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2 Overall objectives

OURAGAN proposes to focus on the transfer of computational algebraic methods to some related fields
(computational geometry, topology, number theory, etc.) and some carefully chosen application domains
(robotics, control theory, evaluation of the security of cryptographic systems, etc.), which implies working
equally on the use (modeling, know - how) and on the development of new algorithms. The latest
breakthrough developments and applications where algebraic methods are currently decisive remain
few and very targeted. We wish to contribute to increase the impact of these methods but also the
number of domains where the use of computational algebraic methods represent a significant added
value. This transfer-oriented positioning does not imply to stop working on the algorithms, it simply sets
the priorities.

An original aspect of the OURAGAN proposal is to blend into an environment of fundamental mathe-
matics, at the Institut de Mathématiques de Jussieu — Paris Rive Gauche (IMJ-PRG CNRS 7586), and to be
cross-functional to several teams (Algebraic Analysis, Complex Analysis and Geometry, Number Theory
to name only the main ones), which will be our first source of transfer of computational know-how. The
success of this coupling allows to maintain a strong theoretical basis and to measure objectively our
transfer activity in the direction of mathematicians (in geometry, topology, number theory, algebraic
analysis, etc.) and to consolidate the presence of Inria in scientific areas among the most theoretical.

We propose three general directions with five particular targets:

e Number Theory

¢ Algorithmic Number Theory
» Rigorous Numerical Computations

+ Topology in small dimension

e Character varieties
¢ Knot theory

+ Computational geometry
« Algebraic analysis of functional systems

These actions come, of course, in addition to the study and development of a common set of core
elements of

 Basic theory and algorithms in algebra and geometry [Transverse activity].

This core activity is the invention and study of fundamental algebraic algorithms and objects that
can be grouped into 2 categories: algorithms designed to operate on finite fields and algorithms running
on fields of characteristic 0; with 2 types of computational strategies: the exactness and the use of
approximate arithmetic (but with exact results). This mix also installs joint studies between the various
axes and is an originality of the project-team. For example many kinds of arithmetic tools around
algebraic numbers have to face to similar theoretical problems such as finding a good representation
for a number field; almost all problems related to the resolution of algebraic systems will reduce to the
study of varieties in small dimension and in particular, most of the time, to the effective computation of
the topology of curves and surfaces, or the certified drawing of non algebraic function over an algebraic
variety.

The tools and objects developed for research on algorithmic number theory as well as in computa-
tional geometry apply quite directly on some selected connected challenging subjects:

« Security of cryptographic systems
» Control theory

» Robotics

« Signal processing

These applications will serve for the evaluation of the general tools we develop when used in a
different context, in particular their capability to tackle state of the art problems.
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2.1 Scientific ground
2.1.1 Basic computable objects and algorithms

The basic computable objects and algorithms we study, use, optimize or develop are among the most
classical ones in computer algebra and are studied by many people around the world: they mainly focus
on basic computer arithmetic, linear algebra, lattices, and both polynomial system and differential system
solving.

In the context of OURAGAN, it is important to avoid reinventing the wheel and to re-use wherever
possible existing objects and algorithms, not necessarily developed in our team so that the main effort
is focused on finding good formulations/modelisations for an efficient use. Also, our approach for the
development of basic computable objects and algorithms is application driven and follows a simple
strategy : use the existing tools in priority, develop missing tools when required and then optimize the
critical operations. First, for some selected problems, we do propose and develop general key algorithms
(isolation of real roots of univariate polynomials, parametrisations of solutions of zero-dimensional
polynomial systems, solutions of parametric equations, equidimensional decompositions, etc.) in order
to complement the existing set computable objects developed and studied around the world (Grébner
bases, resultants [74], subresultants [94], critical point methods [51], etc.) which are also deeply used in
our developments. Second, for a selection of well-known problems, we propose different computational
strategies (for example the use of approximate arithmetic to speed up LLL algorithm or root isolators, still
certifying the final result). Last, we propose specialized variants of known algorithms optimized for a
given problem (for example, dedicated solvers for degenerated bivariate polynomials to be used in the
computation of the topology of plane curves).

In the activity of OURAGAN, many key objects or algorithms around the resolution of algebraic systems
are developed or optimized within the team, such as the resolution of polynomials in one variable with
real coefficients [113] [17], rational parameterizations of solutions of zero-dimensional systems with
rational coefficients [60] [16] or discriminant varieties for solving systems depending on parameters
[14], but we are also power users of existing software (mainly Sage n Maple 2 Pari-GP 3,Snappea 4y and
libraries (mainly gmp 5, mpfr 6 flint 7, arb &, etc.) to which we contribute when it makes sense.

For our studies in number theory and applications to the security of cryptographic systems, our team
works on three categories of basic algorithms: discrete logarithm computations [108] (for example to
make progress on the computation of class groups in number fields [95]), network reductions by means
of LLL variants [84] and, obviously, various computations in linear algebra, for example dedicated to
almost sparse matrices [109].

For the algorithmic approach to algebraic analysis of functional equations [55] [111] [112], we
developed the effective study of both module theory and homological algebra [145] over certain non-
commutative polynomial rings of functional operators [4], of Stafford’s famous theorems on the Weyl
algebras [136], of the equidimensional decomposition of functional systems [132], etc.

Finally, we study effective methods in algebraic topology, with a view towards the computation of
normal forms or bases, and the construction of small resolutions of various algebraic structures: monoids
and groups, algebras and operads, categories and higher structures, etc. The construction methods can
come from combinatorial group theory (rewriting, Garside structures), combinatorial algebra (Grébner
bases), or homological algebra (Koszul duality, Morse theory). We explore potential deep foundational
connexions between these different points of view, to unify, generalise and improve them.

2.1.2 Computational Number Theory

Many frontiers between computable objects, algorithms (above section), computational number theory
and applications, especially in cryptography are porous. However, one can classify our work in computa-

www.sagemath.org
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tional number theory into two classes of studies : computational algebraic number theory and (rigorous)
numerical computations in number theory.

Our work on rigorous numerical computations is somehow a transverse activity in Ouragan : floating
point arithmetic is used in many basic algorithms we develop (root isolation, LLL) and is thus present
in almost all our research directions. However there are specific developments that could be labelized
Number Theory, in particular contributions to numerical evaluations of L-functions which are deeply
used in many problems in number theory (for example the Riemann Zeta function). We participate, for
example to the L-functions and Modular Forms Database® a world wide collaborative project.

Our work in computational algebraic number theory is driven by the algorithmic improvement to
solve presumably hard problems relevant to cryptography. The use of number-theoretic hard problems
in cryptography dates back to the invention of public-key cryptography by Diffie and Hellman [80], where
they proposed a first instantiation of their paradigm based on the discrete logarithm problem in prime
fields. The invention of RSA [143], based on the hardness of factoring came as a second example. The
introduction of discrete logarithms on elliptic curves [114] [147] only confirmed this trend.

These crypto-systems attracted a lot of interest on the problems of factoring and discrete log. Their
study led to the invention of fascinating new algorithms that can solve the problems much faster than
initially expected :

¢ the elliptic curve method (ECM) [125]

¢ the quadratic field for factoring [129] and its variant for discrete log called the Gaussian integers
method [122]

¢ the number field sieve (NFS) [124]

Since the invention of NFS in the 90’s, many optimizations of this algorithm have been performed.
However, an algorithm with better complexity hasn't been found for factoring and discrete logarithms in
large characteristic.

While factorization and discrete logarithm problems have a long history in cryptography, the recent
post-quantum cryptosystems introduce a new variety of presumably hard problems/objects/algorithms
with cryptographic relevance: the shortest vector problem (SVP), the closest vector problem (CVP) or the
computation of isogenies between elliptic curves, especially in the supersingular case.

Members of OURAGAN started working on the topic of discrete logarithms around 1998, with several
computation records that were announced on the NMBRTHRY mailing list. In large characteristic, espe-
cially for the case of prime fields, the best current method is the number field sieve (NFS) algorithm. In
particular, they published the first NFS based record computation[13]. Despite huge practical improve-
ments, the prime field case algorithm hasn’t really changed since that first record. Around the same time,
we also presented small characteristic computation record based on simplifications of the Function Field
Sieve (FFS) algorithm [107].

In 2006, important changes occurred concerning the FFS and NFS algorithms, indeed, while the
algorithms only covered the extreme case of constant characteristic and constant extension degree, two
papers extended their ranges of applicability to all finite fields. At the same time, this permitted a big
simplification of the FFS, removing the need for function fields.

Starting from 2012, new results appeared in small characteristic. Initially based on a simplification of
the 2006 result, they quickly blossomed into the Frobenial representation methods, with quasi-polynomial
time complexity [108, 96].

An interesting side-effect of this research was the need to revisit the key sizes of pairing-based
cryptography. This type of cryptography is also a topic of interest for OURAGAN. In particular, it was
introduced in 2000 [12].

The computations of class groups in number fields has strong links with the computations of discrete
logarithms or factorizations using the NFS (number field sieve) strategy which as the name suggests
is based on the use of number fields. Roughly speaking, the NFS algorithm uses two number fields
and the strategy consists in choosing number fields with small sized coefficients in their definition
polynomials. On the contrary, in class group computations, there is a single number field, which is
clearly a simplification, but this field is given as input by some fixed definition polynomial. Obviously,

dwww.Imfdb.org
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the degree of this polynomial as well as the size of its coefficients are both influencing the complexity
of the computations so that finding other polynomials representing the same class group but with a
better characterization (degree or coefficient’s sizes) is a mathematical problem with direct practical
consequences. We proposed a method to address the problem [95], but many issues remain open.

Computing generators of principal ideals of cyclotomic fields is also strongly related to the computa-
tion of class groups in number fields. Ideals in cyclotomic fields are used in a number of recent public-key
cryptosystems. Among the difficult problems that ensure the safety of these systems, there is one that
consists in finding a small generator, if it exists, of an ideal. The case of cyclotomic fields is considered
[54].

