you get to a room that has a black table on the left with flowers on it.
Wait there.”

Figure 16: Example results of HAMT in Room-to-Room Vision-and-Language Navigation dataset. HAMT
is able to align the current observations with the instruction to correctly perform actions.

Participants: Quentin Le Lidec, Igor Kalevatykh, Ivan Laptev, Cordelia Schmid,
Justin Carpentier.

Simulating frictional contacts remains a challenging research topic in robotics. Recently, differentiable
physics emerged and has proven to be a key element in model-based Reinforcement Learning (RL) and
optimal control fields. However, most of the current formulations deploy coarse approximations of the
underlying physical principles. Indeed, the classic simulators loose precision by casting the Nonlinear
Complementarity Problem (NCP) of frictional contact into a Linear Complementarity Problem (LCP)
to simplify computations. Moreover, such methods deploy non-smooth operations and cannot be
automatically differentiated. In [3], we propose (i) an extension of the staggered projections algorithm for
more accurate solutions of the problem of contacts with friction. Based on this formulation, we introduce
(ii) a differentiable simulator and an efficient way to compute the analytical derivatives of the involved
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optimization problems. Finally, (iii) we validate the proposed framework with a set of experiments to
present a possible application of our differentiable simulator. In particular, using our approach we
demonstrate accurate estimation of friction coefficients and object masses both in synthetic and real
experiments. An overview of our approach is presented in Figure 17.
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Figure 17: Overview of our differentiable simulator. The differentiability of the simulator allows to
integrate it into a larger learning architecture and infer physical parameters such as friction coefficients
and mass M of the objects, from real trajectories of these objects.

8.2.7 Leveraging Randomized Smoothing for Optimal Control of Nonsmooth Dynamical Systems

Participants: Quentin Le Lidec, Louis Montaut, Ivan Laptev, Cordelia Schmid,
Justin Carpentier.

Optimal Control (OC) algorithms such as Differential Dynamic Programming (DDP) take advantage of
the derivatives of the dynamics to efficiently control physical systems. Yet, in the presence of nonsmooth
dynamical systems, such class of algorithms are likely to fail due, for instance, to the presence of dis-
continuities in the dynamics derivatives or because of non-informative gradient during the solving. On
the contrary, Reinforcement Learning (RL) algorithms have shown better empirical results in scenarios
exhibiting non-smooth effects (contacts, frictions, etc). Our approach in [44] leverages recent works
on Randomized Smoothing (RS) to tackle non-smoothness issues commonly encountered in Optimal
Control, and provides key insights on the interplay between RL and OC through the prism of RS methods,
see Figure 18. This naturally leads us to introduce the Randomized Differential Dynamic Programming
(R-DDP) algorithm accounting for deterministic but non-smooth dynamics in a very sample-efficient
way. The experiments demonstrate that our method is able to solve classic robotic problems with dry
friction and frictional contacts, where classical OC algorithms are likely to fail and RL algorithms require
in practice a prohibitive number of samples to find an optimal solution.

8.2.8 Implicit Differential Dynamic Programming

Participants: Wilson Jallet, Nicolas Mansard, Justin Carpentier.

Over the past decade, the Differential Dynamic Programming (DDP) method has gained in maturity
and popularity within the robotics community. Several recent contributions have led to the integration of
constraints within the original DDP formulation, hence enlarging its domain of application while making
it a strong and easy-to-implement competitor against alternative methods of the state of the art such as
collocation or multiple-shooting approaches. Yet, and similarly to its competitors, DDP remains unable
to cope with high-dimensional dynamics within a receding horizon fashion, such as in the case of online
generation of athletic motion on humanoid robots. In our work [18], we propose to make a step toward
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Perturbation
torque

Figure 18: Illustration of randomized smoothing effects on the front left leg of the Solo robot.

this objective by reformulating classic DDP as an implicit optimal control problem, allowing the use of
more advanced integration schemes such as implicit or variational integrators. To that end, we introduce
a primal-dual proximal Lagrangian approach capable of handling dynamic and path constraints in a
unified manner, while taking advantage of the time sparsity inherent to optimal control problems. We
show that his reformulation enables us to relax the dynamics along the optimization process by solving it
inexactly: far from the optimality conditions, the dynamics are only partially fulfilled, but continuously
enforced as the solver gets closer to the local optimal solution. This inexactness enables our approach
to robustly handle large time steps (100 ms or more), unlike other state-of-the-art DDP solvers. We

experimentally validate our approach inh different robotic scenarios. Some results of our method are
illustrated in Figure 19.
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Figure 19: Primal/dual convergence graphs of the solver for a “bowing" motion on a Solo-8 quadruped

with four contact points on the ground. The dynamical equations are overconstrained, yet the solver
quickly finds a feasible optimal trajectory.

