RESEARCH CENTRE

N 2022
at Université Cote d’Azur ACTIVI TY REPORT

Project-Team

STAMP

Safety Techniques based on Formalized
Mathematical Proofs

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Proofs and Verification

Contents

Project-Team STAMP

1

2

Team members, visitors, external collaborators
Overall objectives

Research program
3.1 Theoretical background

Application domains

4.1 Mathematical COMPONENtS v v v it i et e et e e e e e e e e e e
4.2 Proofsincryptography e
4.3 Proofsforrobotics e

Highlights of the year

New software and platforms

6.1 Newsoftware e
6.1.1 COQ - - v it e e e e e e e e
6.1.2 Math-Componentsttt
6.1.3 BasyCrypt. o o i i e e e e e e e e e e e
6.1.4 ELPL. e
6.1.5 cog-elpi
6.1.6 Jasmin e e e e e e
6.1.7 Math-comp-analysis e e
6.1.8 HierarchyBuilder e
6.1.9 Abel-Ruffini. e
6.1.10 SEmMantiCs o v v vt e e e e e e e e e e e e e e e e e e

New results

7.1 Alogicforexpectation i e e
7.2 Formal verification of Dilithium o .
7.3 Resistance to timing attacksand Spectre L L L o L
7.4 Enforcing fine-grained constant-time policies o .
7.5 Fastequalitytestswithcoqg-elpi e
7.6 Formal study of Double-word arithmetic algorithms
7.7 Formal study of Fast Fourier Transforms
7.8 A generic library for injective, surjective, and bijective functions
7.9 Simple automatic positivity L e e e e e
7.10 Lebesgue measure and Lebesgue integral for Mathematical Components
7.11 Semantics of Probabilistic Programs using s-Finite KernelsinCoq
7.12 A stratified variant of univalent parametricity 0 0L
7.13 A new design pattern for the formalization of subsets in mathematics
7.14 Formalizing network sorting algorithms
7.15 Toward a type class engine for Coq writteninElpi
7.16 Hierarchy Builder e e
7.17 Jasmin development e e e e e e e e e e e e e e e e e
7.18 CryptoVerif to EasyCrypt o o it e e e e e e
7.19 Models of nominal groups e e
7.20 Towards a library of field extensions
7.21 Easycryptlibrary L e
7.22 Collisions between Bezier Curves and straight linesegments
7.23 Document management for the Cogsystem

8 Bilateral contracts and grants with industry
8.1 Bilateral contracts withindustry

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria associate team not involved in an IIL or an international program
9.2 International research visitors
9.2.1 Visits ofinternational scientists L L o L

9.3 National initiatives . .
93.1 ANR.......
932 FUI
9.3.3 PEPR
9.3.4 Inria Challenges

10 Dissemination

10.1 Promoting scientificactivities L L L e

10.1.1 Scientific events:
10.1.2 Scientific events:
10.1.3 Journal
10.1.4 Invited talks . .

Organisationttt
selection e

10.1.5 Leadership within the scientific community
10.1.6 Research administration e
10.2 Teaching - Supervision - Juries e

10.2.1 Teaching
10.2.2 Supervision . .
10.2.3 Juries
10.3 Popularization

10.3.1 Internal or external Inria responsibilities

10.3.2 Interventions .

11 Scientific production
11.1 Major publications . .
11.2 Publications of the year

17
17

17
17
17
17
17
18
18
18
19
19

19
19
19
19
19
20
20
20
20
20
20
20
20
20
20

Project STAMP

Project-Team STAMP

Creation of the Project-Team: 2019 November 01

Keywords

Computer sciences and digital sciences

A2.1.11. - Proof languages

A2.4.3. - Proofs

A4.5. - Formal methods for security

A5.10.3. — Planning

A7.2. - Logic in Computer Science

A7.2.3. - Interactive Theorem Proving

A7.2.4. —Mechanized Formalization of Mathematics
A8.3. — Geometry, Topology

A8.4. — Computer Algebra

A8.10. — Computer arithmetic

Other research topics and application domains

B6.1. — Software industry
B9.5.1. — Computer science

B9.5.2. — Mathematics

https://radar.inria.fr/keywords/2022/computing
https://radar.inria.fr/keywords/2022/other

2 Inria Annual Report 2022

1 Team members, visitors, external collaborators

Research Scientists

¢ Yves Bertot [Team leader, INRIA, Senior Researcher, HDR]
¢ Cyril Cohen [INRIA, Researcher]

¢ Benjamin Grégoire [INRIA, Researcher]

¢ Laurence Rideau [INRIA, Researcher]

¢ Enrico Tassi [INRIA, Researcher]

¢ Laurent Théry [INRIA, Researcher]

PhD Student

e Swarn Priya [INRIA]

Technical Staff

¢ Pierre Boutry [INRIA, Engineer]
e Maxime Denes [INRIA]

¢ Jean-Christophe Lechenet [INRIA, Engineer]

Interns and Apprentices

¢ Quentin Corradi [ENS Lyon, Intern, from May 2022 until Aug 2022]
¢ Léon Ducruet [ENS Lyon, Intern, from May 2022 until Jul 2022]
¢ Lucas Tabary-Maujean [ENS Paris-Saclay, Intern, from Jun 2022 until Jul 2022]

¢ Mohit Kumar Tekriwal [University of Michigan, from Oct 2022, Visit supported by the French
Embassy in the USA]

Administrative Assistant

¢ Nathalie Bellesso [INRIA]

Visiting Scientists
¢ Andreas Hulsing [UNIV EINDHOVEN, from Sep 2022]

¢ Matteo Manighetti [UNIV BOLOGNE, from Oct 2022 until Oct 2022]

External Collaborator

e Gilles Barthe [INSTITUT MAX-PLANCK, HDR]

Project STAMP 3

2 Overall objectives

Computers and programs running on these computers are powerful tools for many domains of human
activities. In some of these domains, program errors can have enormous consequences. It will become
crucial for all stakeholders that the best techniques are used when designing these programs.

We advocate using higher-order logic proof assistants as tools to obtain better quality programs and
designs. These tools make it possible to build designs where all decisive arguments are explicit, ambiguity
is alleviated, and logical steps can be verified precisely. In practice, we are intensive users of the Coq
system and we participate actively to the development of this tool, in collaboration with other teams at
Inria, and we also take an active part in promoting its usage by academic and industrial users around the
world.

Many domains of modern computer science and engineering make a heavy use of mathematics. If we
wish to use proof assistants to avoid errors in designs, we need to develop corpora of formally verified
mathematics that are adapted to these domains. Developing libraries of formally verified mathematics
is the main motivation for our research. In these libraries, we wish to capture not only the knowledge
that is usually recorded in definitions and theorems, but also the practical knowledge that is recorded in
mathematical practice, idioms, and work habits. Thus, we are interested in logical facts, algorithms, and
notation habits. Also, the very process of developing an ambitious library is a matter of organisation, with
design decisions that need to be evaluated and improved. Refactoring of libraries is also an important
topic. Among all higher-order logic based proof assistants, we contend that those based on Type theory
are the best suited for this work on libraries, thanks to their strong capabilities for abstraction and modular
re-use.

The interface between mathematics, computer science and engineering is large. To focus our activities,
we will concentrate on applications of proof assistants to two main domains: cryptography and robotics.
We also develop specific tools for proofs in cryptography, mainly around a proof tool named EasyCrypt.