2.1.3 Topology in small dimension

Character varieties There is a tradition of using computations and software to study and understand
the topology of small dimensional manifolds, going back at least to Thurston’s works (and before him,
Riley’s pioneering work). The underlying philosophy of these tools is to build combinatorial models of
manifolds (for example, the torus is often described as a square with an identification of the sides). For
dimensions 2, 3 and 4, this approach is relevant and effective. In the team OURAGAN, we focus on the
dimension 3, where the manifolds are modelized by a finite number of tetrahedra with identification
of the faces. The software SnapPy '’ implements this strategy [149] and is regularly used as a starting
point in our work. Along the same philosophy of implementation, we can also cite Regina ''. A specific
trait of SnapPy is that it focuses on hyperbolic structures on the 3-dimensional manifolds. This setting is
the object of a huge amount of theoretical work that were used to speed up computations. For example,
some Newton methods were implemented without certification for solving a system of equations, but
the theoretical knowledge of the uniqueness of the solution made this implementation efficient enough
for the target applications. In recent years, in part under the influence of our team '?, more attention
has been given to certified computations (at least with an error control) and now this is implemented in
SnapPy.

This philosophy (modelization of manifolds by quite simple combinatoric models to compute such
complicated objects as representations of the fundamental group) was applied in a pioneering work
of Falbel [8] when he begins to look for another type of geometry on 3-dimensional manifolds (called
CR-spherical geometry). From a computational point of view, this change of objectives was a jump
in the unknown: the theoretical justification for the computations were missing, and the number of
variables of the systems were multiplied by four. So instead of a relatively small system that could be
tackled by Newton methods and numerical approximations, we had to deal with/study (were in front of)
relatively big systems (the smallest example being 8 variables of degree 6) with no a priori description of
the solutions.

Still, the computable objects that appear from the theoretical study are very often outside the reach of
automated computations and are to be handled case by case. A few experts around the world have been
tackling this kind of computations (Dunfield, Goerner, Heusener, Porti, Tillman, Zickert) and the main
current achievement is the Ptolemy module ' for SnapPy.

From these early computational needs, topology in small dimension has historically been the source
of collaboration with the IMJ-PRG laboratory. At the beginning, the goal was essentially to provide
computational tools for finding geometric structures in triangulated 3-dimensional varieties. Triangulated
varieties can be topologically encoded by a collection of tetrahedra with gluing constraints (this can
be called a triangulation or mesh, but it is not an approximation of the variety by simple structures,
rather a combinatorial model). Imposing a geometric structure on this combinatorial object defines a
number of constraints that we can translate into an algebraic system that we then have to solve to study
geometric structures of the initial variety, for example in relying on solutions to study representations
of the fundamental group of the variety. For these studies, a large part of the computable objects or
algorithms we develop are required, from the algorithms for univariate polynomials to systems depending
on parameters. It should be noted that most of the computational work lies in the modeling of problems

10yww.math.uic.edu/t3m/SnapPy

Hregina-normal.github.io
1245 part of the CURVE project
13 www.math.uic.edu/t3m/SnapPy/ptolemy.html
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[53][7] that have strictly no chance to be solved by blindly running the most powerful black boxes: we
usually deal here with systems that have 24 to 64 variables, depend on 4 to 8 parameters and with degrees
exceeding 10 in each variable. With an ANR '* funding on the subject, the progress that we did [88] were
(much) more significant than expected. In particular, we have introduced new computable objects with
an immediate theoretical meaning (let us say rather with a theoretical link established with the usual
objects of the domain), namely, the so-called deformation variety.

Knot theory Knot theory is a wide area of mathematics. We are interested in polynomial representa-
tions of long knots, that is to say polynomial embeddings R — R® < 83. Every knot admits a polynomial
representation and a natural question is to determine explicit parameterizations, minimal degree param-
eterizations. On the other hand we are interested to determine what is the knot of a given polynomial
smooth embedding R — R3. These questions involve real algebraic curves. This subject was first consid-
ered by Vassiliev in the 90’s[148].

A Chebyshev knot [116], is a polynomial knot parameterized by a Chebyshev curve (T,(¢), T(¢), To(t +
¢)) where T, () = cos(narccos t) is the n-th Chebyshev polynomial of the first kind. Chebyshev knots
are polynomial analogues of Lissajous knots that have been studied by Jones, Hoste, Lamm... It was first
established that any knot can be parameterized by Chebyshev polynomials, then we have studied the
properties of harmonic nodes [117] which then opened the way to effective computations.

Our activity in Knot theory is a bridge between our work in computational geometry (topology and
drawing of real space curves) and our work on topology in small dimensions (varieties defined as a knot
complement).

Two-bridge knots (or rational knots) are particularly studied because they are much easier to study.
The first 26 knots (except 85) are two-bridge knots. We were able to give an exhaustive, minimal and certi-
fied list of Chebyshev parameterizations of the first rational two-bridge knots, using blind computations
[119]. On the other hand, we propose the identification of Chebyshev knot diagrams [120] by developing
new certified algorithms for computing trigonometric expressions [121]. These works share many tools
with our action in visualization and computational geometry.

We made use of Chebyshev polynomials so as Fibonacci polynomials which are families of orthog-
onal polynomials. Considering the Alexander-Conway polynomials as continuant polynomials in the
Fibonacci basis, we were able to give a partial answer to Hoste’s conjecture on the roots of Alexander
polynomials of alternating knots ([118]).

We study the lexicographic degree of the two-bridge knots, that is to say the minimal (multi)degree of
a polynomial representation of a N-crossing two-bridge knot. We show that this degree is (3, b, ¢) with
b+ c =3N. We have determined the lexicographic degree of the first 362 first two-bridge knots with 12
crossings or fewer [67] '°. These results make use of the braid theoretical approach developped by Y.
Orevkov to study real plane curves and the use of real pseudoholomorphic curves [66], the slide isotopies
on trigonal diagrams, namely those that never increase the number of crossings [68].

Visualization and Computational Geometry The drawing of algebraic curves and surfaces is a critical
action in OURAGAN since it is a key ingredient in numerous developments. For example, a certified
plot of a discriminant variety could be the only admissible answer that can be proposed for engineering
problems that need the resolution of parametric algebraic systems: this variety (and the connected
components of its counter part) defines a partition of the parameter’s space in regions above which the
solutions are numerically stable and topologically simple. Several directions have been explored since the
last century, ranging from pure numerical computations to infallible exact ones, depending on the needs
(global topology, local topology, simple drawing, etc.). For plane real algebraic curves, one can mention
the cylindrical algebraic decomposition [73], grids methods (for ex. the marching square algorithm),
subdivision methods, etc.

As mentioned above, we focus on curves and surfaces coming from the study of parametric systems.
They mostly come from some elimination process, they highly (numerically) unstable (a small defor-
mation of the coefficients might change a lot the topology of the curve) and we are mostly interested in
getting qualitative information about their counter part in the parameter’s space.

4 ANR project Structures Géométriques et Triangulations
15Minimal degrees are listed in webusers.imj-prg.fr/ pierre-vincent.koseleff/knots/2bk-lexdeg.html
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For this work, we are associated with the GAMBLE EPI (Inria Nancy Grand Est) with the aim of
developing computational techniques for the study, plotting and topology. In this collaboration, Ouragan
focuses on CAD-Like methods while Gamble develops numerical strategies (that could also apply on
non algebraic curves). Ouragan’s work involves the development of effective methods for the resolution
of algebraic systems with 2 or 3 variables [60, 113, 61, 62] which are basic engines for computing the
topology [127, 25] and / or plotting.

2.1.4 Algebraic analysis of functional systems

Systems of functional equations or simply functional systems are systems whose unknowns are functions,
such as systems of ordinary or partial differential equations, of differential time-delay equations, of
difference equations, of integro-differential equations, etc.

Numerical aspects of functional systems, especially differential systems, have been widely studied in
applied mathematics due to the importance of numerical simulation issues.

Complementary approaches, based on algebraic methods, are usually upstream or help the numerical
simulation of systems of functional systems. These methods also tackle a different range of questions
and problems such as algebraic preconditioning, elimination and simplification, completion to formal
integrability or involution, computation of integrability conditions and compatibility conditions, index
reduction, reduction of variables, choice of adapted coordinate systems based on symmetries, com-
putation of first integrals of motion, conservation laws and Lax pairs, Liouville integrability, study of
the (asymptotic) behavior of solutions at a singularity, etc. Although not yet very popular in applied
mathematics, these theories have lengthy been studied in fundamental mathematics and were developed
by Lie, Cartan, Janet, Ritt, Kolchin, Spencer, etc. [103] [111] [112] [115] [142] [130].

Over the past years, certain of these algebraic approaches to functional systems have been investi-
gated within an algorithmic viewpoint, mostly driven by applications to engineering sciences such as
mathematical systems theory and control theory. We have played a role towards these effective develop-
ments, especially in the direction of an algorithmic approach to the so-called algebraic analysis [111, 112,
55], a mathematical theory developed by the Japanese school of Sato, which studies linear differential
systems by means of both algebraic and analytic methods. To develop an effective approach to algebraic
analysis, we first have to make algorithmic standard results on rings of functional operators, module
theory, homological algebra, algebraic geometry, sheaf theory, category theory, etc., and to implement
them in computer algebra systems. Based on elimination theory (Grobner or Janet bases [103, 72, 144],
differential algebra [57] [85], Spencer’s theory [130], etc.), in [4, 5], we have initiated such a computational
algebraic analysis approach for general classes of functional systems (and not only for holonomic systems
as done in the literature of computer algebra [72]). Based on the effective aspects to algebraic analysis
approach, the parametrizability problem [4], the reduction and (Serre) decomposition problems [5], the
equidimensional decomposition [132], Stafford’s famous theorems for the Weyl algebras [136], etc., have
been studied and solutions have been implemented in Maple, Mathematica, and GAP [71][5]. But these
results are only the first steps towards computational algebraic analysis, its implementation in com-
puter algebra systems, and its applications to mathematical systems, control theory, signal processing,
mathematical physics, etc.