8.2.9 Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

Participants: Eloise Berthier, Justin Carpentier, Francis Bach.

Alinear quadratic regulator can stabilize a nonlinear dynamical system with a local feedback controller
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around a linearization point, while minimizing a given performance criteria. An important practical
problem is to estimate the region of attraction of such a controller, that is, the region around this point
where the controller is certified to be valid. This is especially important in the context of highly nonlinear
dynamical systems. In [10] we propose two stability certificates that are fast to compute and robust when
the first, or second derivatives of the system dynamics are bounded. Associated with an efficient oracle to
compute these bounds, this provides a simple stability region estimation algorithm compared to classic
approaches of the state of the art. We experimentally validate that it can be applied to both polynomial
and non-polynomial systems of various dimensions, including standard robotic systems, for estimating
region of attractions around equilibrium points, as well as for trajectory tracking. This work is a joint
contribution between Willow and Sierra teams.

8.3 Image restoration and enhancement

8.3.1 Lucas-Kanade Reloaded: End-to-End Super-Resolution from Raw Image Bursts

Participants: Bruno Lecouat, Jean Ponce, Julien Mairal.

In [22] we address the problem of reconstructing a high-resolution image from multiple lower-
resolution snapshots captured from slightly different viewpoints in space and time. Key challenges for
solving this super-resolution problem include (i) aligning the input pictures with sub-pixel accuracy, (ii)
handling raw (noisy) images for maximal faithfulness to native camera data, and (iii) designing/learning
an image prior (regularizer) well suited to the task. We address these three challenges with a hybrid
algorithm building on the insight from Wronski et al. that aliasing is an ally in this setting, with parameters
that can be learned end to end, while retaining the interpretability of classical approaches to inverse
problems. The effectiveness of our approach is demonstrated on synthetic and real image bursts, setting
a new state of the art on several benchmarks and delivering excellent qualitative results on real raw
bursts captured by smartphones and prosumer cameras. Figure 20 presents some example results of our
method.

“ ; 2

Output of Dcraw Camera’s ISP (hi-quality jpeg) Joint demosalck+smgle 1mage SR Proposed method
Figure 20: x4 super-resolution results obtained from a burst of 30 raw images acquired with a handheld
Panasonic Lumix GX9 camera at 12800 ISO for the top image and 25600 for the bottom image. Dcraw

performs basic demosaicking.
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9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

9.1.1 MSR-Inria joint lab: Image and video mining for science and humanities (Inria)

Participants: Yana Hasson, Ivan Laptev, Jean Ponce, Josef Sivic, Dimitri Zhukov,
Cordelia Schmid.

This collaborative project brings together the WILLOW with MSR researchers in Zurich and elsewhere.
The concept builds on several ideas articulated in the 2020 Science report, including the importance
of data mining and machine learning in computational science. Rather than focusing only on natural
sciences, however, we propose here to expand the breadth of e-science to include humanities and social
sciences. The project we propose will focus on fundamental computer science research in computer
vision and machine learning, and its application to archaeology, cultural heritage preservation, environ-
mental science, and sociology, and it will be validated by collaborations with researchers and practitioners
in these fields.

In 2018 a new agreement has been signed with a new focus on video understanding for personal
assistants. The scientific objectives are to develop models, representations and learning algorithms for (i)
automatic understanding of task-driven complex human activities from videos narrated with natural
language in order to (ii) give people instructions in a new environment via an augmented reality device
such as the Microsoft HoloLens. Besides the clear scientific interest of automatically understanding
human activities in video streams, the main high-impact motivation of this project it to develop virtual
assistants that may guide a child through simple games to improve his/her manipulation and language
skills; help an elderly person to achieve everyday tasks; or facilitate the training of a new worker for
highly-specialized machinery maintenance.

9.1.2 Louis Vuitton/ENS chair on artificial intelligence

Participants: Ivan Laptev, Jean Ponce, Josef Sivic.