3 Research program

3.1 Theoretical background

The proof assistants that we consider provide both a programming language, where users can describe
algorithms performing tasks in their domain of interest, and a logical language to reason about the
programs, thus making it possible to ensure that the algorithms do solve the problems for which they
were designed. Trustability is gained because algorithms and logical statements provide multiple views of
the same topic, thus making it possible to detect errors coming from a mismatch between expected and
established properties. The verification process is itself a logical process, where the computer can bring
rigor in aligning expectations and guarantees.

The foundations of proof assistants rest on the very foundations of mathematics. As a consequence,
all aspects of reasoning must be made completely explicit in the process of formally verifying an algorithm.
All aspects of the formal verification of an algorithm are expressed in a discourse whose consistency is
verified by the computer, so that unclear or intuitive arguments need to be replaced by precise logical
inferences.

One of the foundational features on which we rely extensively is Type Theory. In this approach a very
simple programming language is equiped with a powerful discipline to check the consistency of usage:
types represent sets of data with similar behavior, functions represent algorithms mapping types to other
types, and the consistency can be verified by a simple computer program, a type-checker. Although they
can be verified by a simple program, types can express arbitrary complex objects or properties, so that
the verification work lives in an interesting realm, where verifying proofs is decidable, but finding the
proofs is undecidable.

This process for producing new algorithms and theorems is a novelty in the development of mathemat-
ical knowledge or algorithms, and new working methods must be devised for it to become a productive
approach to high quality software development. Questions that arise are numerous. How do we avoid
requiring human assistance to work on mundane aspects of proofs? How do we take advantage of all
the progress made in automatic theorem proving? How do we organize the maintenance of ambitious
corpora of formally verified knowledge in the long term?

4 Inria Annual Report 2022

To acquire hands-on expertise, we concentrate our activity on three aspects. The first one is founda-
tional: we develop and maintain a library of mathematical facts that covers many aspects of algebra. In
the past, we applied this library to proofs in group theory, but it is increasingly used for many different
areas of mathematics and by other teams around the world, from combinatorics to elliptic cryptography,
for instance. The second aspect is applicative: we develop a specific tool for proofs in cryptography, where
we need to reason on the probability that opponents manage to access information we wish to protect.
For this activity, we develop a specific proof system, relying on a wider set of automatic tools, with the
objective of finding the tools that are well adapted to this domain and to attract users that are initially
specialists in cryptography but not in formal verification. The third domain is robotics, as we believe that
the current trend towards more and more autonomous robots and vehicles will raise questions of safety
and trustability where formal verification can bring significant added value.

4 Application domains

4.1 Mathematical Components

The Mathematical Components library is the main by-product of an effort started almost two decades ago
to provide a formally verified proof for a major theorem in group theory. Because this major theorem had
a proof published in books of several hundreds of pages, with elements coming from character theory,
other coming from algebra, and some coming from real analysis, it was an exercice in building a large
library, with results in many domains, and in establishing clear guidelines for further increase and data
search.

This library has proved to be a useful repository of mathematical facts for a wide area of applications,
so that it has a growing community of users in many countries (Denmark, France, Germany, Japan,
Singapore, Spain, Sweden, UK, USA) and for a wide variety of topics (transcendental number theory,
elliptic curve cryptography, articulated robot kinematics, recently block chain foundations).

Interesting questions on this library range around the importance of decidability and proofirrelevance,
the way to structure knowledge to automatically inherit theorems from one topic to another, the way
to generate infrastructure to make this automation efficient and predictable. In particular, we want to
concentrate on adding a new mathematical topic to this library: real analysis and then complex analysis
(Mathematical Components Analysis).

On the front of automation, we are convinced that a higher level language is required to describe
similarities between theories, to generate theorems that are immediate consequences of structures, etc,
and for this reason, we invest in the development of a new language on top of the proof assistant (ELPI).

4.2 Proofs in cryptography

When we work on cryptography, we are interested in the formal verification of proofs showing that
some cryptographic primitives provide good guarantees against unwanted access to information. Over
the years we have developed a technique for this kind of reasoning that relies on a programing logic
(close to Hoare logic) with probabilistic aspects and the capability to establish relations between several
implementations of a problem. The resulting programming logic is called probabilistic relational Hoare
logic. We also study questions of side-channel attacks, where we wish to guarantee that opponents cannot
gain access to protected knowledge, even if they observe specific features of execution, like execution
time (to which the answer lies in constant-time execution) or partial access to memory bits (to which the
answer lies in masking).

For this domain of application, we choose to work with a specific proof tool (EasyCrypt), which com-
bines powerful first-order reasoning and use of automatic tools, with a specific support for probabilistic
relational Hoare Logic. The development of this EasyCrypt proof tool is one of the objectives of our team.

When it comes to formal proofs of resistance to side-channel attacks, we contend that it is necessary to
verify formally that the compiler used in the production of actually running code respects the resistance
properties that were established in formally verified proofs. One of our objectives is to develop such a
compiler (Jasmin) and show its strength on a variety of applications.

The pair of tools EasyCrypt and Jasmin has also proved its worth in the formal verification of correct-
ness for post-quantum cryptography.

Project STAMP 5

4.3 Proofs for robotics

Robots are man-made artifacts where numerous design decisions can be argued based on logical or
mathematical principles. For this reason, we wish to use this domain of application as a focus for our
investigations. The questions for which we are close to providing answers involve precision issues in
numeric computation, obstacle avoidance and motion planning (including questions of graph theory),
articulated limb kinematics and dynamics, and balance and active control.

From the mathematical perspective, these topics require that we improve our library to cover real
algebraic geometry, computational geometry, real analysis, graph theory, and refinement relations
between abstract algorithms and executable programs.

In the long run, we hope to exhibit robots where pieces of software and part of the design have been
subject to formal verification.

5 Highlights of the year

The software tool EasyCrypt and Jasmin that we develop are instrumental for the Libjade library, with a
notable application to the formal verification of NIST-approved post-quantum cryptography algorithms
like Dilithium.

6 New software and platforms

6.1 New software
6.1.1 Coq

Name: The Coq Proof Assistant
Keywords: Proof, Certification, Formalisation

Scientific Description: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and
co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a
very expressive logic. The calculus allows to formalize both general mathematics and computer
programs, ranging from theories of finite structures to abstract algebra and categories to program-
ming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel
including efficient conversion tests on which are built a set of higher-level layers: a powerful proof
engine and unification algorithm, various tactics/decision procedures, a transactional document
model and, at the very top an integrated development environment (IDE).

Functional Description: Coq provides both a dependently-typed functional programming language
and a logical formalism, which, altogether, support the formalisation of mathematical theories
and the specification and certification of properties of programs. Coq also provides a large and
extensible set of automatic or semi-automatic proof methods. Coq’s programs are extractible to
OCaml, Haskell, Scheme, ...

Release Contributions: Coq version 8.16 integrates changes to the Coq kernel and performance im-
provements along with a few new features. We highlight some of the most impactful changes
here:

The guard checker (see Guarded) now ensures strong normalization under any reduction strategy.

Irrelevant terms (in the SProp sort) are now squashed to a dummy value during conversion, fixing a
subject reduction issue and making proof conversion faster.

Introduction of reversible coercions, which allow coercions relying on meta-level resolution such as
type-classes or canonical structures. Also allow coercions that do not fullfill the uniform inheritance
condition.

https://pq-crystals.org/dilithium/index.shtml

6 Inria Annual Report 2022

Generalized rewriting support for rewriting with Type-valued relations and in Type contexts, using
the Classes.CMorphisms library.

Added the boolean equality scheme command for decidable inductive types.
Added a Print Notation command.

Incompatibilities in name generation for Program obligations, eauto treatment of tactic failure
levels, use of ident in notations, parsing of module expressions.