2.2 Synergies

Outside applications which can clearly be seen as transversal acitivies, our development directions are
linked at several levels : shared computable objects, computational strategies and transversal research
directions.

Sharing basic algebraic objects As seen above, is the well-known fact that the elimination theory for
functional systems is deeply intertwined with the one for polynomial systems so that, topology in small
dimension, applications in control theory, signal theory and robotics share naturally a large set of
computable objects developped in our project team.

Performing efficient basic arithmetic operations in number fields is also a key ingredient to most of
our algorithms, in Number theory as well as in topology in small dimension or , more generally in the
use of roots of polynomials systems. In particular, finding good representations of number fields, lead to
the same computational problems as working with roots of polynomial systems by means of triangular
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systems (towers of number fields) or rational parameterizations (unique number field). Making any
progress in one direction will probably have direct consequences for almost all the problems we want to
tackle.

Elimination theory is also deeply connected to Grobner bases and rewriting, which are themselves

linked to Garside theory and Koszul duality, establishing a continuum with the effective methods studied
in algebraic topology.
Symbolic-numeric strategies. Several general low-level tools are also shared such as the use of approxi-
mate arithmetic to speed up certified computations. Sometimes these can also lead to improvement for a
different purpose (for example computations over the rationals, deeply used in geometry can often be
performed in parallel combining computations in finite fields together with fast Chinese remaindering
and modular evaluations).

As simple example of this sharing of tools and strategies, the use of approximate arithmetic is common
to the work on LLL (used in the evaluation of the security of cryptographic systems), resolutions of
real-world algebraic systems (used in our applications in robotics, control theory, and signal theory),
computations of signs of trigonometric expressions used in knot theory or to certified evaluations of
dilogarithm functions on an algebraic variety for the computation of volumes of representations in our
work in topology, numerical integration and computations of L-functions.

Transversal research directions. The study of the topology of complex algebraic curves is central in the
computation of periods of algebraic curves (number theory) but also in the study of character varieties
(topology in small dimension) as well as in control theory (stability criteria). Very few computational
tools exists for that purpose and they mostly convert the problem to the one of variety over the reals (we
can then recycle our work in computational geometry).

As for real algebraic curves, finding a way to describe the topology (an equivalent to the graph obtained
in the real case) or computing certified drawings (in the case of a complex plane curve, a useful drawing
is the so called associated amoeba) are central subjects for Ouragan.

As mentioned in the section 3.3 the computation of the Mahler measure of an algebraic implicit
curve is either a challenging problem in number theory and a new direction in topology. The basic
formula requires the study of points of moduli 1, as for stability problems in Control Theory (stability
problems), and certified numerical evaluations of non algebraic functions at algebraic points as for many
computations for L-Functions.

3 Research program

3.1 Basic computable objects and algorithms

The development of basic computable objects is somehow on demand and depends on all the other
directions. However, some critical computations are already known to be bottlenecks and are sources of
constant efforts.

Computations with algebraic numbers appear in almost all our activities: when working with number
fields in our work in algorithmic number theory as well as in all the computations that involve the use
of solutions of zero-dimensional systems of polynomial equations. Among the identified problems:
finding good representations for single number fields (optimizing the size and degree of the defining
polynomials), finding good representations for towers or products of number fields (typically working with
a tower or finding a unique good extension), efficiently computing in practice with number fields (using
certified approximation vs working with the formal description based on polynomial arithmetics). Strong
efforts are currently done in the understanding of the various strategies by means of tight theoretical
complexity studies [25, 123, 61] and many other efforts will be required to find the right representation for
the right problem in practice. For example, for isolating critical points of plane algebraic curves, it is still
unclear (at least the theoretical complexity cannot help) that an intermediate formal parameterization is
more efficient than a triangular decomposition of the system and it is still unclear that these intermediate
computations could be dominated in time by the certified final approximation of the roots.
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3.2 Algorithmic Number Theory

Concerning algorithmic number theory, the main problems we will be considering in the coming years
are the following:

e Number fields. We will continue working on the problems of class groups and generators. In
particular, the existence and accessibility of good defining polynomials for a fixed number field
remain very largely open. The impact of better polynomials on the algorithmic performance is a
very important parameter, which makes this problem essential.

¢ Lattice reduction. Despite a great amount of work in the past 35 years on the LLL algorithm and
its successors, many open problems remain. We will continue the study of the use of interval
arithmetic in this field and the analysis of variants of LLL along the lines of the Potential-LLL
which provides improved reduction comparable to BKZ with a small block size but has better
performance.

e Elliptic curves and Drinfeld modules. The study of elliptic curves is a very fruitful area of number
theory with many applications in crypto and algorithms. Drinfeld modules are “cousins” of elliptic
curves which have been less explored in the algorithm context. However, some recent advances [83]
have used them to provide some fast sophisticated factoring algorithms. As a consequence, it is
natural to include these objects in our research directions.

Rigorous numerical computations Some studies in this area will be driven by some other directions,
for example, the rigorous evaluation of non algebraic functions on algebraic varieties might become
central for some of our work on topology in small dimension (volumes of varieties, drawing of amoeba) or
control theory (approximations of discriminant varieties) are our two main current sources of interesting
problems. In the same spirit, the work on L-functions computations (extending the computation range,
algorithmic tools for computing algebraic data from the L function) will naturally follow.

On the other hand, another objective is to extend existing results on periods of algebraic curves to
general curves and higher dimensional varieties is a general promising direction. This project aims at
providing tools for integration on higher homology groups of algebraic curves, ie computing Gauss-Manin
connections. It requires good understanding of their topology, and more algorithmic tools on differential
equations.

3.3 Topology in small dimension

Character varieties The brute force approach to computable objects from topology of small dimension
will not allow any significant progress. As explained above, the systems that arise from these problems
are simply outside the range of doable computations. We still continue the work in this direction by a
four-fold approach, with all three directions deeply inter-related. First, we focus on a couple of especially
meaningful (for the applications) cases, in particular the 3-dimensional manifold called Whitehead
link complement. At this point, we are able to make steps in the computation and describe part of the
solutions [88, 100]; we hope to be able to complete the computation using every piece of information
to simplify the system. Second, we continue the theoretical work to understand more properties of
these systems [86]. These properties may prove how useful for the mathematical understanding is the
resolution of such systems - or at least the extraction of meaningful information. This approach is for
example carried on by Falbel and his work on configuration of flags [89, 91]. Third, we position ourselves
as experts in the know-how of this kind of computations and natural interlocutors for colleagues coming
up with a question on such a computable object (see [98] and [100]). This also allows us to push forward
the kind of computation we actually do and make progress in the direction of the second point. We
are credible interlocutors because our team has the blend of theoretical knowledge and computational
capabilities that grants effective resolutions of the problems we are presented. And last, we use the
knowledge already acquired to pursue our theoretical study of the CR-spherical geometry [79, 90, 87].
Another direction of work is the help to the community in experimental mathematics on new objects.
It involves downsizing the system we are looking at (for example by going back to systems coming from
hyperbolic geometry and not CR-spherical geometry) and get the most out of what we can compute, by
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studying new objects. An example of this research direction is the work of Guilloux around the volume
function on deformation varieties. This is a real-analytic function defined on the varieties we specialized
in computing. Being able to do effective computations with this function led first to a conjecture [97].
Then, theoretical discussions around this conjecture led to a paper on a new approach to the Mahler
measure of some 2-variables polynomials [99]. In turn, this last paper gave a formula for the Mahler
measure in terms of a function akin to the volume function applied at points in an algebraic variety whose
moduli of coordinates are 1. The OURAGAN team has the expertise to compute all the objects appearing
in this formula, opening the way to another area of application. This area is deeply linked with number
theory as well as topology of small dimension. It requires all the tools at disposition within OURAGAN.

Knot theory We will carry on the exhaustive search for the lexicographic degrees for the rational knots.
They correspond to trigonal space curves: computations in the braid group Bs, explicit parametrization
of trigonal curves corresponding to "dessins d’enfants", etc. The problem seems much more harder when
looking for more general knots.

On the other hand, a natural direction would be: given an explicit polynomial space curve, determine
the under/over nature of the crossings when projecting, draw it and determine the known knot '° it is
isotopic to.

Vizualisation and Computational Geometry As mentioned above, the drawing of algebraic curves and
surfaces is a critical action in OURAGAN since it is a key ingredient in numerous developments. In some
cases, one will need a fully certified study of the variety for deciding existence of solutions (for example a
region in a robot’s parameter’s space with solutions to the DKP above or deciding if some variety crosses
the unit polydisk for some stability problems in control-theory), in some other cases just a partial but
certified approximation of a surface (path planning in robotics, evaluation of non algebraic functions
over an algebraic variety for volumes of knot complements in the study of character varieties).

On the one hand, we will contribute to general tools like ISOTOP 17 under the supervision of the
GAMBLE project-team and, on the other hand, we will propose ad-hoc solutions by gluing some of our
basic tools (problems of high degrees in robust control theory). The priority is to provide a first software
that implements methods that fit as most as possible the very last complexity results we got on several
(theoretical) algorithms for the computation of the topology of plane curves.

A particular effort will be devoted to the resolution of overconstraint bivariate systems which are
useful for the studies of singular points and to polynomials systems in 3 variables in the same spirit :
avoid the use of Grébner basis and propose a new algorithm with a state-of-the-art complexity and with
a good practical behavior.

In parallel, one will have to carefully study the drawing of graphs of non algebraic functions over
algebraic complex surfaces for providing several tools which are useful for mathematicians working on
topology in small dimension (a well known example is the drawing of amoebia, a way of representing a
complex curve on a sheet of paper).

3.4 Algebraic analysis of functional systems

We want to further develop our expertise in the computational aspects of algebraic analysis by continuing
to develop effective versions of results of module theory, homological algebra, category theory and sheaf
theory [145] which play important roles in algebraic analysis [55, 111, 112] and in the algorithmic
study of linear functional systems. In particular, we shall focus on linear systems of integro-differential-
constant/varying/distributed delay equations [131, 135] which play an important role in mathematical
systems theory, control theory, and signal processing [131, 141, 134, 137].