The scientific chair Louis Vuitton - Ecole normale supérieure in Artificial Intelligence has been created
in 2017 and inaugurated on April 12, 2018 by the ENS Director Marc Mézard and the LV CEO Michael
Burke. The goal of the chair is to establish a close collaboration between LV and ENS in the area of
Artificial Intelligence. The chair enjoys the generous annual contribution of 200K Euros provided by LV in
support of research activities in statistical learning and computer vision. In particular, the chair supports
the costs of researchers, students, missions, computational resources as well as seminars and meetings,
including the two days of meeting annually organized by LV and ENS. During 2020 ENS and LV have
organized several joint meetings with the participation of researchers from SIERRA and WILLOW teams.
The chair has also supported the hiring of one PhD student at the WILLOW team, missions to conferences
and international research labs as well as data collection for research projects. In 2020 the chair has been
extended to the next three-year period until 2023.

9.2 Bilateral grants with industry

9.2.1 Facebook Al Research Paris: Weakly-supervised interpretation of image and video data (Inria)

Participants: Jean Ponce, Minsu Cho, Ivan Laptev, Josef Sivic.

We will develop in this project (Facebook gift) new models of image and video content, as well as new
recognition architectures and algorithms, to address the problem of understanding the visual content
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of images and videos using weak forms of supervision, such as the fact that multiple images contain
instances of the same objects, or the textual information available in television or film scripts.

9.2.2 Google: Multimodal video representation with cross-modal learning (Inria)

Participants: Ivan Laptev.

The proposed project (Google gift) aims to learn a detailed correspondence between the text and
the visual content of the video from large-scale unlabeled video collections. It will significantly extend
current representations which rely on frame/clip based features and at best learn correlation based on
transformers, but fail to provide the in-depth understanding of spatial and temporal structure of the
visual content in the video. This will enable advanced multimodal video representations and hence will
improve downstream tasks such as video captioning, search and summarization. The main challenge of
the project is to build new state-of-the-art models and methods for self-supervised learning based on
large-scale but imprecise textual information obtained from video transcripts and other video metadata.
The project includes the collection of a dataset allowing a detailed analysis of the visual representation by
extending the HowTo100Million dataset with manual annotations.

9.2.3 Google: Structured learning from video and natural language (Inria)

Participants: Simon Lacoste-Julien, Ivan Laptev, Josef Sivic.

People can easily learn how to change a flat tire of a car or assemble an IKEA shelve by observing other
people doing the same task, for example, by watching a narrated instruction video. In addition, they can
easily perform the same task in a different context, for example, at their home. This involves advanced
visual intelligence abilities such as recognition of objects and their function as well as interpreting
sequences of human actions that achieve a specific task. However, currently there is no artificial system
with a similar cognitive visual competence. The goal of this proposal is to develop models, representations
and learning algorithms for automatic understanding of complex human activities from videos narrated
with natural language.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Associate team GAYA

Participants: Jean Ponce, Cordelia Schmid.

GAYA is a joint research team bringing together two Inria project-teams (Thoth, Grenoble and WIL-
LOW, Paris) and Carnegie Mellon University, USA. It focuses on two research themes: (i) semantic
structured interpretation of videos, and (ii) studying the geometric properties of object shapes to enhance
state-of-the-art object recognition approaches.

Interpreting videos semantically in a general setting, involving various types of video content like
home video clips, news broadcasts, feature films, which contain a lot of clutter, non-rigid motion,
many “actors” performing actions, person-object and person-person interactions, varying viewpoints, is
challenging. This task is being examined increasingly over the past decade, with the availability of large
video resources, e.g., YouTube. Despite this progress, an effective video representation for recognizing
actions is still missing. To address this critical challenge, we propose a joint optimization framework,
wherein we learn the video representation and also develop models for action recognition. Specifically,
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we aim to exploit the spatio-temporal relations among pixels in a video through graphical models and
novel deep learning feature representations.

The second research theme explores geometric aspects of computer vision, in particular how to
model three-dimensional objects from their two-dimensional projections, and how the appearance of
these objects evolves with changes in viewpoint. Beyond its theoretical interest, this work is critical for
developing object recognition algorithms that take into account the three-dimensional nature of the
visual world and go beyond the template-matching approaches dominant today. Duality is an important
concept in this area, and we are investigating its application to the construction of visual hulls as well
as the characterization of the topology of image contours using the Gauss map. Existing results are
essentially limited to the Euclidean setting, and we are investigating their generalization to the general
projective case.