Standard library reorganization and deprecations.
Improve the treatment of standard library numbers by Extraction.
See https://coq.inria.fr/refman/changes.html#version-8-16 for a detailed changelog.
News of the Year: Coq version 8.16 integrates changes to the Coq kernel and performance improvements

along with a few new features. See the detailed changes at https://coq.inria.fr/refman/changes.html#version-
8-16 for an overview of the new features and changes, along with the full list of contributors.

URL: http://coq.inria.fr/
Contact: Matthieu Sozeau

Participants: Yves Bertot, Frederic Besson, Tej Chajed, Cyril Cohen, Pierre Corbineau, Pierre Courtieu,
Maxime Denes, Jim Fehrle, Julien Forest, Emilio Jestis Gallego Arias, Gaetan Gilbert, Georges
Gonthier, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Vincent Laporte, Olivier Laurent, Assia
Mahboubi, Kenji Maillard, Erik Martin-Dorel, Guillaume Melquiond, Pierre-Marie Pedrot, Clément
Pit-Claudel, Kazuhiko Sakaguchi, Vincent Semeria, Michael Soegtrop, Arnaud Spiwack, Matthieu
Sozeau, Enrico Tassi, Laurent Théry, Anton Trunov, Li-Yao Xia, Theo Zimmermann, Gaetan Gilbert

Partners: CNRS, Université Paris-Sud, ENS Lyon, Université Paris-Diderot

6.1.2 Math-Components
Name: Mathematical Components library
Keyword: Proof assistant

Functional Description: The Mathematical Components library is a set of Coq libraries that cover the
prerequiste for the mechanization of the proof of the Odd Order Theorem.

URL: https://math-comp.github.io/
Contact: Assia Mahboubi

Participants: Alexey Solovyev, Andrea Asperti, Assia Mahboubi, Cyril Cohen, Enrico Tassi, Francois
Garillot, Georges Gonthier, loana Pasca, Jeremy Avigad, Laurence Rideau, Laurent Théry, Russell
O’Connor, Sidi Ould Biha, Stéphane Le Roux, Yves Bertot

6.1.3 Easycrypt
Keywords: Proof assistant, Cryptography

Functional Description: EasyCrypt is a toolset for reasoning about relational properties of probabilistic
computations with adversarial code. Its main application is the construction and verification of
game-based cryptographic proofs. EasyCrypt can also be used for reasoning about differential
privacy.

News of the Year: In 2021, Benjamin Gregoire, Adrien Koutsos and Pierre-Yves Strub extended the Easy-
Crypt proof assistant to reason about complexity, by adding a Hoare logic to prove computational
complexity (execution time and oracle calls) of adversarial computations. This Hoare logic is built
on top of EasyCrypt module system used to model adversaries, which has been extended to support
complexity restrictions.

http://coq.inria.fr/
https://math-comp.github.io/

Project STAMP 7

URL: https://www.easycrypt.info/trac/
Publications: hal-03352062, hal-03469015
Contact: Gilles Barthe

Participants: Benjamin Grégoire, Gilles Barthe, Pierre-Yves Strub, Adrien Koutsos

6.1.4 ELPI
Name: Embeddable Lambda Prolog Interpreter
Keywords: Constraint Programming, Programming language, Higher-order logic

Scientific Description: The programming language has the following features

- Native support for variable binding and substitution, via an Higher Order Abstract Syntax (HOAS)
embedding of the object language. The programmer does not need to care about technical devices
to handle bound variables, like De Bruijn indices.

- Native support for hypothetical context. When moving under a binder one can attach to the bound
variable extra information that is collected when the variable gets out of scope. For example when
writing a type-checker the programmer needs not to care about managing the typing context.

- Native support for higher-order unification variables, again via HOAS. Unification variables of the
meta-language (lambdaProlog) can be reused to represent the unification variables of the object
language. The programmer does not need to care about the unification-variable assignment map
and cannot assign to a unification variable a term containing variables out of scope, or build a
circular assignment.

- Native support for syntactic constraints and their meta-level handling rules. The generative
semantics of Prolog can be disabled by turning a goal into a syntactic constraint (suspended goal).
A syntactic constraint is resumed as soon as relevant variables get assigned. Syntactic constraints
can be manipulated by constraint handling rules (CHR).

- Native support for backtracking, to ease implementation of search.

- The constraint store is extensible. The host application can declare non-syntactic constraints and
uses custom constraint solvers to check their consistency.

- Clauses are graftable. The user is free to extend an existing program by inserting/removing clauses,
both at runtime (using implication) and at "compilation" time by accumulating files.

Most of these features come with lambdaProlog. Constraints and propagation rules are novel in
ELPI.

Functional Description: ELPIimplements a variant of lambdaProlog enriched with Constraint Handling
Rules, a programming language well suited to manipulate syntax trees with binders and unification
variables.

ELPI is a research project aimed at providing a programming platform for the so called elaborator
component of an interactive theorem prover.

ELPIis designed to be embedded into larger applications written in OCaml as an extension language.
It comes with an API to drive the interpreter and with an FFI for defining built-in predicates and
data types, as well as quotations and similar goodies that come in handy to adapt the language to
the host application.

Release Contributions: - Support for recent ocaml - New parser based on menhir - New tracing facility
and corresponding GUI for vscode

News of the Year: New parser based on Menhir. New trace browsing facility.
URL: https://github.com/lpcic/elpi/

Publications: hal-01176856, hal-01410567, hal-01897468

https://www.easycrypt.info/trac/
https://hal.inria.fr/hal-03352062
https://hal.inria.fr/hal-03469015
https://github.com/lpcic/elpi/
https://hal.inria.fr/hal-01176856
https://hal.inria.fr/hal-01410567
https://hal.inria.fr/hal-01897468

8 Inria Annual Report 2022

Contact: Enrico Tassi

Participants: Enrico Tassi, Claudio Sacerdoti Coen

6.1.5 coq-elpi

Keywords: Metaprogramming, Extension

Scientific Description: Coq-elpi provides a Coq plugin that embeds ELPL. It also provides a way to embed
Coq’s terms into lambdaProlog using the Higher-Order Abstract Syntax approach (HOAS) and a
way to read terms back. In addition to that it exports to ELPI a set of Coq’s primitives, e.g. printing a
message, accessing the environment of theorems and data types, defining a new constant and so on.
For convenience it also provides a quotation and anti-quotation for Coq’s syntax in lambdaProlog.
E.g. {{nat}} is expanded to the type name of natural numbers, or {{A -> B}} to the representation of a
product by unfolding the -> notation. Finally it provides a way to define new vernacular commands
and new tactics.

Functional Description: Coq plugin embedding ELPI

Release Contributions: - support for universe polymorphism - support for raw or elaborated arguments
- new APIs for reduction and modules - new schema to derive equality tests

News of the Year: Experimental support for universe polymorphism. New schema for efficient synthesis
of equality tests. New API- for modules and functors.

Publications: hal-01897468, hal-01637063
Contact: Enrico Tassi

Participant: Enrico Tassi

6.1.6 Jasmin

Name: Jasmin compiler and analyser
Keywords: Cryptography, Static analysis, Compilers

Functional Description: The Jasmin programming language smoothly combines high-level and low-
level constructs, so as to support “assembly in the head” programming. Programmers can control
many low-level details that are performance-critical: instruction selection and scheduling, what
registers to spill and when, etc. The language also features high-level abstractions (variables,
functions, arrays, loops, etc.) to structure the source code and make it more amenable to formal
verification. The Jasmin compiler produces predictable assembly and ensures that the use of
high-level abstractions incurs no run-time penalty.