The rings of integro-differential operators are highly more complicated than the purely differential
case (i.e. Weyl algebras) [15], due to the existence of zero-divisors, or the fact of having a coherent ring
instead of a noetherian ring [52]. Therefore, we want to develop an algorithmic study of these rings.
Following the direction initiated in [135] for the computation of zero divisors (based on the polynomial
null spaces of certain operators), we first want to develop algorithms for the computation of left/right

16for example the first rational knots are listed at team.Inria.fr/ ouragan/knots
17isotop.gamble.loria.fr
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kernels and left/right/generalized inverses of matrices with entries in such rings, and to use these results
in module theory (e.g. computation of syzygy modules, (shorter/shortest) free resolutions, split short/long
exact sequences). Moreover, Stafford’s results [146], algorithmically developed in [15] for rings of partial
differential operators (i.e. the Weyl algebras), are known to still hold for rings of integro-differential
operators. We shall study their algorithmic extensions. Our corresponding implementation will be
extended accordingly.

Finally, within a computer algebra viewpoint, we shall continue to algorithmically study issues on
rings of integro-differential-delay operators [131, 134] and their applications to the study of equivalences
of differential constant/varying/distributed delay systems (e.g. Artstein’s reduction, Fiagbedzi-Pearson’s
transformation) which play an important role in control theory.

4 Application domains

4.1 Security of cryptographic systems

The study of the security of asymmetric cryptographic systems comes as an application of the work carried
out in algorithmic number theory and revolves around the development and the use of a small number
of general purpose algorithms (lattice reduction, class groups in number fields, discrete logarithms in
finite fields, ...). For example, the computation of generators of principal ideals of cyclotomic fields can
be seen as one of these applications since these are used in a number of recent public key cryptosystems.

The cryptographic community is currently very actively assessing the threat coming for the devel-
opment of quantum computers. Indeed, such computers would permit tremendous progress on many
number theoretic problems such as factoring or discrete logarithm computations and would put the
security of current cryptosystem under a major risk. For this reason, there is a large global research
effort dedicated to finding alternative methods of securing data. For example, the US standardization
agency called NIST has recently launched a standardization process around this issue. In this context,
OURAGAN is part of the competition and has submitted a candidate (which has not been selected)
[50]. This method is based on number-theoretic ideas involving a new presumably difficult problem
concerning the Hamming distance of integers modulo large numbers of Mersenne.

4.2 Robotics

Algebraic computations have tremendously been used in Robotics, especially in kinematics, since the last
quarter of the 20th century [102]. For example, one can find algebraic proofs for the 40 possible solutions
to the direct kinematics problem [126] for steward platforms and companion experiments based on
Grobner basis computations [92]. On the one hand, hard general kinematics problems involve too many
variables for pure algebraic methods to be used in place of existing numerical or semi-numerical methods
everywhere and everytime, and on the other hand, global algebraic studies allow to propose exhaustive
classifications that cannot be reached by other methods,for some quite large classes.

Robotics is a long-standing collaborative work with LS2N (Laboratory of Numerical Sciences of
Nantes). Work has recently focused on the offline study of mechanisms, mostly parallel, their singularities
or at least some types of singularities (cuspidals robots [150]).

For most parallel or serial manipulators, pose variables and joints variables are linked by algebraic
equations and thus lie an algebraic variety. The two-kinematics problems (the direct kinematics problem
- DKP- and the inverse kinematics problem - IKP) consist in studying the preimage of the projection of this
algebraic variety onto a subset of unknowns. Solving the DKP remains to computing the possible positions
for a given set of joint variables values while solving the IKP remains to computing the possible joints
variables values for a given position. Algebraic methods have been deeply used in several situations for
studying parallel and serial mechanisms, but finally their use stays quite confidential in the design process.
Cylindrical Algebraic Decomposition coupled with variable’s eliminations by means of Grobner based
computations can be used to model the workspace, the joint space and the computation of singularities.
On the one hand, such methods suffer immediately when increasing the number of parameters or when
working with imprecise data. On the other hand, when the problem can be handled, they might provide
full and exhaustive classifications. The tools we use in that context [70, 69, 104, 106, 105] depend mainly
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on the resolution of parameter-based systems and therefore of study-dependent curves or flat algebraic
surfaces (2 or 3 parameters), thus joining our thematic Computational Geometry.

4.3 Control theory

Certain problems studied in mathematical systems theory and control theory can be better understood
and finely studied by means of algebraic structures and methods. Hence, the rich interplay between
algebra, computer algebra, and control theory has a long history.

For instance, the first main paper on Grébner bases written by their creators, Buchberger, was
published in Bose’s book [56] on control theory of multidimensional systems. Moreover, the differential
algebra approach to nonlinear control theory (see [82, 81] and the references therein) was a major
motivation for the algorithmic study of differential algebra [57, 85]. Finally, the behaviour approach to
linear systems theory [151, 128] advocates for an algorithmic study of algebraic analysis (see Section 2.1.4).
More generally, control theory is porous to computer algebra since one finds algebraic criteria of all kinds
in the literature even if the control theory community has a very few knowledge in computer algebra.

OURAGAN has a strong interest in the computer algebra aspects of mathematical systems theory
and control theory related to both functional and polynomial systems, particularly in the direction of
robust stability analysis and robust stabilization problems for multidimensional systems [56, 128] and
infinite-dimensional systems [76] (such as, e.g., differential time-delay systems).

Let us shortly state a few points of our recent interests in this direction.

In control theory, stability analysis of linear time-invariant control systems is based on the famous
Routh-Hurwitz criterion (late 19th century) and its relation with Sturm sequences and Cauchy index.
Thus, stability tests were only involving tools for univariate polynomials [110]. While extending those tests
to multidimensional systems or differential time-delay systems, one had to tackle multivariate problems
recursively with respect to the variables [56]. Recent works use a mix of symbolic/numeric strategies,
Linear Matrix Inequalities (LMI), sums of squares, etc. But still very few practical experiments are currently
involving certified algebraic computations based on general solvers for polynomial equations. We have
recently started to study certified stability tests for multidimensional systems or differential time-delay
systems with an important observation: with a correct modelization, some recent algebraic methods
— derived from our work in algorithmic geometry and shared with applications in robotics — can now
handle previously impossible computations and lead to a better understanding of the problems to be
solved [63, 64, 65]. The previous approaches seem to be blocked on a recursive use of one-variable
methods, whereas our approach involves the direct processing of the problem for a larger number of
variables.

The structural stability of n-D discrete linear systems (with n = 2) is a good source of problems of
several kinds ranging from solving univariate polynomials to studying algebraic systems depending on
parameters. For instance, we show [58, 64, 65] that the standard characterization of the structural stability
of a multivariate rational transfer function (namely, the denominator of the transfer function does not
have solutions in the unit polydisc of C") is equivalent to deciding whether or not a certain system of
polynomial equations has real solutions. The use state-of-the-art computer algebra algorithms to check
this last condition, and thus the structural stability of multidimensional systems has been validated in
several situations from toy examples with parameters to state-of-the-art examples involving, e.g., the
resolution of bivariate systems [62, 61].

The rich interplay between control theory, algebra, and computer algebra is also well illustrated with
our recent work on robust stabilization problems for multidimensional and finite/infinite-dimensional
systems [59, 133, 139, 138, 140, 141].

4.4 Signal processing

Due to numerous applications (e.g. sensor network, mobile robots), sources and sensors localization has
intensively been studied in the literature of signal processing. The anchor position self calibration problem
is a well-known problem which consists in estimating the positions of both the moving sources and a set
of fixed sensors (anchors) when only the distance information between the points from the different sets
is available. The position self-calibration problem is a particular case of the Multidimensional Unfolding
(MDU) problem for the Euclidean space of dimension 3. In the signal processing literature, this problem
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is attacked by means of optimization problems (see [75] and the references therein). Based on computer
algebra methods for polynomial systems, we have recently developed a new approach for the MDU
problem which yields closed-form solutions and a very efficient algorithm for the estimation of the
positions [77] based only on linear algebra techniques. This first result, done in collaboration with Dagher
(Inria Chile) and Zheng (DEFROST, Inria Lille), yielded a recent patent [78]. This result advocates for the
study of other localization problems based on the computational polynomial techniques developed in
OURAGAN.

In collaboration with Safran Tech (Barau, Hubert) and Dagher (Inria Chile), a symbolic-numeric study
of the new multi-carrier demodulation method [101] has recently been initiated. Gear fault diagnosis is
an important issue in aeronautics industry since a damage in a gearbox, which is not detected in time,
can have dramatic effects on the safety of a plane. Since the vibrations of a spur gear can be modeled as a
product of two periodic functions related to the gearbox kinematic, it is proposed to recover each function
from the global signal by means of an optimal reconstruction problem which, based on Fourier analysis,
can be rewritten as argmin,ccn ,, y,ecm | M~ uvy —Duvy |r, where M € C"*™ (resp. D € C"*") is a
given matrix with a special shape (resp. diagonal matrix), || - | r is the Frobenius norm, and v* is the
Hermitian transpose of v. We have recently obtained closed-form solutions for the exact problem, i.e.,
M = uv} + Duvj, which is a polynomial system with parameters. This first result gives interesting new
insides for the study of the non-exact case, i.e. for the above optimization problem.

Our expertise on algebraic parameter estimation problem, developed in the former NON-A project-
team (Inria Lille), will be further developed. Following this work [93], the problem consists in estimating
a set 0 of parameters of a signal x(0, r) — which satisfies a certain dynamics — when the signal y(t) =
x(0,1) +y(t) + @(t) is observed, where y denotes a structured perturbation and @ a noise. It has been
shown that 6 can sometimes be explicitly determined by means of closed-form expressions using iterated
integrals of y. These integrals are used to filter the noise @. Based on a combination of algebraic analysis
techniques (rings of differential operators), differential elimination theory (Grébner basis techniques for
Weyl algebras), and operational calculus (Laplace transform, convolution), an algorithmic approach to
algebraic parameter estimation problem has been initiated in [134] for a particular type of structured
perturbations (i.e. bias) and was implemented in the Maple prototype NonA. The case of a general
structured perturbation is still lacking.