Partners: CMU (Deva Ramanan, Martial Hebert, Abhinav Gupta, Pavel Tokmakov), INRIA Thoth
(Karteek Alahari).

10.2 International research visitors

Most of our international visits in 2021 have been cancelled due to the COVID-19 pandemic. We have
nevertheless continued close remote collaboration with universities and companies including CTU in
Prague (J. Sivic), DeepMind in London (J.-B. Alayrac, A. Miech, A. Zisserman), POSTECH in Pohang
(M. Cho), Xi’an Jiaotong University in Xi’an (J. Sun) and Yonsei University in Seoul (B. Ham, B. Kim).
Moreover, J. Ponce spends most of his time at New York University.

10.3 European initiatives

10.3.1 IMPACT: Intelligent machine perception

Participants: Joaef Sivic, Jean Ponce, Ivan Laptev.

IMPACT is a collaborative project with Czech Technical University, Center for Robotics, Informatics
and Cybernetics (CIIRC) (2017-2023). The IMPACT project focuses on fundamental and applied research
in computer vision, machine learning and robotics to develop machines that learn to perceive, reason,
navigate and interact with complex dynamic environments. For example, people easily learn how to
change a flat tire of a car or perform resuscitation by observing other people doing the same task. This
involves advanced visual intelligence abilities such as interpreting sequences of human actions that
manipulate objects to achieve a specific task. Currently, however, there is no artificial system with a similar
level of cognitive visual competence. Breakthrough progress in intelligent machine perception will have
profound implications on our everyday lives as well as science and commerce, with smart assistive robots
that automatically learn new skills from the Internet, safer cars that autonomously navigate in difficult
changing conditions, or intelligent glasses that help people navigate never seen before environments.

10.4 National initiatives

10.4.1 PRAIRIE

Participants: Ivan Laptev, Jean-Paul Laumond, Jean Ponce, Cordelia Schmid.

The Prairie Institute (PaRis Al Research InstitutE) is one of the four French Institutes for Interdisci-
plinary Artificial Intelligence Research (3IA), which were created as part of the national French initiative
on Al announced by President Emmanuel Macron on May 29, 2018. It brings together five academic
partners (CNRS, Inria, Institut Pasteur, PSL University, and University of Paris) as well as 17 industrial
partners, large corporations which are major players in Al at the French, European and international
levels, as well as 45 Chair holders, including four of the members of WILLOW (Laumond, Laptev, Ponce,
Sivic). Ponce is the scientific director of PRAIRIE.
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10.4.2 VideoPredict: Predicting future video content

Participants: Cordelia Schmid, Jean Ponce.

Predicting future video content is a challenging problem with high potential impact in downstream
tasks such as self-driving cars and robotics, but also much promise for the learning process itself, from self-
supervised learning to data augmentation. Existing approaches range from predicting future actions with
semantic labels to creating realistic renderings of future frames. Most of them use straight predictions
from convolutional features of previous frames. We propose instead to model the causality effects
involved in the video formation process, and disentangle motion and appearance factors. This will result
in better prediction, but also and maybe more importantly in a better, more structured understanding of
the video content, leading to explicable and interpretable results, and eventually to more trustworthy
learning systems. The German and French partners are, respectively, experts in machine learning and
computer vision, with complementary research threads in causality and disentangled data models on the
one hand, and video understanding and action recognition on the other hand, that are ideally suited for
this collaborative project

11 Dissemination

11.1 Promoting scientific activities
11.1.1 Scientific events: organisation

¢ 1. Laptev, co-organizer of Machines Can See on-line summit on computer vision and machine
learning, July 2021.

¢ J.P. Laumond, main organizer of the conference Mythes et machines - Robotique et Intelligence
Artificielle : penser la technologie aujourd’hui, Académie des Sciences, Paris, November 2021.

¢ ]J.P. Laumond, main organizer of the workshop Robotics and Optimal Control, IHP Paris, December
2021.

¢ J. Ponce, co-organizer of the French-German workshop on Machine Learning, May 10-11, 2021.
¢ J. Ponce, co-organizer of PRAIRIE workshop, Paris, Nov. 10, 2021.

¢ C. Schmid, co-organizer of the workshop, Structured Representations for Video Understanding, in
conjunction with ICCV 2021, virtual, October 2021.

¢ C. Schmid was co-organizer of the Ellis Workshop for Computer Vision and Machine Learning,
virtual, July 2021.