The semantics is formally defined to allow rigorous reasoning about program behaviors. The
compiler is formally verified for correctness (the proof is machine-checked by the Coq proof
assistant). This justifies that many properties can be proved on a source program and still apply to
the corresponding assembly program: safety, termination, functional correctness. ..

Jasmin programs can be automatically checked for safety and termination (using a trusted static
analyzer). The Jasmin workbench leverages the EasyCrypt toolset for formal verification. Jasmin
programs can be extracted to corresponding EasyCrypt programs to prove functional correctness,
cryptographic security, or security against side-channel attacks (constant-time).

Release Contributions: It contains the following major improvements: - a new instruction "#random-
bytes" to fill an array with “random” data, - access to mmx registers, - support for Windows calling
convention, in addition to Linux, - "else if" blocks for readability, - strict preservation of source-level
intrinsics, - an option to extract all the functions of a file to EasyCrypt, - many fixes to the extraction
to EasyCrypt.

https://hal.inria.fr/hal-01897468
https://hal.inria.fr/hal-01637063

Project STAMP 9

News of the Year: In 2022, two major versions were released. The first one, 2022.04.0, is the result of more
than two years of development, and thus brings major new features to the language, including
the support for local functions and sub-arrays. The second one, 2022.09.0, adds in particular the
support for system calls, which allows for instance to call an operating system function returning
random data.

Work to support multiple architecture has progressed well. The support for ARM 32 bits was merged
and is being polished.

Work on "Speculative Load Hardening", a transformation making a program resistant to some
Spectre attacks, are ongoing. In parallel, another line of work tries to add arrays whose length is not
known at compile time.

URL: https://github.com/jasmin-lang/jasmin

Publications: hal-03844366, hal-03430789, hal-03352062, hal-02404581, hal-02974993, hal-01649140

Contact: Benjamin Grégoire

Participants: Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, Vincent Laporte, Jean-Christophe Lech-
enet, Swarn Priya

Partners: The IMDEA Software Institute, Ecole Polytechnique, Universidade do Minho, Université de
Porto, Max Planck Institute for Security and Privacy

6.1.7 Math-comp-analysis

Name: Mathematical Components Analysis
Keyword: Proof assistant

Functional Description: This library adds definitions and theorems to the Math-components library for
real numbers and their mathematical structures.

Release Contributions: The main change is the split into two packages coq-mathcomp-classical and
cog-mathcomp-analysis.

News of the Year: In 2022 were added - the theory of simple functions, Lebesgue measure and Lebesgue
integral, - Arzela-Ascoli theorem, - support for subspace topology - part of the theory of continuity
of real functions on a segment, - the theory of finitely supported sums and infinite sums of extended
reals, - the theory of partial and total surjections, injections and bijections, - fast and ad-hoc
automated positivity proofs, - splitting in two sub-packages mathcomp-classical and mathcomp-
analysis.

URL: https://github.com/math-comp/analysis

Publications: hal-02463336, hal-03917948, hal-01719918

Contact: Cyril Cohen

Participants: Cyril Cohen, Georges Gonthier, Marie Kerjean, Assia Mahboubi, Damien Rouhling, Pierre
Roux, Laurence Rideau, Pierre-Yves Strub, Reynald Affeldt, Laurent Théry, Yves Bertot, Zachary

Stone

Partners: Ecole Polytechnique, AIST Tsukuba, Onera

https://github.com/jasmin-lang/jasmin
https://hal.inria.fr/hal-03844366
https://hal.inria.fr/hal-03430789
https://hal.inria.fr/hal-03352062
https://hal.inria.fr/hal-02404581
https://hal.inria.fr/hal-02974993
https://hal.inria.fr/hal-01649140
https://github.com/math-comp/analysis
https://hal.inria.fr/hal-02463336
https://hal.inria.fr/hal-03917948
https://hal.inria.fr/hal-01719918

10 Inria Annual Report 2022

6.1.8 Hierarchy Builder

Keywords: Coq, Metaprogramming

Scientific Description: Itis nowadays customary to organize libraries of machine checked proofs around
hierarchies of algebraic structures. One influential example is the Mathematical Components
library on top of which the long and intricate proof of the Odd Order Theorem could be fully
formalized. Still, building algebraic hierarchies in a proof assistant such as Coq requires a lot
of manual labor and often a deep expertise in the internals of the prover. Moreover, according
to our experience, making a hierarchy evolve without causing breakage in client code is equally
tricky: even a simple refactoring such as splitting a structure into two simpler ones is hard to get
right. Hierarchy Builder is a high level language to build hierarchies of algebraic structures and
to make these hierarchies evolve without breaking user code. The key concepts are the ones of
factory, builder and abbreviation that let the hierarchy developer describe an actual interface for
their library. Behind that interface the developer can provide appropriate code to ensure retro
compatibility. We implement the Hierarchy Builder language in the hierarchy-builder addon for
the Coq system using the Elpi extension language.

Functional Description: Hierarchy Builder is a high level language for Coq to build hierarchies of alge-
braic structures and to make these hierarchies evolve without breaking user code. The key concepts
are the ones of factory, builder and abbreviation that let the hierarchy developer describe an actual
interface for their library. Behind that interface the developer can provide appropriate code to
ensure retro compatibility.

Release Contributions: Support for hierarchy of morphisms and bugfixes. Adding compatibility with
Coq 8.16

News of the Year: Support for structures on function spaces (eg morphisms). New HB.howto command
to find missing instances on a key.

URL: https://github.com/math-comp/hierarchy-builder
Publication: hal-02478907

Contact: Enrico Tassi

Participants: Enrico Tassi, Cyril Cohen

Partners: University of Tsukuba, Onera

6.1.9 Abel - Ruffini

Name: A proof of Abel-Ruffini theorem.
Keywords: Number theory, Formalisation, Proof assistant

Functional Description: A proof of Galois Theorem (equivalence between being solvable by radicals
and having a solvable Galois group) and Abel - Ruffini Theorem (unsolvability of quintic equations)
in the Coq proof-assistant and using the Mathematical Components library.

Release Contributions: This is a full proof Coq/mathcomp of Galois and Abel-Ruffini theorem about
the unsolvability of the quintic. It is compatible with mathcomp version 1.12 to 1.15 and Coq from
8.10 to 8.16.

URL: https://github.com/math-comp/Abel
Contact: Cyril Cohen

Partner: Ecole Polytechnique

https://github.com/math-comp/hierarchy-builder
https://hal.inria.fr/hal-02478907
https://github.com/math-comp/Abel

Project STAMP 11

6.1.10 Semantics
Keywords: Semantic, Programming language, Coq

Functional Description: A didactical Coq development to introduce various semantics styles. Shows
how to derive an interpreter, a compiler, a verifier, or a program analyser from formal descriptions,
and how to prove their consistency.

This is a library for the Coq system, where the description of a toy programming language is
presented. The value of this library is that it can be re-used in classrooms to teach programming
language semantics or the Coq system. The topics covered include introductory notions to domain
theory, pre and post-conditions, abstract interpretation, compilation, and the proofs of consistency
between all these points of view on the same programming language. Standalone tools for the
object programming language can be derived from this development.

Release Contributions: This version now contains an example of small compiler and a partial correct-
ness proof (completeness).

URL: https://github.com/coq-community/semantics
Contact: Yves Bertot

Participants: Christine Paulin, Yves Bertot

7 New results

7.1 Alogic for expectation

Participants: Martin Avanzini (Focus), Gilles Barthe (MPI-SB Germany, IMDEA,
Spain), Benjamin Grégoire, Georg Moser (University of Innsbruck),
Gabriele Vanoni (Focus).