5 Social and environmental responsibility

No particular action this year.

6 Highlights of the year

6.1 Science

¢ One fascinating conjecture around Mahler measure is due to Lehmer: there exist a constant ¢ >0
such that if a univariate polynomial with integer coefficients has a non zero Mahler measure, then
this Mahler measure is bigger than c. This conjecture attracts a lot of attention since its statement a
century ago. One approach, following Boyd, is to understand the closedness of the set of all Mahler
measures of all polynomials with integer coefficients.

A celebrated theorem in this area was due to Boyd Lawton and stated that certain sequence of
Mahler measures of univariate polynomials converge to the Mahler measure of a multivariate
polynomial. The team took part in a breakthrough generalization of this theorem to sequences of
multivariate polynomials as illustrated, for example, by [44].

Pascal Molin, in a joint effort with Aurel Page from Inria Bordeaux, developped algorithms to
compute with Hecke characters: these are ubiquitous object in modern number theory which
were previously not fully handled by computer algebra systems. Their package is incorporated in
Pari/GP 2.15, and the corresponding paper was presented at the ANTS XV conference ([35]).

* Josué Tonelli-Cueto wrote probably the shortest paper of the year (1 page) (see [29])
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¢ Fabrice Rouillier did contribute to the first algorithm with a (supposed to be) optimal complexity for
the computation of the topology of a real algebraic plane curve given in implicit form and without
shearing the curve (see [25])

6.2 Partnerships

* our second important participation to an ANR funding fundamental mathematics starts with the
project SHoCoS.

¢ anew contract has been signed with Safran defense and electronics about the conception of parallel
robots for inertial stabilization.

6.3 Institutional life

The team wishes to thank the Commission d’Evaluation for its outstanding efforts, in 2022 and previous
years, in defending the interests of the research community, keeping us thoroughly informed about topics
relevant to the scientific life at Inria, and upholding the moral and intellectual values we are collectively
proud of and which define our institute.

7 New software and platforms

7.1 New software
7.1.1 ISOTOP

Name: Topology and geometry of planar algebraic curves

Keywords: Topology, Curve plotting, Geometric computing

Functional Description: Isotop is a Maple software for computing the topology of an algebraic plane
curve, that is, for computing an arrangement of polylines isotopic to the input curve. This problem
is a necessary key step for computing arrangements of algebraic curves and has also applications
for curve plotting. This software has been developed since 2007 in collaboration with E Rouillier
from Inria Paris - Rocquencourt.

URL: https://isotop.gamble.loria.fr/

Publications: hal-00809430, hal-00809425, inria-00329754, inria-00580431, hal-00992634, hal-01342211,
inria-00425383, inria-00517175, hal-01468796, hal-00977671

Contact: Marc Pouget

Participants: Luis Penaranda, Marc Pouget, Sylvain Lazard

7.1.2 RS

Functional Description: Real Roots isolation for algebraic systems with rational coefficients with a finite
number of Complex Roots

URL: https://team.inria.fr/ouragan/software/
Contact: Fabrice Rouillier

Participant: Fabrice Rouillier
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7.1.3 A NewDsc
Name: A New Descartes
Keyword: Scientific computing

Functional Description: Computations of the real roots of univariate polynomials with rational coeffi-
cients.

URL: https://anewdsc.mpi-inf.mpg.de
Authors: Fabrice Rouillier, Alexander Kobel, Michael Sagraloff
Contact: Fabrice Rouillier

Partner: Max Planck Institute for Software Systems

7.1.4 SIROPA

Keywords: Robotics, Kinematics

Functional Description: Library of functions for certified computations of the properties of articulated
mechanisms, particularly the study of their singularities

URL: http://siropa.gforge.inria.fr/
Authors: Damien Chablat, Fabrice Rouillier, Guillaume Moroz, Philippe Wenger
Contact: Guillaume Moroz

Partner: LS2N

7.1.5 MPFI

Keyword: Arithmetic

Functional Description: MPFI is a C library based on MPFR and GMP for multi precision floating point
arithmetic.

URL: http://mpfi.gforge.inria.fr

Contact: Fabrice Rouillier

7.2 New platforms
7.2.1 Visualisation of limit sets

Character varieties are studied in the team as an interesting algebraic object. This study is completed
by an effort to understand the geometrical meaning of each points in some carefully chosen character
varieties. One approach to this problem is the construction of geometric structures.

Another approach is the study of limit sets associated to such points and their deformations when
moving in the character variety. Those are fractal objects in the 3-sphere S, which shares numerous
properties with the usual fractal from complex dynamics. In our work, we study this limit sets first and
foremost in an experimental way, leading to a "Landscape of limit sets" ( http://limit-sets.imj-prg.fr).
The computation of such visualisations leverages the theoretical properties of these limit sets, certified
numerical approximations. An improved version of the visualisation is in progress, and will use the theory
of automatic groups as well as new and more efficient parametrizations of the objects of study.

The experimental approach in turns inform the theoretical one. One important new step, bridging
the two approaches, is done in [45].
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8 Newresults
8.1 Algebraic analysis of functional systems

On the Ore extension ring of differential time-varying delay operators

In [40], we propose an algebraic method to study linear differential time-varying delay (DTVD) systems.
Our goal is to give an effective construction of the ring of DTVD operators as an Ore extension, thanks to
the concept of skew polynomial rings developed by Ore in the 30s. Some algebraic properties of the DTVD
operators ring are analyzed, such as its Noetherianity, its homological and Krull dimensions, and the
existence of Grébner bases, all given in terms of the time-varying delay function. The algebraic analysis
framework for linear systems theory allows us to study linear DTVD systems and essential properties
such as the existence of autonomous elements, controllability, parametrizability, flatness, etc., through
methods coming from module theory, homological algebra, and constructive algebra.

An integro-differential operator approach to linear differential systems . In [36], we initiate a new

algebraic analysis approach to linear differential systems based on rings of integro-differential operators.
Within this algebraic analysis approach, we first interpret the method of variations of constants as an
operator identity. Using this result, we show that the module associated with a state-space representation
of alinear system is the same as the one associated with its standard convolution representation. This
finitely presented module over the ring of integro-differential operators is proved to be stably free. Finally,
we show how the reachability property can be expressed within this algebraic analysis approach.

An Integro-differential-delay Operator Approach to Transformations of Linear Differential Time-delay
Systems . In [38], we further develop the study of rings of integro-differential-delay operators consid-

ered as noncommutative polynomial algebras satisfying standard calculus identities. Within the algebraic
analysis approach, we show that transformations and reductions of linear differential time-delay systems
can be interpreted as homomorphisms and isomorphisms of finitely presented left modules over an
algebra of integro-differential-delay operators. In particular, we show how Fiagbedzi-Pearson’s trans-
formation can be found again and generalized. This transformation maps the solutions of a first-order
differential linear system with state and input delays to the solutions of a purely state-space linear system.
Fiagbedzi-Pearson’s transformation reduces to the well-known Artstein’s reduction when the system has
no state delay and yields an isomorphism of the solution spaces.

An Integro-differential Operator Approach to Linear State-space Systems . In [37], the algebraic anal-

ysis approach to linear state-space systems is further developed using rings of integro-differential opera-
tors. The module structure of linear state-space systems is investigated over these rings. The module
associated with a linear state-space system is shown to be the direct sum of the stably free module defined
by the linear system without inputs and the free module defined by the inputs of the system.

Computation of Koszul homology and application to involutivity of partial differential systems
The formal integrability of systems of partial differential equations plays a fundamental role in dif-

ferent analysis and synthesis problems for both linear and nonlinear differential control systems. In [32],
following Spencer’s theory, to test the formal integrability of a system of partial differential equations,
we must study when the symbol of the system, namely, the top-order part of the linearization of the
system, is 2-acyclic or involutive, i.e., when certain Spencer cohomology groups vanish. Combining the
fact that Spencer cohomology is dual to Koszul homology and symbolic computation methods, we show
how to effectively compute the homology modules defined by the Koszul complex of a finitely presented
module over a commutative polynomial ring. These results are implemented using the OreMorphisms
package. We then use these results to effectively characterize 2-acyclicity and involutivity of the symbol of
a linear system of partial differential equations. Finally, we show explicit computations on two standard
examples.
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8.2 Computational Geometry

Efficient sampling in spectrahedra and volume approximation . In [21], we present algorithmic, com-

plexity, and implementation results on the problem of sampling points from a spectrahedron, that is, the
feasible region of a semidefinite program. Our main tool is geometric random walks. We analyze the
arithmetic and bit complexity of certain primitive geometric operations that are based on the algebraic
properties of spectrahedra and the polynomial eigenvalue problem. This study leads to the implemen-
tation of a broad collection of random walks for sampling from spectrahedra that experimentally show
faster mixing times than methods currently employed either in theoretical studies or in applications,
including the popular family of Hit-and-Run walks. The different random walks offer a variety of advan-
tages, thus allowing us to efficiently sample from general probability distributions, for example the family
of log-concave distributions which arise in numerous applications. We focus on two major applications
of independent interest: (i) approximate the volume of a spectrahedron, and (ii) compute the expectation
of functions coming from robust optimal control. We exploit efficient linear algebra algorithms and
implementations to address the aforementioned computations in very high dimension. In particular, we
provide a C++ open source implementation of our methods that scales efficiently, for the first time, up to
dimension 200. We illustrate its efficiency on various data sets.