11.1.2 Scientific events: selection

Area chairs
* JEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021 (I. Laptev).
¢ International Conference on Computer Vision (ICCV), 2021 (C. Schmid).

¢ Conference and Workshop on Neural Information Processing Systems (NeurIPS), 2021 (C. Schmid).
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Member of the conference program committees / Reviewer

¢ IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021 (S. Chen, A. El-Nouby,
P-L. Guhur, Y. Hasson, Y. Labbe, J. Sivic, R. Strudel, V.-H. Vo).

¢ International Conference on Computer Vision (ICCV), 2021 (S. Chen, A. El-Nouby, Y. Hasson,
Y. Labbe, J. Sivic).

¢ International Conference on Learning Representations (ICLR), 2021 (R. Strudel).
¢ International Conference on Intelligent Robots and Systems (IROS), 2021 (Y. Labbe).

¢ International Conference on Robotics and Automation (ICRA), 2021 (M. Alakuijala).

11.1.3 Journal

Member of the editorial boards
¢ International Journal of Computer Vision (I. Laptev, J. Ponce, J. Sivic).

¢ Foundations and Trends in Computer Graphics and Vision (J. Ponce).

Reviewer - reviewing activities
¢ International Journal of Computer Vision (T. Eboli).

» JEEE Transactions on Pattern Analysis and Machine Intelligence (T. Eboli, V.-H. Vo).

11.1.4 Invited talks
e M. Alakuijala, Invited talk, MIPT-UGA young researchers workshop, July 2021.
e J. Carpentier, Invited talk, Bordeaux Robotics Workshop, Bordeaux, Janurary 2021.
¢ J. Carpentier, Invited talk, Covariant, Los Angeles, June 2021.
¢ J. Carpentier, Invited talk, Toyota Research Institute, Boston, August 2021

¢ J. Carpentier, Pinocchio: a universal framework for robotics and beyond, Pal Robotics, Barcelona,
October 2021.

¢ J. Carpentier, Invited talk, DEFROST, INRIA Lille, November 2021.

¢ J. Carpentier, Invited talk, IRCOM conference, Iran, November 2021.

¢ J. Carpentier, Invited talk, Prairie Workshop, Paris, November 2021.

¢ S. Chen, Invited talk at ICCV 2021 Workshop Human Interaction for Robotic Navigation
e 1. Laptev, Invited talk, CVPR Workshop Long-form Video Understanding, June 2021.

¢ 1. Laptev, Invited talk, ELLIS Workshop, July 2021.

¢ I. Laptev, Invited talk, RAAI Summer School, July 2021.

¢ I. Laptev, Invited talk, Conseild Etat, July 2021.

¢ 1. Laptev, Invited speaker, International Conference on Information Technology and Nanotechnol-
ogy, September 2021.

¢ 1. Laptev, Invited talk, INRIA Grenoble, September 2021.

¢ 1. Laptev, Invited talk, Ecole navale, Brest, October 2021.
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¢ J. Ponce, Invited talk, Belgian Al week, March 2021.

¢ J. Ponce, Invited talk, Idemia, Paris, 2021.

¢ J. Ponce, Invited talk, NYU Capstone seminar, 2021.

¢ J. Ponce, Invited talk, Ecole navale, Brest, October 2021.

¢ C. Schmid, Invited speaker at Prairie workshop, Paris, November 2021.
¢ C. Schmid, Keynote ACM Multimedia 2021, virtual, October 2021.

¢ C. Schmid, Invited speaker at 4th Workshop on Closing the Loop Between Vision and Language, in
conjunction with ICCV’21, virtual, October 2021.

¢ C. Schmid, Invited speaker at 2nd Autonomous Vehicle Vision Workshop, in conjunction with
ICCV’21, virtual, October 2021.

¢ C. Schmid, Invited speaker at Workshop on Computer Vision for the Factory Floor, in conjunction
with ICCV’21, virtual, October 2021.

¢ C. Schmid, Invited lecture at Pairie artificial intelligence summer school (PAISS), virtual, July 2021.

¢ C. Schmid, Invited speaker at Workshop on Large-Scale Holistic Video Understanding, in conjunc-
tion with CVPR’21, virtual, June 2021.

¢ C. Schmid, Invited speaker at Frontiers of Monocular 3D Perception workshop, in conjunction with
CVPR’21, virtual, June 2021.

¢ C. Schmid, Invited speaker at 2nd Comprehensive Tutorial in Video Modeling, in conjunction with
CVPR’21, virtual, June 2021.