We have developed a new logic for bounding the expectation of a function in a probabilistic pro-
gram. This logic has been integrated in the tool Eassycrypt and used to bound the expected cost of two
algorithms: randomized gselect (a variant of quick sort) and the skip-list data-structure.

7.2 Formal verification of Dilithium

Participants: Manuel Barbosa (University of Porto, INESC TEC, Portu-
gal), Gilles Barthe (MPI-SB Germany, IMDEA, Spain), Chris-
tian Doczkal (MPI-SE Germany), Jelle Don (Centrum voor Wiskunde
en Informatica, the Netherlands), Serge Fehr (Centrum voor Wiskunde
en Informatica, Leiden University, the Netherlands), Benjamin Gré-
goire, Andreas Hiilsing (Eindhoven University of Technology, the
Netherlands), Yu-Hsuan Huang (Centrum voor Wiskunde en In-
formatica, the Netherlands), Yi Lee (University of Maryland, USA),
Pierre-Yves Strub (Meta), Xiaodi Wu (University of Maryland, USA).

In 2016, NIST initiated a competition for standardizing cryptographic algorithms that could withstand
quantum adversaries. The competition recently reached an important milestone with the selection of
four standards: one KEM (Kyber) and three signature algorithms (Dilithium, Falcon, Sphincs+). Dilithium
is a lattice-based digital signature based on the Fiat-Shamir with aborts (FSa) paradigm introduced by
Lyubashevsky. We identified a subtle gap that appears in several ROM and QROM security proofs of
Dilithium and other schemes based on FSa. Second, we provided fixed proofs, both for the ROM and the
QROM. Third, we mechanized the ROM proof completely in the EasyCrypt proof assistant. This work is
based on the logic for expectation presented in the previous section.

https://github.com/coq-community/semantics

12 Inria Annual Report 2022

7.3 Resistance to timing attacks and Spectre

Participants: Basavesh Ammanaghatta Shivakumar (MPI-SB Germany),
Gilles Barthe (MPI-SB Germany, IMDEA, Spain), Benjamin Gré-
goire, Vincent Laporte, Tiago Oliveira (University of Porto, INESC
TEC, Portugal), Swarn Priya, Peter Schwabe (MPI-SE Germany and
Radboud University, the Netherlands), Lucas Tabary-Maujean (Ens
Paris Saclay).

The current gold standard of cryptographic software is to write efficient libraries with systematic pro-
tections against timing attacks. In order to meet this goal, cryptographic engineers increasingly use
high-assurance cryptography tools. However, high-assurance tools reason about overly simple execution
models that elide transient execution leakage. Thus, implementations validated by high-assurance cryp-
tography tools remain potentially vulnerable to transient execution attacks such as Spectre or Meltdown.
Moreover, proposed countermeasures are not used in practice due to performance overhead. We have
proposed, analyzed, implemented and evaluated an approach for writing efficient cryptographic imple-
mentations that are protected against Spectre v1 attacks in Jasmin. Our approach ensures speculative
constant-time. Speculative constant-time is enforced by means of a (value-dependent) information flow
type system. We implemented our approach in the Jasmin framework for high-assurance cryptography,
and use it for protecting all implementations of an experimental cryptographic library named Libjade
that includes highly optimized implementations of symmetric primitives, of elliptic-curve cryptography,
and of Kyber, a lattice-based KEM recently selected by NIST for standardization. The performance impact
of our protections is very low; for example, less than 1% for Kyber and essentially zero for the curve
X25519.

7.4 Enforcing fine-grained constant-time policies

Participants: Basavesh Ammanaghatta Shivakumar (MPI-SB Germany),
Gilles Barthe (MPI-SB Germany, IMDEA, Spain), Benjamin Gré-
goire, Vincent Laporte, Swarn Priya.

Cryptographic constant-time (CT) is a popular programming discipline used by cryptographic libraries to
protect themselves against timing attacks. The CT discipline aims to enforce that program execution does
not leak secrets, where leakage is defined by a formal leakage model. Constant-timeness can be checked
automatically by many tools. However, most sound tools are focused on a baseline (BL) leakage model
where memory addresses and conditional branches leak but other basic operations do not leak. In other
models, operation like division can leak the value of its arguments or only the cache line of a memory
address can leak. We have developed a verification infrastructure, which proves that source programs
are constant-time, and a compiler infrastructure, which provably preserves constant-timeness for these
fine-grained policies. By making these infrastructures parametric in the leakage model, we achieve the
first approach that supports fine-grained constant-time policies. We implemented the approach in the
Jasmin tool, and we evaluated our approach with examples from the literature: OpenSSL and wolfSSL. We
found a bug in OpenSSL and provided a formally verified fix. This work has been published in CCS 2022
(8l.

7.5 Fast equality tests with coq-elpi

Participants: Benjamin Grégoire, Jean-Christophe Léchenet, Enrico Tassi.

We studied how to use cog-elpi to implement fast equality tests for inductive datatypes in Coq. The com-
plete work, including benchmarks to verify asymptotic behavior with respect to numbers of constructors,
is ready for publication and will appear in 2023 [11].

Project STAMP 13

7.6 Formal study of Double-word arithmetic algorithms

Participants: Laurence Rideau, Jean-Michel Muller (CNRS, ENS de Lyon), Joris Pi-
cot (ENS Lyon), Nicolas Louvet (ENS Lyon), Vincent lefevre.

The article describing the work on the formalization of "basic building blocks of double-word arithmetics"
has been published in Transactions on Mathematical Software [5].

Our collaboration continues on the formalization of algorithms for Euclidean norms. This year
we formalized the algorithm presented in the article in the case without overflow or underflow. This
algorithm uses a result of Rump and Lange on iterated sums of floating-point numbers, which we also
formalized. The article describing this work has just been published (Transactions on Mathematical
Software)[4].

7.7 Formal study of Fast Fourier Transforms

Participants: Laurence Rideau, Laurent Théry.

Currently, within the ANR project Nuscap, we have undertaken a work of formalization of the FFT.

As a first milestone, we formalized the correctness proof of the classic algorithm that works on an
arbitrary integral ring [12].

We also formalized algorithms for the multiplication of complex numbers, as well as the proofs of
different algorithms of an article of Kahan concerning the efficient multiplication/sum of four floating
point numbers "a*b+c*d". This is useful for the multiplication of complex numbers.

7.8 A generic library for injective, surjective, and bijective functions

Participants: Reynald Affeldt, Cyril Cohen.

In order to support function handling in the development of Lebesgue integral, we developed a library of
injective/surjective/bijective functions from a subset to another, with automated inference of composi-
tions, and overloading of the function inverse symbol and its theory.

7.9 Simple automatic positivity

Participants: Cyril Cohen, Pierre Roux (ONERA).

We formalized a dedicated type for positive elements of a numeric domain (like the rationals, real numbers
or complex numbers), but also for the positive extended reals. We designed it with enough generality so as
to encompass positive, negative, non-positive, non-negative and non-zero elements, with fast automated
inference of positivity in many cases. This makes it possible to discharge automatically many trivial
proofs of positivity.

7.10 Lebesgue measure and Lebesgue integral for Mathematical Components

Participants: Reynald Affeldt, Cyril Cohen.

14 Inria Annual Report 2022

After we provided a construction of the Lebesgue measure, we continued with Lebesgue integration. We
proved the monotone convergence theorem, the dominated convergence theorem, and Fubini’s theorem.
This is part of MathComp analysis.