On the Complexity of the Plantinga-Vegter Algorithm . In [23], we introduce a general toolbox for

precision control and complexity analysis of subdivision based algorithms in computational geometry.
We showrcase the toolbox on a well known example from this family; the adaptive subdivision algorithm
due to Plantinga and Vegter. The only existing complexity estimate on this rather fast algorithm was an
exponential worst-case upper bound for its interval arithmetic version. We go beyond the worst-case
by considering smoothed analysis, and prove polynomial time complexity estimates for both interval
arithmetic and finite precision versions of the Plantinga-Vegter algorithm. The employed toolbox is
a blend of robust probabilistic techniques coming from geometric functional analysis with condition
numbers and the continuous amortization paradigm introduced by Burr, Krahmer and Yap. We hope this
combination of tools from different disciplines would prove useful for understanding complexity aspects
of the broad family of subdivision based algorithms in computational geometry.

On the Error of Random Sampling: Uniformly Distributed Random Points on Parametric Curves
Given a parametric polynomial curve y : [a, b] — Rn, how can we sample a random point x € im(y) in

such a way that it is distributed uniformly with respect to the arc-length? Unfortunately, we cannot
sample exactly such a point—even assuming we can perform exact arithmetic operations. So we end
up with the following question: how does the method we choose affect the quality of the approximate
sample we obtain? In practice, there are many answers. However, in theory, there are still gaps in our
understanding. In [31], we address this question from the point of view of complexity theory, providing
bounds in terms of the size of the desired error.

8.3 Effective real algebraic geometry

PTOPO: Computing the Geometry and the Topology of Parametric Curves . In [27], we consider the

problem of computing the topology and describing the geometry of a parametric curve in R". We
present an algorithm, PTOPO, that constructs an abstract graph that is isotopic to the curve in the
embedding space. Our method exploits the benefits of the parametric representation and does not resort
to implicitization. Most importantly, we perform all computations in the parameter space and not in
the implicit space. When the parametrization involves polynomials of degree at most d and maximum
bitsize of coefficients 7, then the worst case bit complexity of PTOPO is Op (nd® + nd®t + d*(n? + nt) +
d3(n®t + n®) + n3d?r). This bound matches the current record bound Og (d® + d°1) for the problem of
computing the topology of a plane algebraic curve given in implicit form. For plane and space curves, if
N = max(d, ), the complexity of PTOPO becomes Op (N®), which improves the stateof-the-art result,
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due to Alcdzar and Diaz-Toca [CAGD10], by a factor of N 10, In the same time complexity, we obtain a
graph whose straight-line embedding is isotopic to the curve. However, visualizing the curve on top of the
abstract graph construction, increases the bound to OB(N”). For curves of general dimension, we can also
distinguish between ordinary and non-ordinary real singularities and determine their multiplicities in
the same expected complexity of PTOPO by employing the algorithm of Blasco and Pérez-Diaz [CAGD’19].
We have implemented PTOPO in maple for the case of plane and space curves. Our experiments illustrate
its practical nature.

Bounds for polynomials on algebraic numbers and application to curve topology

Let P € Z[X, Y] be a given square-free polynomial of total degree d with integer coefficients of bitsize
less than 7, and let VR(P) := (x, y) € R?, P(x, y) = 0 be the real planar algebraic curve implicitly defined
as the vanishing set of P. In [25], we give a deterministic algorithm to compute the topology of VR(P)
in terms of a simple straight-line planar graph G that is isotopic to VR(P). The upper bound on the bit
complexity of our algorithm is in O(d®7 + d®) which matches the current record bound for the problem
of computing the topology of a planar algebraic curve. However, compared to existing algorithms with
comparable complexity, our method does not consider any change of coordinates, and more importantly
the returned simple planar graph G yields the cylindrical algebraic decomposition information of the
curve in the original coordinates. Our result is based on two main ingredients: First, we derive amortized
quantitative bounds on the roots of polynomials with algebraic coefficients.

Beyond Worst-Case Analysis for Root Isolation Algorithms . Isolating the real roots of univariate

polynomials is a fundamental problem in symbolic computation and it is arguably one of the most
important problems in computational mathematics. The problem has a long history decorated with
numerous ingenious algorithms and furnishes an active area of research. However, the worst-case analysis
of root-finding algorithms does not correlate with their practical performance. In [33], we develop a
smoothed analysis framework for polynomials with integer coefficients to bridge the gap between the
complexity estimates and the practical performance. In this setting, we derive that the expected bit
complexity of Descartes solver to isolate the real roots of a polynomial, with coefficients uniformly
distributed, is OB(d2 + dt), where d is the degree of the polynomial and 7 the bitsize of the coefficients.

8.4 Number theory

On Polynomial Modular Number Systems over Z/pZ . Since their introduction in 2004,Polynomial

Modular Number Systems (PMNS) have become a very interesting tool for implementing cryptosys- tems
relying on modular arithmetic in a secure and efficient way. However, while their implementation is
simple, their parameterization is not trivial and relies on a suitable choice of the polynomial on which
the PMNS operates. The initial proposals were based on particular binomials and trinomials. But these
polynomials do not always provide systems with interesting characteristics such as small digits, fast
reduction, etc. In [19], we study a larger family of polynomials that can be exploited to design a safe and
efficient PMNS. To do so, we first state a complete existence theorem for PMNS which provides bounds
on the size of the digits for a generic polynomial, significantly improving previous bounds. Then, we
present classes of suitable polynomials which provide numerous PMNS for safe and efficient arithmetic.

Generating Very Large RNS Bases

Residue Number Systems (RNS) are proven to be effective in speeding up computations involving
additions and products. For these representations, there exists efficient modular reduction algorithms
that can be used in the context of arithmetic over finite fields or modulo large numbers, especially
when used in the context of cryptographic engineering. Their independence allows random draws of
bases, which also makes it possible to protect against side-channel attacks, or even to detect them using
redundancy. These systems are easily scalable, however the existence of large bases for some specific
uses remains a difficult question. In [18], we present four techniques to extract RNS bases from specific
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sets of integers, giving better performance and flexibility to previous works in the litterature. While our
techniques do not allow to solve efficiently every possible case, we provide techniques to provably and
efficiently find the largest possible available RNS bases in several cases, improving the state-of-the-art on
various works of the recent literature.

A classification of ECM-friendly families using modular curves . In [20], we establish a link between

the classification of ECM-friendly curves and Mazur’s program B, which consists in parameterizing all the
families of elliptic curves with exceptional Galois image. Building upon two recent works which treated
the case of congruence subgroups of prime-power level which occur for infinitely many j-invariants, we
prove that there are exactly 1525 families of rational elliptic curves with distinct Galois images which are
cartesian products of subgroups of prime-power level. This makes a complete list of rational families
of ECM-friendly elliptic curves, out of which less than 25 were known in the literature. We furthermore
refine a heuristic of Montgomery to compare these families and conclude that the best 4 families which
can be put in a = —1 twisted Edwards’ form are new.

Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection . In [34],

we propose (honest verifier) zero-knowledge arguments for the modular subset sum problem. Previous
combinatorial approaches, notably one due to Shamir, yield arguments with cubic communication
complexity (in the security parameter). More recent methods, based on the MPC-in-the-head technique,
also produce arguments with cubic communication complexity. We improve this approach by using
a secret-sharing over small integers (rather than modulo q) to reduce the size of the arguments and
remove the prime modulus restriction. Since this sharing may reveal information on the secret subset, we
introduce the idea of rejection to the MPC-in-the- head paradigm. Special care has to be taken to balance
completeness and soundness and preserve zero-knowledge of our arguments. We combine this idea with
two techniques to prove that the secret vector (which selects the subset) is well made of binary coordi-
nates. Our new protocols achieve an asymptotic improvement by producing arguments of quadratic size.
This improvement is also practical: for a 256-bit modulus q, the best variant of our protocols yields 13 KB
arguments while previous proposals gave 1180 KB arguments, for the best general protocol, and 122 KB,
for the best protocol restricted to prime modulus. Our techniques can also be applied to vectorial variants
of the subset sum problem and in particular the inhomogeneous short integer solution (ISIS) problem for
which they provide an efficient alternative to state-of-the-art protocols when the underlying ring is not
small and NTT-friendly. We also show the application of our protocol to build efficient zero-knowledge
arguments of plaintext and/or key knowledge in the context of fully-homomorphic encryption. When
applied to the TFHE scheme, the obtained arguments are more than 20 times smaller than those obtained
with previous protocols. Eventually, we use our technique to construct an efficient digital signature
scheme based on a pseudorandom function due to Boneh, Halevi, and Howgrave-Graham.

Computing groups of Hecke characters . In [35], we describe algorithms to represent and compute

groups of Hecke characters. We make use of an idelic point of view and obtain the whole family of such
characters, including transcendental ones. We also show how to isolate the algebraic characters, which
are of particular interest in number theory. This work has been implemented in Pari/GP, and we illustrate
our work with a variety of explicit examples using our implementation.

Algorithmic aspects of elliptic bases in finite field discrete logarithm algorithms

Elliptic bases, introduced by Couveignes and Lercier in 2009, give an elegant way of representing
finite field extensions. A natural question which seems to have been considered independently by
several groups is to use this representation as a starting point for small characteristic finite field discrete
logarithm algorithms. This idea has been recently proposed by two groups working on it, in order to
achieve provable quasi-polynomial time for discrete logarithms in small characteristic finite fields. In this
paper, we don't try to achieve a provable algorithm but, instead, investigate the practicality of heuristic



Project OURAGAN 21

algorithms based on elliptic bases. In [26], our key idea, is to use a different model of the elliptic curve
used for the elliptic basis that allows for a relatively simple adaptation of the techniques used with former
Frobenius representation algorithms. We haven’t performed any record computation with this new
method but our experiments with the field F 3 1345 indicate that switching to elliptic representations
might be possible with performances comparable to the current best practical methods.

8.5 Numerical Algebraic Geometry
Functional norms, condition numbers and numerical algorithms in algebraic geometry . In numer-

ical linear algebra, a well-established practice is to choose a norm that exploits the structure of the
problem at hand in order to optimize accuracy or computational complexity. In numerical polynomial
algebra, a single norm (attributed to Weyl) dominates the literature. In [22], we initiates the use of Ly
norms for numerical algebraic geometry, with an emphasis on L. This classical idea yields strong
improvements in the analysis of the number of steps performed by numerous iterative algorithms. In
particular, we exhibit three algorithms where, despite the complexity of computing L,,-norm, the use
of L,-norms substantially reduces computational complexity: a subdivision-based algorithm in real
algebraic geometry for computing the homology of semialgebraic sets, a well-known meshing algorithm
in computational geometry, and the computation of zeros of systems of complex quadratic polynomials
(a particular case of Smale’s 17th problem).

Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces

The condition-based complexity analysis framework is one of the gems of modern numerical algebraic
geometry and theoretical computer science. One of the challenges that it poses is to expand the currently
limited range of random polynomials that we can handle. Despite important recent progress, the available
tools cannot handle random sparse polynomials and Gaussian polynomials, that is polynomials whose
coefficients are i.i.d. Gaussian random variables. In [30], we initiate a condition-based complexity
framework based on the norm of the cube that is a step in this direction. We present this framework
for real hypersurfaces and univariate polynomials. We demonstrate its capabilities in two problems,
under very mild probabilistic assumptions. On the one hand, we show that the average run-time of the
Plantinga-Vegter algorithm is polynomial in the degree for random sparse (alas a restricted sparseness
structure) polynomials and random Gaussian polynomials. On the other hand, we study the size of the
subdivision tree for Descartes’ solver and run-time of the solver by Jindal and Sagraloff (2017). In both
cases, we provide a bound that is polynomial in the size of the input (size of the support plus logarithm
of the degree) for not only on the average, but all higher moments. [This is the journal version of the
conference paper with the same title.]

8.6 Miscancellanous

Generalized Perron roots and solvability of the absolute value equation . LetAbe areal (nx n)-matrix.

The piecewise linear equation system z — A|z| = b is called an absolute value equation (AVE). It is well-
known to be equivalent to the linear complementarity problem (LCP). For AVE and LCP unique solvability
is comprehensively characterized in terms of conditions on the spectrum (AVE), resp., the principal
minors (LCP) of the coefficient matrix. For mere solvability no such characterization exists. In [39], we
close this gap in the theory on the AVE-side. The aligning spectrum of A consists of real eigenvalues of
the matrices SA, where S € diag(+/ — n), which have a corresponding eigenvector in the positive orthant
of Rn. For the mapping degree of the piecewise linear function z — z— A|z| we prove, under some mild
genericity assumptions on A: The degree is 1 if all aligning values are smaller than 1, it is 0 if all aligning
values are larger than 1, and in general it is congruent to (k + 1) mod 2 if k aligning values are larger than 1.
The modulus cannot be omitted because the degree can both increase and decrease.
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The Multivariate Schwartz-Zippel Lemma

Motivated by applications in combinatorial geometry, we consider the following question: Let A =
(11,12,...,Am) be an m-partition of a positive integer n, Si = CAi be finite sets, and let S := S1 x S2 x
... x Sm c Cn be the multi-grid defined by Si. Suppose p is an n-variate degree d polynomial. How
many zeros does p have on S? In [28], we first develop a multivariate generalization of the Combinatorial
Nullstellensatz that certifies the existence of a point ¢ € S so that p(#) # 0. Then, we show that a natural
multivariate generaliza- tion of the DeMillo-Lipton-Schwartz-Zippel lemma holds, except for a special
family of polynomials that we call A-reducible. This yields a simultaneous generalization of Szemer ‘edi-
Trotter theorem and Schwartz-Zippel lemma into higher dimensions, and has applications in incidence
geometry. Finally, we develop a symbolic algorithm that identifies certain A-reducible polynomials. More
precisely, our symbolic algorithm detects polynomials that include a cartesian product of hypersurfaces
in their zero set. It is likely that using Chow forms the algorithm can be generalized to handle arbitrary
A-reducible polynomials, which we leave as an open problem.

A Geometric Summation of the Geometric Series . (read the paper [29], this is a one page contribu-

tion).

Coherent presentations of monoids with a right-noetherian Garside family

In [24], we show how to construct coherent presentations (presentations by generators, relations and
relations among relations) of monoids admitting a right-noetherian Garside family. Thereby, it resolves
the question of finding a unifying generalisation of the following two distinct extensions of construction
of coherent presentations for spherical Artin-Tits monoids: to general Artin-Tits monoids, and to Garside
monoids. The result is applied to some monoids which are neither Artin-Tits nor Garside.

8.7 PhD thesis

Computation of the L,,-norm of finite-dimensional linear systems . In the thesis [43], we study the

computation of the Ly,-norm of finite-dimensional linear time-invariant systems. This problem is
first reduced to the computation of the maximal y-projection of the real solutions (x, y) of a bivariate
polynomial equations system X : {P =0, % = 0}, where P € Z[x, y]. Then, we use standard computer
algebra methods to solve this problem. In particular, we alternatively study a method based on rational
univariate representations, a method based on root separation, and finally a method first based on the
sign variation of the leading coefficients of a signed subresultant sequence (Sturm-Habicht) and on
the identification of an isolating interval for the maximal y-projection of the real solutions of . We
then compute the worst-case bit complexity of each method and compare their theoretical behavior.
We also implement each method in Maple and compare their practical behavior (average complexity).
A generalization of the above algorithms is finally proposed to the case where the polynomial P also
depends on a set of parameters a = [aj, ..., a4] € R%. To do that, we solve the problem using the notion of
the Cylindrical Algebraic Decomposition, well-known in algebraic geometry.

The Mahler measure of a family of exact polynomials . In the thesis [42], we investigate the sequence

of Mahler measures of a family of bivariate regular exact polynomials, called Pd :=P0<i+ j<dxiyj
, unbounded in both degree and the genus of the algebraic curve. We obtain a closed formula for the
Mahler measure of Pd in termsof special values of the Bloch-Wigner dilogarithm. We approximate m(Pd),
for 1 = d <1000, with arbitrary precision using SageMath. Using 3 different methods we prove that the
limitof the sequence of the Mahler measure of this family converges to 9/ (27%){ (3). Moreover, we compute
the asymptotic expansion of the Mahler measure of Pd which implies that the rate of the convergence
is O(log(d)/ d?). We also prove a generalization of the theorem of the Boyd-Lawton which asserts that
the multivariate Mahler measures can be approximated using the lower dimensional Mahler measures.
Finally, we prove that the Mahler measure of Pd, for arbitrary d can be written as a linear combination of
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L-functions associated with an odd primitive Dirichlet character. In addition, we compute explicitly the
representation of the Mahler measure of Pd in terms of L-functions, for 1 < d <6.

Structures géométriques et bords des espaces symétriques . Dans [41], nous montrons des résultats

de complétude et d’'incomplétude de certaines variétés fermées portant une structure nil-affine plate,
dite a rayons. Ces géométries a rayons apparaissent aux bords des espaces symétriques et dans des
contextes variés comme la géométrie affine ou de contact. Nous montrons que les variétés incompletes
ont une développante qui revét son image. Cela permet de montrer de nouveaux cas de la conjecture de
Markus sur les variétés affines fermées a volume parallele. Nous étudions ensuite les représentations du
census de Falbel-Koseleff-Rouillier de groupes fondamentaux de 3-variétés dans le groupe des isométries
du plan hyperbolique complexe. Nous proposons le calcul numérique de leurs ensembles limites et
désignons ceux qui sont fractals et présentent donc expérimentalement la qualité d’étre discret. Nous
montrons que les représentations qui semble discrétes grace a leur ensemble limite se factorisent la
plupart du temps par un groupe d’un triangle hyperbolique complexe. Cela généralise un phénomene
constaté par Deraux dans un cadre plus large et systématique.

9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

* The objective of our Agrement with WATERLOO MAPLE INC. is to promote software developments
to which we actively contribute.

On the one hand, WMI provides man power, software licenses, technical support (development,
documentation and testing) for an inclusion of our developments in their commercial products.
On the other hand, OURAGAN offers perpetual licenses for the use of the concerned source code.
As past results of this agreement one can cite our C-Library RS for the computations of the real
solutions zero-dimensional systems or also our collaborative development around the Maple
package DV for solving parametric systems of equations.

For this term, the agreement covers algorithms developed in areas including but not limited to:
1) solving of systems of polynomial equations, 2) validated numerical polynomial root finding,
3) computational geometry, 4) curves and surfaces topology, 5) parametric algebraic systems, 6)
cylindrical algebraic decompositions, 7) robotics applications.

In particular, it covers our collaborative work with some of our partners, especially the Gamble
Project-Team - Inria Nancy Grand Est.

* A research contract covering, in particular, a CIFRE grant for a PhD (Alexandre Lé) was signed
with the company Safran Electronics & Defense for the conception of parallel robots for inertial
stabilization.

10 Partnerships and cooperations

10.1 National initiatives
10.1.1 ANR
¢ ANRJCJC GALOP (Games through the lens of ALgebra and OPptimization)

Coordinator: Elias Tsigaridas
Duration: 2018 — 2022

GALOP is a Young Researchers (JCJC) project with the purpose of extending the limits of the state-
of-the-art algebraic tools in computer science, especially in stochastic games. It brings original
and innovative algebraic tools, based on symbolic-numeric computing, that exploit the geometry
and the structure and complement the state-of-the-art. We support our theoretical tools with a
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highly efficient open-source software for solving polynomials. Using our algebraic tools we study
the geometry of the central curve of (semi-definite) optimization problems. The algebraic tools and
our results from the geometry of optimization pave the way to introduce algorithms and precise
bounds for stochastic games.

ANR JCJC SHoCoS (Structure and Homotopy of Configuration Spaces)
Coordinator: Najib Idrissi (Univ. Paris Cité, IMJ-PRG)
Participant: Yves Guiraud

This is a project of fundamental research in mathematics, specifically, algebraic topology, homo-
topical algebra, and quantum algebra. It is concerned with configuration spaces, which consist
in finite sequences of pairwise distinct points in a manifold. Over the past couple of decades,
strides have been made in the study and computation of the homotopy types of configuration
spaces, i.e., their shape up to continuous deformation. These advances were possible thanks to the
rich structure of configuration spaces, which comes from the theory of operads. Moreover, a new
theory, factorization homology, allowed the use of configuration spaces to compute topological
field theories, topological invariants of manifolds inspired by physics. Our purpose is to exploit
the full operadic structure of configuration spaces to obtain new kinds of stabilizations in the
homotopy types of configuration spaces, and to use this stability to effectively compute topological
field theories from deformation quantization.