¢ C. Schmid, Invited speaker at French-German Machine Learning Symposium, virtual, May 2021.
¢ C. Schmid, Turing lecture, virtual, May 2021.

¢ C.Schmid, Talk at Academie des technologies, virtual, March 2021.

¢ C.Schmid, Talk at EPFL Center of Intelligent Systems - CIS Colloquium, virtual, March 2021.

e J. Sivic, Invited talk, 2nd International Workshop on Al for Robotics Naver Labs Europe, 2021.

e J. Sivic, Invited talk, ICCV Workshop on Structured Representations for Video Understanding, 2021.
e J. Sivic, Invited talk, Al Journey Conference, Moscow, 2021;

e J. Sivic, Invited seminar, ELLIS Unit Nijmegen, NL 2021.

e J. Sivic, Invited seminar, Samsung Al Center, Cambridge, UK 2021.

¢ J. Sivic, Invited seminar, ANITI Toulouse Al Institute seminar, 2021.

¢ V.-H. Vo, Invited talk, ENPC, December 2021.

¢ A.Yang, Invited talk, CVPR Holistic Video Understanding Workshop, June 2021.
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11.1.5 Leadership within the scientific community

Member, advisory board, Computer Vision Foundation (J. Sivic).

Board Member Deputy, European Laboratory for Learning and Intelligent Systems (J. Sivic).
Global Member of the Bavarian Al Council (J. Sivic).

Member of TPAMI EIC search committee (C. Schmid).

Helmholtz award committee (C. Schmid).

Member of Technical Activities Board for International Foundation of Robotics Research (C. Schmid).
Member of Scientific Advisory Committee of the Helmholtz Al Cooperation Unit (C. Schmid).
Member of scientific advisory board for the German Competence Centers for Al Research (C. Schmid).
Director of Ellis program on Computer Vision and Machine Learning (C. Schmid).

Member of board of directors of the Computer Vision Foundation (CVF) (C. Schmid)..

Member of the PAMI-TC executive committee (C. Schmid).

Member of the PAMI-TC awards committee (C. Schmid).

11.1.6 Scientific expertise

J. Ponce, coordinator of the Al theme for the joint French-American Committee on Science and
Technology, 2018-.

I. Laptev, head of scientific board at VisionLabs, 2019-.

11.1.7 Research administration

L]

Member, INRIA Cordi-S and postdoc selection committee, 2019— (1. Laptev).

Member, INRIA Commission des emplois scientifiques (CES), 2019— (1. Laptev).

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

L]

Master: M. Aubry, K. Alahari, I. Laptev and J. Sivic "Introduction to computer vision", M1, Ecole
normale supérieure, 36h.

Master: 1. Laptev, J. Ponce, J. Sivic and C. Schmid "Object recognition and computer vision", M2,
Ecole normale superieure, and MVA, Ecole normale superieure Paris-Saclay, 36h.

Master: J-P. Laumond and J. Carpentier, "Robotics", M1 MPRI, Ecole normale supérieure and Ecole
normale superieure Paris-Saclay, 48h.

Master: J. Ponce, Introduction to computer vision to medical students, 15h.

Master: J. Ponce, Introduction to computer vision, NYU.

Master: 1. Laptev, Fundamentals of Machine Learning, Master IASD, PSL University, 9h.
Master: J-P. Laumond, "Robotics", Ecole des Mines de Paris, 4h.

P-L. Guhur, Reinforcement Learning, EPITA.

P-L. Guhur, Data Science for Business, EM Lyon.
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A. Yang, Teacher Assistant, Differential Equations, Sorbonne, 38h.
A. Yang, Teacher Assistant, Differential Equations, Sorbonne, 38h.

J. Sivic, Three lectures (3 x 1.5h) in the 3D computer vision class of V. Hlavac at Charles University
in Prague.

J. Sivic, Lecture on multi-modal self-supervised learning, Eastern European Summer School, 2021.

11.2.2 Supervision

L]

PhD in progress : Nicolas Chahine, started in Aug 2021, J. Ponce.
PhD in progress : Matthieu Futeral-Peter, started in Nov 2021, I. Laptev and C. Schmid.
PhD in Progress : Wilson Jallet, started in March 2021, J. Carpentier.

PhD in progress : Guillaume Le Moing, “Learning robust representations for improved visual
understanding”, started in Nov 2020, J. Ponce and C. Schmid.