7.11 Semantics of Probabilistic Programs using s-Finite Kernels in Coq

Participants: Reynald Affeldt (AIST, Japan), Cyril Cohen, Ayumu Saito (Tokyo Insti-
tute of Technology, Japan).

We extend an existing formalization of measure and integration theory with s-finite kernels, a mathemati-
cal structure to interpret typing judgments in the semantics of a probabilistic programming language.
The resulting library makes it possible to reason formally about transformations of probabilistic programs
and their execution. This is published in a paper to appear in early 2023 [7].

7.12 Astratified variant of univalent parametricity

Participants: Cyril Cohen, Assia Mahboubi (Gallinette), Enzo Crance (Misubishi
Electric, France).

In this ongoing work, we rephrase and restructure the results from "The Marriage of Univalence and
Parametricity", in order to retain translations even without univalence.

7.13 A new design pattern for the formalization of subsets in mathematics

Participant: Cyril Cohen.

We explore an alternative to the packaging of signatures and sets, based on a mixture of class based
inference and structure based inference. The result of this experiment is available as teasing material for
the LiberAbaci Inria challenge.

7.14 Formalizing network sorting algorithms

Participants: Benjamin Grégoire, Laurent Théry.

We got interested in the djbsort library, a library for sorting numbers in a cryptographic context. As an
initial step, we formalized the proof of the main network sorting algorithms : bitonic, odd-even merge,
odd-even exchange [13].

7.15 Toward a type class engine for Coq written in Elpi

Participants: Matteo Manighetti (University of Bologna), Claudio Sacerdoti
Coen (University of Bologna), Enrico Tassi.

The mechanism of type classes is a typical addition to dependent type theory that makes the overloading
of notations and the re-use of generic theorems elegant. In this work, we explore how such a system can
be implemented using the ELPI language. With such a high-level language description we hope to clarify
the key points of the mechanism and ease its fine-tuning and improvements.

Two prototypes have been developed: one for Coq and one for Lambdapi (the basis of Dedukti).

https://arxiv.org/abs/1909.05027
https://arxiv.org/abs/1909.05027
https://liberabaci.gitlabpages.inria.fr/sets.v
https://sorting.cr.yp.to/

Project STAMP 15

7.16 Hierarchy Builder

Participants: Cyril Cohen, Enzo Crance (Mitsubishi Electric), Enrico Tassi.

Hierarchy builder is still being improved, aiming for complete integration in released version of mathe-
matical components and math-comp-analysis.

7.17 Jasmin development

Participants: Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Santi-
ago Arranz Olmos (MPI-SB, Germany).

We added a new feature to the Jasmin compiler: clearing the stack when exiting functions. The proof of
correctness for this feature is still ongoing work. We finished the work on generalizing the compiler so
that it will be able to generate code for different architectures. We started implementing an ARM code
producer, but it is not completely functional yet. Three releases of Jasmin were published in 2022.

7.18 CryptoVerif to EasyCrypt

Participants: Bruno Blanchet, Pierre Boutry, Christian Doczkal, Benjamin Grégoire,
Pierre-Yves Strub (Meta).

We continue our study of approaches to combine two mechanized tools to verify protocols.

We developed a translation from CryptoVerif to EasyCrypt that allows cryptographic assumptions that
cannot be proved in CryptoVerif to be translated to EasyCrypt and proved there. We used the translation
to prove different hypotheses assumed in CryptoVerif:

¢ The reduction of the N query formulation of the Computational/Gap Diffie-Hellman (CDH/GDH)
games in CryptoVerif to the standard, single-query formulation. The obtained bounds are better
than what can be obtained by a direct hybrid argument.

¢ The reduction from the N participant games (e.g. insider or outsider adversaries) for authenticated
Key encapsulation mechanisms (KEM) to 1 or 2 participant games (almost done).

7.19 Models of nominal groups

Participant: Pierre Boutry.

For the formalization of the proof of the reduction linked to the Computational/Gap Diffie-Hellman
(CDH/GDH) games we relied on a set of properties, denoted as nominal groups by Bruno Blanchet,
common to prime-order groups, Curve25519 and Curve448. We worked on verifying that Curve25519
and Curve448 are actually models of nominal groups using Easycrypt as a proof-checker and we spotted
two problems in the formalization of these properties as used in 7.18. The first one was a mistake on our
part. The second one was a property that turned out to be too strong and was not holding for Curve25519
and Curve448. However, the proof from 7.18 did not need to be modified since the restrictions that we
needed to add to fix these problems were already met.

In the process we found another needed correction. There are several definitions of the concept of
statistical distance between distributions. The pen-and-paper proof was using them as if they were equiv-
alent. Though they are indeed related, they are not equivalent. Beside allowing to fix three problems in

16 Inria Annual Report 2022

the proof of these reductions, showing yet again the benefit of a complete formal proof, the formalization
of properties of Curve25519 and Curve448 will make it possible to increase the level of confidence in
some of the proofs in Libjade. These curves are commonly used in reference cryptographic algorithms
but until now there was no Easycrypt proofs of their properties which then needed to be axiomatized.
This work will be completed shortly after the completion of 7.20, making it easier to justify the minor
remaining gaps.

7.20 Towards a library of field extensions

Participants: Pierre Boutry, Antoine Séré (Ecole Polytechnique), Pierre-
Yves Strub (Meta).

As an effort to complete Easycrypt with proofs of properties that should be needed for future develop-
ments, we started working on a library of field extensions. Most of the remaining work is about adding
missing lemmas about permutation and polynomial Euclidean division, the latter being the main focus
locally. We are done with the properties of the division when the considered polynomials are defined
over rings, while the case of fields still needs to be completed. We take inspiration from the development
about polynomial Euclidean division done in the Mathcomp library for the choice of the statements of
the lemmas. However, the definition of the operations differ. In the Mathcomp library, the operators that
capture these definitions are defined recursively, while in Easycrypt recursion is not allowed. So we use
iterators to do so. since the operations do not have the same definitions, the Mathcomp proof is mostly
just a source of inspiration as one can obviously not prove that the same property holds for two distinct
operations in a unique way. Some of the lemmas about polynomial Euclidean division will also be used
to conclude the proof of 7.19.

7.21 Easycryptlibrary

Participants: Pierre Boutry, Benjamin Grégoire.

In the library there were two different definitions of cyclic groups that were not taking advantage of
existing material. So we gave a third definition that supersedes the previous ones and modified the rest of
the library to make sure the new one is used everywhere. This made it possible to detect maintenance
issues with the library, especially with respect to continuous integration.

7.22 Collisions between Bezier Curves and straight line segments

Participants: Yves Bertot, Quentin Vermande (ENS Paris), Reynald Affeldt (AIST,
Japan).

We are working on a formal description of Bezier Curves and the formal verification that curves of that
kind do not collide with obstacles given by straight line segments.

7.23 Document management for the Coq system

Participants: Enrico Tassi, Maxime Dénes.

We have been redesigning the communication protocol between Coq and its user-interface software to
make it compliant with the LSP protocol used in Visual Studio Code. We are now exploring the use of
event-based programming for this integrated development environment.

Project STAMP 17

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

Participants: Benjamin Grégoire, Swarn Priya, Yves Bertot.

The STAMP team participates with the Grace team (Inria Saclay) in the JASMIN contract funded in the
framework of the Inria-Nomadic Labs collaboration for research related to the Tezos blockchain. This
contract funds the PhD thesis of Swarn Priya.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria associate team not involved in an IIL or an international program
FLAVOR

Participants: Yves Bertot, Cyril Cohen, Laurence Rideau, Enrico Tassi, Lau-
rent Théry.