10.1.2 Inria Exploratory actions

* LOCUS (non-Linear geOmetriC compUting at Scale) Inria Exploratory Action

Coordinator: Elias Tsigaridas
Duration 2022 - 2025

Summary : LOCUS shapes a novel theoretical, algorithmic, and computational framework at the
intersection of computational algebra, high dimensional geometric and statistical computing, and
optimization. It focuses on sampling and integrating in convex bodies, algorithms for convex opti-
mization, and applications in structural biology. It aims to deliver effective theoretical algorithms
and efficient open source software for the problems of interest.

Réal (Réécriture algébrique) Inria Exploratory Action
Coordinator : Yves Guiraud
Duration : 2022-2025

Summary : Rewriting is a branch of computer algebra consisting in transforming mathematical
expressions according to admissible rules. Examples range from elementary situations, such as a
remarkable identity (a+b)?> = a®+2ab+ b? in aring, to calculations in complex algebraic structures,
such as the Jacobi relation [[x,y],z] = [x,[y,z]] - [[X,z],y] in a Lie algebra.

The Réal project proposes to explore the connections between rewriting and algebra. The aim is to
understand the algebraic foundations of rewriting, to integrate similar calculation mechanisms
known in algebra, and to develop new calculation tools with a view to applications in three areas
of mathematics: combinatorial and higher algebra, theory groups and representations, study of
algebraic systems and varieties.

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: selection

Member of the conference program committees
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¢ Alban Quadrat co-organized with Eva Zerz the invited session Algebraic and Geometric Approaches
to Systems Structure and Control at the 5th International Symposium on Mathematical Theory of
Networks and Systems (MTNS 2022), 12-16 September 2022, Bayreuth, Germany, and the invited
session Algebraic and symbolic methods for mathematical system theory at the 8th IFAC Sympo-
sium on System Structure and Control (SSSC), September 27-30, Montreal, Canada, with Thomas
Cluzeau.

* Pierre-Vincent Koseleff co-organized the Journées Nationales de Calcul Formel, Luminy, mars 2022
(JNCF2022).

¢ Pierre-Vincent Koseleff is a member of the Scientific Committee of the Journées Nationales de
Calcul Formel (JNCF).

¢ Pierre-Vincent Koseleff is a Member of the organizing committee of the conference Fondation of
Computational Mathematics (FoCM 2023).

¢ Martin Deraux and Fabrice Rouillier co-organized the meeting Complex Hyperbolic Geometry and
Related Topics / Autour de la géométrie hyperbolique complexe at Centre International de Rencontres
Mathématiques (CIRM), 4-8 July 2022, Luminy, France.

11.1.2 Journal

Member of the editorial boards

¢ Elisha Falbel is a member of the editorial board of Sao Paulo Journal of Mathematical Sciences -
Springer

* Antoine Joux is a member of the editorial board of Designs, Codes and Cryptography

¢ Alban Quadrat is an associate editor of Multidimensional Systems; and Signal Processing, Springer,
¢ Alban Quadrat is is an associate editor of Maple Transactions.

¢ Fabrice Rouillier is an associate editor of Journal of Symbolic Computation, Elsevier,

¢ Fabrice Rouillier is an associate editor of Maple Transactions.

11.1.3 Invited talks

* Yves Guiraud gave a talk on Collapsing schemes for differential graded algebras at the Séminaire
d’algebre de 'Institut Camille Jordan, Saint-Ftienne, November 2022.

¢ Antonin Guilloux gave an invited talk on Slimness in the 3-sphere at the conference Complex
Hyperbolic Geometry and Related Topics / Autour de la gé¢ométrie hyperbolique complexe at Centre
International de Rencontres Mathématiques (CIRM).

11.1.4 Scientific expertise

¢ Yves Guiraud is an elected member of the Comité National de la Recherche Scientifique, section 41
(mathematics), 2021-2026. He is an appointed member of the section bureau.

* Yves Guiraud was an elected member of the Conseil scientifique of the department of mathematics
of Univ. Paris Cité, 2019-2022.

¢ Alban Quadrat was a member of the Scientific Committee of the Journées Nationales de Calcul
Formel (JNCF). He is also a member of the technical committee Linear Systems of the International
Federation of Automatic Control (IFAC).


https://sourcesup.renater.fr/www/orga-jncf/
https://focm2023.org/
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11.1.5 Research administration

Alban Quadrat was a member of the Conseil d’Administration of the Société Mathématique de
France (SMF).

Yves Guiraud is an elected member of the Conseil de laboratoire of IMJ-PRG, since 2021.

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

L]

L]

Antonin Guilloux, Elias Tsigaridas, Master 1, Effective Linear Algebra and Polynomials. (24h course
+ 36h exercises)

Antonin Guilloux, Fabrice Rouillier, Master 1, Introduction to Algebraic geometry (24h course + 36h
exercises)

Jean-Claude Bajard, Antonin Guilloux, Pierre-Vincent Koseleff and Fabrice Rouillier take part to the
"agrégation de mathématiques - option C" at Sorbonne Université

Pierre-Vincent Koseleff : Master 1 Maths - Sorbonne Université : Algebraic Cryptography (36H) at
Sorbonne Université

Pierre-Vincent Koseleff : Master 2 EducFellow in Maths - Computer Algebra (120H) at Sorbonne
Université

Pierre-Vincent Koseleff : Master 1 Maths - Sorbonne Université : Algebraic Algorithmic (36H) at
Sorbonne Université

Pascal Molin manages the Master math-info spécialités crypto et big-data at Paris Université
Pascal Molin : teaches codes et crypto and théorie de l'information in Master 1 at Paris Université

Elias Tsigaridas, 24h “Algebraic techniques in optimation”, Master 2 Mathématiques fondamentales,
Sorbonne Université.

Elias Tsigaridas : Algorithms and Competitive Programming, Ingénieur 2A, modal. 20h lectures and
25h TD. Department of Informatics (LIX), Ecole Polytechnique, France

Elias Tsigaridas : Algorithms for data analysis in C++, Ingénieur 2A. 40h TD. Department of Infor-
matics (LIX), Ecole Polytechnique, France

11.2.2 Supervision

Jean-Claude Bajard supervises the PhD of Thibauld Feneuil since 10/2020,

Elias Tsigaridas supervises the PhD of Carles Checa, since 10/2020 (co-supervision with Ioannis
Emiris)

Pierre-Vincent Koseleff supervises the PhD of Andrea Negro , since 10/2021, (co-supervision with
Julien Marché IMJ-PRG)

Elias Tsigaridas and Fabrice Rouillier supervise the PhD of Christina Katsamaki, defense planned in
early 2023.

Yves Guiraud supervises, with Pierre-Louis Curien (CNRS, Univ. Paris Cité, IRIF) the PhD thesis of
Alen Duri¢. Defence is planned in March 2023

Alban Quadrat supervises the PhD of Camille Pinto since 10/2022

Fabrice Rouillier supervises the PhD of Alexandre Lé (Safran CIFRE Grant) (co-dupervision with
Damien Chablat - LS2N Nantes)
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¢ Yves Guiraud supervised, with Muriel Livernet (Univ. Paris Cité, IMJ-PRG) the research internship
of Filipp Buryak (Ukrainian master student, hosted by Univ. Paris Cité), On the classifying space of
Artin monoids (after G. Paolini).

¢ Yves Guiraud supervised, with Emmanuel Wagner (Univ. Paris Cité, IMJ-PRG) the research intern-
ship of Antoine Bussy (M2 mathématiques fondamentales, Sorbonne Université), Diagrammatics
for Coxeter groups and their braid groups (after B. Elias and G. Williamson).

¢ Alban Quadrat supervised the Master thesis of Camille Pinto, Towards an effective integro-differential
elimination theory, M2 Algébre Appliquée, University of Paris Saclay.

» Pierre-Vincent Koseleff supervised Théophile Cartraud with J. -P. Marco, Propriétés et relations entre
signaux périodiques et attracteurs nodaux pour la reconstruction de dynamiques complexes, M2
Mathematiques fondamentales, Sorbonne Université.

¢ Pierre Vicent Koseledd supervised Thibaut Misme Générateurs de l'anneau des entiers d’extensions

cyclotomiques réelles, M2 Algebre Appliquée, University of Paris Saclay.

11.2.3 Juries

¢ Alban Quadrat was a referee of the PhD thesis of Alexandre Rigaud Analyse des notions de stabilité
pour les modeles 2D de Roesser et Fornasini-Marchesini, University of Poitiers, December, 2022.

¢ Fabrice Rouillier was a referee of the PhD thesis of Owen Rouillé []

¢ Antonin Guilloux and Fabrice Rouillier where in the Jury of the PhD of Mahya Mehrabdollahei [42]
¢ Alban Quadrat en Fabrice Rouillier were in the jury of the PhD of Grace Younes (January 2022)

¢ Elisah Falbel, Antonin Guilloux and Fabrice Rouillier where in the Jury of the PhD of Raphaél

Alexandre, June 2022 [41]

11.3 Popularization
¢ Fabrice Rouillier is the chair of the association Animath
¢ Fabrice Rouillier is Chargé de mission médiation for the Inria Paris research center
¢ Fabrice Rouiller is a member of the "Conseil d’administration" of the association Math.En.Jeans
¢ Fabrice Rouillier is a member of the comité de pilotage de la semaine des mathématiques

¢ Fabrice Rouillier est membre du Jury des Olympiades Nationales de Mathématiques

11.3.1 Internal or external Inria responsibilities

¢ Yves Guiraud is an elected member of the Comité de centre of the INRIA Research Center of Paris,
since 2019 (the committee is inactive since the COVID).
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