PhD in progress : Antoine Bambade, started in Oct. 2020, J. Carpentier, A. Taylor (Sierra) and J.
Ponce.

PhD in progress : Adrien Bardes, started in Oct. 2020, J. Ponce.
PhD in progress : Oumayma Bounou, started in Oct. 2020, J. Ponce and J. Carpentier.

PhD in progress : Antoine Yang, “Multimodal video representation with cross-modal learning”,
started in Oct. 2020, I. Laptev, C. Schmid, J. Sivic.

PhD in progress : Elliot Chane-Sane, “Learning long-horizon robotics manipulations”, started in
Oct. 2020, I. Laptev and C. Schmid.

PhD in progress : Yann Dubois De Mont-Marin, started in Sept. 2020, J.-P. Laumond.

PhD in progress : Alaaeldin Ali, “Object centric visual retrieval in the wild”, started in Aug. 2020, I.
Laptev.

PhD in progress : Vo Van Huy, started in Dec 2018, J. Ponce.

PhD in progress : Pierre-Louis Guhur, “Learning Visual Language Manipulation”, started in Oct
2019, I. Laptev and C. Schmid.

PhD in progress : Aamr El Kazdadj, started in Oct 2019, J. Carpentier and J. Ponce.
PhD in progress : Bruno Lecouat, started in Sept 2019, J. Ponce and J. Mairal (Inria Grenoble).

PhD in progress : Robin Strudel, “Learning and transferring complex robot skills from human
demonstrations”, started in Oct 2018, 1. Laptev, C. Schmid and J. Sivic.

PhD in progress : Yann Labbe, “Generalizing robotic sensorimotor skills to new tasks and environ-
ments”, started in Oct 2018, J. Sivic and I. Laptew.

PhD in progress : Minttu Alakuijala, started in Feb 2019, J. Ponce and C. Schmid.
PhD in progress : Thomas Eboli, graduated in Sept 2021, J. Ponce.

PhD in progress : Zongmian Li, “Learning to manipulate objects from instructional videos”, started
in Oct 2017, I. Laptev, J. Sivic and N. Mansard (LAAS/CNRS, Toulouse).

PhD in progress : Yana Hasson, “Reconstruction and recognition of hand-object manipulations”,
graduated in Oct 2021, I. Laptev and C. Schmid.

PhD in progress : Alexander Pashevich, “Learning to grasp”, Graduated in Sept 2021, C. Schmid.
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¢ PhD in progress : Ronan Riochet, “Unsupervised Learning of Intuitive Physics from Videos”, gradu-
ated in June 2021, E. Dupoux, I. Laptev and J. Sivic.

e PhD in progress : Dmitry Zhukov, “Learning from instruction videos for personal assistants”,
graduated in Dec 2021, I. Laptev and J. Sivic.

11.2.3 Juries

¢ PhD thesis committee:

— W. Liu, Swiss Federal Institute of Technology Lausanne, 2021 (I. Laptev, rapporteur).
- V. Sydorov, Université Grenoble Alpes, 2021 (I. Laptev, rapporteur).

- Y. Wang, Université Cote d’Azur, 2021 (I. Laptev, rapporteur).

- A. Pashevich, Université Grenoble Alpes, 2021 (I. Laptev, examiner).

— M. Caron, Université Grenoble Alpes, 2021 (C. Schmid).

— C. Kervadec, University of Lyon, 2021 (C. Schmid).

- Yang Xiao, Ecole des Ponts ParisTech (J. Sivic, rapporteur).

Othman Sbai, Ecole des Ponts ParisTech (J. Sivic, examinateur).

- Hugo Germain, Ecole des Ponts ParisTech (J. Sivic, examinateur).
¢ HDR committee:

- JS Franco, University of Grenoble, 2021 (C. Schmid).

11.3 Popularization

J.P. Laumond is the scientific curator of the permanent exhibition at Cité des Sciences et de I'Industrie.
The aim of this exhibition is to help the general audience to understand the concepts of robotics. Indeed,
the notion of robotics today is packed with many preconceived notions, phobias, and utopias, all fed by
literature and a rich film culture. The real challenge of the exhibition is the presentation of authentic
working robots that raises awareness of our relationship to these singular machines. How do they work?
What are they for? What are their performances today and what will they be tomorrow? The exhibition
lays bare the actual capabilities of robots and provides insight into the current issues.
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