Title: Formal Library of Analysis for the Verification of Robots
Duration: 2020 ->
Coordinator: Reynald Affeldt (reynald.affeldt@aist.go.jp)
Partners:
¢ National Institute of Advanced Industrial Science and Technology Tokyo (Japon)
Inria contact: Yves Bertot
Summary: The objective is to apply formal methods based on Coq to software and designs that are

concerned with robots. Covered topics concern mathematical formalization for real analysis,
control theory, kinematic chains, and motion planning.

9.2 International research visitors
9.2.1 Visits of international scientists

Reynald Affeldt
Status: researcher
Institution of origin: AIST
Country: Japan
Dates: June 27-July 8, 2022 and December 5-12, 2022

Context of the visit: Equipe associée FLAVOR

18 Inria Annual Report 2022

Takafumi Saikawa

Status: post-doctoral researcher
Institution of origin: Nagoya University
Country: Japan

Dates: December 5-12, 2022

Context of the visit: Equipe associée FLAVOR

Reynald Affeldt (AIST, Japan) visited the STAMP team from June 27 to July 8, to discuss the development
of the Math-comp-analysis library and the project to verify algorithms computing trajectories.

Reynald Affeldt (AIST, Japan), Takafumi Saikawa (Nagoya University, Japan), and Kazuhiko Sakaguchi
(University Tsukuba, Japan) visited the STAMP team from December 5 to December 12 to participate in
the Mathematical Components winter school that was organized in Sophia Antipolis and discuss research
projects around the formal verification of probability theory.

Ralf Hulsing

Status: Professor

Institution of origin: Eindhoven University
Country: the Netherlands

Dates: September-December2022

Context of the visit: no information

Ralf Hulsing from University Eindhoven visited the team from September to December to collaborate
with Benjamin Grégoire on post-quantum cryptography.

9.3 National initiatives
9.3.1 ANR

e TECAP "Analyse de protocoles, Unir les outils existants", starting on October 1st, 2017, for 60
months, with a grant of 89 kEuros. Other partners are Inria teams PESTO (Inria Nancy grand-est),
Ecole Polytechnique, ENS Cachan, IRISA Rennes, and CNRS. The corresponding researcher for this
contract is Benjamin Grégoire.

¢ Scrypt "Compilation sécurisée de primitives cryptographiques” started on February 1st, 2019,
for 48 months, with a grant of 100 kEuros. Other partners are Inria team Celtique (Inria Rennes
Bretagne Atlantique), Ecole polytechnique, and AMOSSYS SAS. The corresponding researcher for
this contract is Benjamin Grégoire.

e NuSCAP "Numerical Safety for Computer-Aided Proofs", started on February 1st, 2021 for 48
months, with a grant covering traveling costs. Other partners are CNRS-LIP, Sorbonne University
LIP6, and CNRS-LAAS. The corresponding researcher for this contract is Laurence Rideau.

9.3.2 FUI

The acronym FUI stands for “fonds unique interministériel” and is aimed at research and development
projects in pre-industrial phase. The STAMP team is part of one such project.

¢ VERISICC (formal verification for masking techniques for security against side-channel attacks).
This contract concerns 5 partners: CRYPTOEXPERTS, a company from the Paris region (fle de
France), ANSSI (Agence Nationale de Sécurité des Systemes d'Information), Oberthur Technologies,
University of Luxembourg, and STAMP. A sixth partner (NINJALABS) acts as a sub-contractant.
The financial grant for STAMP is 391 kEuros, including 111kEuros that are reserved for the sub-
contractant. This project started in October 2018 for a duration of 4 years. The corresponding
researcher for this contract is Benjamin Grégoire.

Project STAMP 19

9.3.3 PEPR

* SVP PEPR Cybersecurity. We participate in a project concerned with the verification of security
protocols. Partners in this project are CNRS IRISA Rennes (coordinator Stéphanie Delaune), Inria,
University of Paris-Saclay, University of Lorraine, University of Céte d’Azur, ENS Rennes. The funds
allocated to our team in this collaboration are 333 kEuros. The corresponding researcher for this
contract is Benjamin Grégoire.

9.3.4 Inria Challenges

¢ Liber Abaci. Yves Bertot coordinated the creation of Inria challenge Liber Abaci on the use of a
Type-theory based proof assistant to improve mathematics education for the first years of higher
education (undergraduate mathematics).

10 Dissemination

Participants: Yves Bertot, Pierre Boutry, Cyril Cohen, Benjamin Grégoire, Lau-
rence Rideau, Enrico Tassi, Laurent Théry.

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

Participants: Cyril Cohen, Enrico Tassi.

Member of the organizing committees Enrico Tassi organized a winter school on formalization using
the Mathematical Components Library from December 5 to December 9, 2022. Yves Bertot, Cyril Cohen,
Laurence Rideau, and Laurent Théry were also speakers at this school.

Assia Mahboubi and Enrico Tassi organized a workshop on the Mathematical Components Library on
December 7.

Cyril Cohen was workshop chair for the conference ITP 2022 (Interactive Theorem Proving).

10.1.2 Scientific events: selection

Participants: Yves Bertot, cyril Cohen, Enrico Tassi, Laurent Théry.

Member of the conference program committees Enrico Tassi was a member of the program committee
for the workshop F-IDE (Formal Integrated Development Environment).

Reviewer Yves Bertot and Cyril Cohen reviewed papers for ITP 2022 (Interactive Theorem Provers). CSL
(Computer Science Logic) CICM (Conference on intelligent computer mathematics), CogPL (Coq for
programming Languages).

10.1.3 Journal

Participants: Yves Bertot, Pierre Boutry, Cyril Cohen, Laurent Théry.

20 Inria Annual Report 2022

Reviewer - reviewing activities Yves Bertot, Cyril Cohen, Pierre Boutry, and Laurent Théry reviewed
articles for JAR (Journal of Automated Reasoning), MSCS (Mathematical Structures in Computer Science),
and LMCS (Logical Methods in Computer Science).

10.1.4 Invited talks

Benjamin Grégoire gave an invited talk on EasyCrypt at "Journées Codage & Cryptographie" in April 2022.

10.1.5 Leadership within the scientific community

Yves Bertot is a member of the steering committee for the conference "Interactive Theorem Provers"
(ITP).

10.1.6 Research administration

Yves Bertot is coordinator of the Inria Challenge "Liber Abaci" on formal proofs for first years of higher
mathematical higher education.

10.2 Teaching - Supervision - Juries
10.2.1 Teaching

e Master : Yves Bertot, “Proofs and reliable programming using Coq”, 12hours ETD, Nov-Dec 2022,
Master Informatique et Interactions, Université Cote d’Azur, France.

¢ Benjamin Grégoire was a speaker at the Summer School on Cybersecurity in Nancy, July 4-8, 2022

10.2.2 Supervision

Yves Bertot and Benjamin Grégoire supervise the thesis of Swarn Priya (Université Cote d’Azur).
Cyril Cohen spervised the thesis of Chris Hughes until September 2022.

10.2.3 Juries

Yves Bertot was member of the Jury for the thesis of Lucien Rakotomalala (Université de Toulouse).

10.3 Popularization
10.3.1 Internal or external Inria responsibilities

Laurence Rideau is a member of the editorial board of Interstices, the Inria medium for outreach.

10.3.2 Interventions

Yves Bertot and Maxime Dénes gave outreach talks at the OSXP conference (Open-Source Experience) in
Paris in November 2022.

11 Scientific production

11.1 Major publications

[1]1 R. Affeldt, C. Cohen, M. Kerjean, A. Mahboubi, D. Rouhling and K. Sakaguchi. ‘Competing in-
heritance paths in dependent type theory: a case study in functional analysis’. In: IJJCAR 2020 -
International Joint Conference on Automated Reasoning. Paris, France, 29th June 2020, pp. 1-19.
URL:https://hal.inria.fr/hal-02463336.

https://hal.inria.fr/hal-02463336

Project STAMP 21

(2]

R. Affeldt, C. Cohen and D. Rouhling. ‘Formalization Techniques for Asymptotic Reasoning in
Classical Analysis’. In: Journal of Formalized Reasoning (Oct. 2018). URL: https://hal.inria.fr
/hal-01719918.

J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte, T. Oliveira, H. Pacheco, B.
Schmidt and P-Y. Strub. ‘Jasmin: High-Assurance and High-Speed Cryptography’. In: CCS 2017 -
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. Dallas,
United States, Oct. 2017, pp. 1-17. URL: https://hal.archives-ouvertes.fr/hal-01649140.

11.2 Publications of the year

International journals

(4]

V. Lefevre, N. Louvet, J.-M. Muller, J. Picot and L. Rideau. ‘Accurate calculation of Euclidean Norms
using Double-word arithmetic’. In: ACM Transactions on Mathematical Software (25th Oct. 2022).
URL: https://hal.science/hal-03482567.

J.-M. Muller and L. Rideau. ‘Formalization of double-word arithmetic, and comments on "Tight and
rigorous error bounds for basic building blocks of double-word arithmetic"’. In: ACM Transactions
on Mathematical Software 48.1 (Mar. 2022), pp. 1-24. DOI: 10.1145/3484514. URL: https://hal
.science/hal-02972245.

National journals

(6]

C. Icubam, L. Bonnasse-Gahot, M. Dénés, G. Dulac-Arnold, S. Girgin, E Husson, V. Iovene, J. Josse,
A. Kimmoun, E Landes, J.-P. Nadal, R. Primet, E Quintao, P. G. Raverdy, V. Rouvreau, O. Teboul and
R. Yurchak. ‘ICU Bed Availability Monitoring and analysis in the Grand Est region of France during
the COVID-19 epidemic’. In: Statistique et Société (17th Mar. 2022). po1: 10.1101/2020.05.18.2
0091264. URL: https://hal.science/hal-02620018.

International peer-reviewed conferences

(7]

R. Affeldt, C. Cohen and A. Saito. ‘Semantics of Probabilistic Programs using s-Finite Kernels in
Coq’. In: CPP 2023 - Certified Programs and Proofs. Boston, United States, 16th Jan. 2023. pDOTI:
10.1145/3573105.3575691. URL: https://hal.inria.fr/hal-03917948.

B. Ammanaghatta Shivakumar, G. Barthe, B. Grégoire, V. Laporte and S. Priya. ‘Enforcing Fine-
grained Constant-time Policies’. In: CCS '22: 2022 ACM SIGSAC Conference on Computer and
Communications Security. Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (CCS '22). Los Angeles CA, United States: ACM, 7th Nov. 2022, pp. 83-96.
DOI: 10.1145/3548606.3560689. URL: https://hal.inria.fr/hal-03844366.

G. Barthe, A. Koutsos, S. Mirliaz, D. Pichardie and P. Schwabe. ‘Semantic foundations for cost
analysis of pipeline-optimized programs’. In: Static Analysis - 29th International Symposium. Static
Analysis - 29th International Symposium, SAS 2022, Auckland, New Zealand, December 5-7, 2022,
Proceedings. Auckland, New Zealand, 8th Dec. 2022. URL: https://hal.inria.fr/hal-037792
57.

Conferences without proceedings

[10] K. Palmskog, E. Tassi and T. Zimmermann. ‘Reliably Reproducing Machine-Checked Proofs with the
Coq Platform’. In: RRRR 2022 - Workshop on Reproducibility and Replication of Research Results.
Munich, Germany, 2nd Apr. 2022. URL: https://hal.inria.fr/hal-03592675.

Reports & preprints

[11] B. Grégoire, J.-C. Léchenet and E. Tassi. Practical and sound equality tests, automaticallyDeriving

eqType instances for Jasmin’s data types with Coq-Elpi. 6th Oct. 2022. DOI: 10.1145/nnnnnnn . nnn
nnnn. URL: https://hal.inria.fr/hal-03800154.

https://hal.inria.fr/hal-01719918
https://hal.inria.fr/hal-01719918
https://hal.archives-ouvertes.fr/hal-01649140
https://hal.science/hal-03482567
https://doi.org/10.1145/3484514
https://hal.science/hal-02972245
https://hal.science/hal-02972245
https://doi.org/10.1101/2020.05.18.20091264
https://doi.org/10.1101/2020.05.18.20091264
https://hal.science/hal-02620018
https://doi.org/10.1145/3573105.3575691
https://hal.inria.fr/hal-03917948
https://doi.org/10.1145/3548606.3560689
https://hal.inria.fr/hal-03844366
https://hal.inria.fr/hal-03779257
https://hal.inria.fr/hal-03779257
https://hal.inria.fr/hal-03592675
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://hal.inria.fr/hal-03800154

22 Inria Annual Report 2022

[12] L. Théry. A Formalisation of a Fast Fourier Transform. 13th Oct. 2022. URL: https://hal.inria.f
r/hal-03807965.

[13] L. Théry. A Formalisation of Algorithms for Sorting Network. 2nd Mar. 2022. URL: https://hal.in
ria.fr/hal-03585618.

[14] L. Théry. Primality Tests and Prime Certificate. 8th Mar. 2022. URL: https://hal.inria.fr/hal-
03601611.

https://hal.inria.fr/hal-03807965
https://hal.inria.fr/hal-03807965
https://hal.inria.fr/hal-03585618
https://hal.inria.fr/hal-03585618
https://hal.inria.fr/hal-03601611
https://hal.inria.fr/hal-03601611

	Project-Team STAMP
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Theoretical background

	Application domains
	Mathematical Components
	Proofs in cryptography
	Proofs for robotics

	Highlights of the year
	New software and platforms
	New software
	Coq
	Math-Components
	Easycrypt
	ELPI
	coq-elpi
	Jasmin
	Math-comp-analysis
	Hierarchy Builder
	Abel - Ruffini
	Semantics

	New results
	A logic for expectation
	Formal verification of Dilithium
	Resistance to timing attacks and Spectre
	Enforcing fine-grained constant-time policies
	Fast equality tests with coq-elpi
	Formal study of Double-word arithmetic algorithms
	Formal study of Fast Fourier Transforms
	A generic library for injective, surjective, and bijective functions
	Simple automatic positivity
	Lebesgue measure and Lebesgue integral for Mathematical Components
	Semantics of Probabilistic Programs using s-Finite Kernels in Coq
	A stratified variant of univalent parametricity
	A new design pattern for the formalization of subsets in mathematics
	Formalizing network sorting algorithms
	Toward a type class engine for Coq written in Elpi
	Hierarchy Builder
	Jasmin development
	CryptoVerif to EasyCrypt
	Models of nominal groups
	Towards a library of field extensions
	Easycrypt library
	Collisions between Bezier Curves and straight line segments
	Document management for the Coq system

	Bilateral contracts and grants with industry
	Bilateral contracts with industry

	Partnerships and cooperations
	International initiatives
	Inria associate team not involved in an IIL or an international program

	International research visitors
	Visits of international scientists

	National initiatives
	ANR
	FUI
	PEPR
	Inria Challenges

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Leadership within the scientific community
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Internal or external Inria responsibilities
	Interventions

	Scientific production
	Major publications
	Publications of the year

