RESEARCH CENTRE

Inria Center 2 022
at the University of Bordeaux ACTIVITY REPORT

IN PARTNERSHIP WITH:

Institut Polytechnique de Bordeaux, PrOj ect- Te am

Université de Bordeaux
STORM

STatic Optimizations, Runtime Methods

IN COLLABORATION WITH: Laboratoire Bordelais de Recherche en
Informatique (LaBRI)

DOMAIN

Networks, Systems and Services,
Distributed Computing

THEME

Distributed and High Performance
Computing



Contents

Project-Team STORM 1
1 Team members, visitors, external collaborators 2
2 Overall objectives 3
3 Research program 5
3.1 Parallel Computing and Architectures . . . . . . . . ... . it 5
3.2 Scientificand Societal Stakes . . . . . ... e 6
3.3 Towards More AbStraction . . . . . . . . . i it it it e e e e e e e e e 6

4 Application domains 7
4.1 Application domains benefitingfrom HPC . . ... ... ... ... .. ... .. .. ...... 7
4.2 Application in High performance computing/BigData . . . . . .. ... ... ... ...... 7

5 Highlights of the year 8
5.1 AWArds . . . .. e e e 8

6 New software and platforms 8
6.1 Newsoftware . . . . . . . . . i e e e 8
6.1.1 Chameleon . .. ... ... .. . e e 8

6.1.2 KStar . . . . . e e e e 9

6.1.3 AFF3CT . . . . e e e e e e e e e e e e e 10

6.1.4 VITE . . . . e e e e e e e e e e e 10

6.1.5 PARCOACH . . . . . e e e e e e e e e e 10

6.1.6 StarPU . . . . . . e e e 11

6.1.7 SOMP . . . o ot e e e e e e e 12

6.1.8 MIPP . . . e e e e e e e e e 12

6.1.9 CERE . . . . . e e e e e e e 13

6.1.10 DUF . . . . o e e e e e e e e e e e e 13

7 Newresults 13
7.1 MPI detach - Towards Automatic Asynchronous Local completion . . . ... ... ...... 13
7.2 Code transformations for improving performance and productivity of PGAS applications . 14
7.3 Leveraging compiler analysis for NUMA and Prefetch optimization .. ............ 14
7.4 Generalizing NUMA and Prefetch optimization . ... ...................... 15
7.5 Optimizing energy consumption of Garbage CollectorsinOpenJDK . . . . .. ... ... .. 15
7.6 Surveyonscheduling. ... ... ... ... . e 15
7.7 Scheduling Algorithms to Minimize the Energy Consumption of Federated Learning Devices 15
7.8 Code optimization and generation for Cardiac simulation . . . . .. ... ... ... ..... 16
7.9 Predicting errors in parallel applicationswith ML . . . . ... ... ... ........... 16
7.10 Static Data Race Detection for MPI-RMA Programs . . . . . . . .. ..ot v v v v v ... 17
7.11 Task scheduling with memory constraints . . . .. ... ... .. ... ..o ... 17
7.12 Failure Tolerancefor StarPU . . . . . . . . .. .. o 17
7.13 Energy-aware task schedulingin StarPU . . . ... ... ... ... .. ... .. ... ... 18
7.14 Scheduling iterative task graph forvideogames . . . . . ... ... ... .. ... .. ..... 18
7.15 Task-based execution model for fine-grained tasks . . . ... ... ............... 18
7.16 Hierarchical Tasks . . . . . . . . .. . 19
717 ADT GOTdON . . . v e e i e e e e e e e e e e e e e 19
7.18 High performance software defined radio with AFF3CT . ... ... ... ... ........ 19
7.19 HPCBigData CONVEIZENCE . . .« v v v v v v vt et et e e e e e e e e et e e e e e e e e 20
7.20 Load-balancing of distributed sequential task flow programs . . . . ... ... ... ..... 20
7.21 Finite element simulation framework on a heterogeneous task-based runtime system . .. 21
7.22 StarPU interfacing with Tau performance evaluation toolkit . . . . ... ......... ... 21

7.23 Combining Uncore Frequency and Dynamic Power Capping to Improve Power Savings . . 22



7.24 Study of the processor and memory power consumption of coupled sparse/dense solvers 22

8 Bilateral contracts and grants with industry 22

8.1 Bilateral contracts withindustry . . ... ... ... .. .. . . L L o o 22

9 Partnerships and cooperations 23

9.1 Internationalinitiatives . . . . . . . . . . . . . i i e e e 23
9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework

of an Inria International Program . . . .. ... ... .. .. ... ... ... ..., 23

9.1.2 Inria associate team not involved in an IIL or an international program . . . . . . . . 24

9.1.3 Participation in other International Programs . . . . ... ... .. ... ........ 24

9.2 International researchvisitors . .. ... ... ... .. ... ... 25

9.2.1 Visits of international scientists . . . . ... ... ... ... e 25

9.2.2 Visitstointernationalteams . ... .. ... ... .. ... e e 26

9.3 Europeaninitiatives . . . . . . . . . . i e e e e e e e e 26

9.3.1 H2020 PIOJECES « . v v v v v e e e e e e e e e e e e e e e e e e e e e 26

9.4 Nationalinitiatives . . . . . . . . . . . . e 29

941 ANR . . L e 29

9.4.2 IPL-InriaProjectLab . .. .. ... . . . ... . e 30

10 Dissemination 30

10.1 Promoting scientificactivities . . . . . . .. ... L L oL L 31

10.1.1 Scientific events: organisation . . ... ... ... ... ... 31

10.1.2 Scientific events: selection . . . . ... .. .. . ... 31

10.1.3 Journal . . . .. L e e e e e e e 31

10.1.4 Invited talks . . . . . . . L e 32

10.1.5 Leadership within the scientificcommunity . . . ... ... ... ... ......... 32

10.1.6 Scientificexpertise . . . . . ... .. . L e 32

10.1.7 Research administration . . . . . . . . . ... . . e 32

10.2 Teaching - Supervision - Juries . . . . . . . .. . . . . e 33

10.2.1 Teaching . . . . . . . . . o e e 33

10.2.2 SUPEIVISION . . . . o o it it e e e e e e e e e e e e e e e e e e e 34

1023 JUIIES .« o o v o e e e 35

10.3 Popularization . . . . . . . . o e e e e e e e e e e e 35

10.3.1 Internal or external Inria responsibilities . . . .. ... ... ... ... ......... 36

10.3.2 Articlesand contents . . . . . . . .. L e e e e 36

10.3.3 Education . . . . . ... e 36

10.3.4 Interventions . . . . . o o i i e e e e e e e e e e e e e e e e e 36

11 Scientific production 36

11.1 Major publications . . . . . . o v vttt e e e e e e e e e e e e e e e 36

11.2 Publicationsoftheyear . ... .. ... ... .. . . . 37

113 0Other . . . . o e e e e e e e e 39

11.4 Cited publications . . . . . . i ittt e e e e e e e e e e 39



Project STORM

Project-Team STORM

Creation of the Project-Team: 2017 July 01

Keywords

Computer sciences and digital sciences

Al.1.1. - Multicore, Manycore

Al.1.2. — Hardware accelerators (GPGPU, FPGA, etc.)
Al.1.3. - Memory models

Al.1.4. - High performance computing

Al.1.5. — Exascale

A2.1.7. - Distributed programming

A2.2.1. - Static analysis

A2.2.2. —Memory models

A2.2.4. —Parallel architectures

A2.2.5. - Run-time systems

A2.2.6. - GPGPU, FPGA...
Other research topics and application domains

B2.2.1. - Cardiovascular and respiratory diseases
B3.2. - Climate and meteorology
B3.3.1. — Earth and subsoil

B3.4.1. — Natural risks

B4.2. — Nuclear Energy Production
B5.2.3. — Aviation

B5.2.4. — Aerospace

B6.2.2. — Radio technology

B6.2.3. — Satellite technology
B6.2.4. — Optic technology

B9.2.3. - Video games


https://radar.inria.fr/keywords/2022/computing
https://radar.inria.fr/keywords/2022/other

2 Inria Annual Report 2022

1 Team members, visitors, external collaborators

Research Scientists

¢ QOlivier Aumage [INRIA, Researcher, HDR]

¢ Scott Baden [UNIV CALIFORNIE, Advanced Research Position, from Apr 2022]
¢ Laercio Lima Pilla [CNRS, Researcher]

¢ Mihail Popov [Inria, Researcher]

o Emmanuelle Saillard [Inria, Researcher]

Faculty Members

¢ Denis Barthou [Team leader, BORDEAUX INP, Professor, HDR]

¢ Marie-Christine Counilh [UNIV BORDEAUX, Associate Professor]

¢ Amina Guermouche [BORDEAUX INP, Associate Professor, from Sep 2022]
¢ Raymond Namyst [UNIV BORDEAUX, Professor, HDR]

¢ Samuel Thibault [UNIV BORDEAUZX, Professor, HDR]

¢ Pierre-André Wacrenier [UNIV BORDEAUX, Associate Professor]

PhD Students

o (Célia Tassadit Ait Kaci [ATOS, CIFRE, until Feb 2022]
¢ Vincent Alba [UNIV BORDEAUX, from Sep 2022]

¢ Baptiste Coye [UBISOFT, CIFRE]

¢ Maxime Gonthier [Inria]

¢ Lise Jolicoeur [CEA, from Nov 2022]

¢ Alice Lasserre [Inria, from Sep 2022]

¢ Romain Lion [UNIV BORDEAUX]

¢ Gwenole Lucas [Inria]

¢ Van Man Nguyen [CEA]

¢ Diane Orhan [UNIV BORDEAUX, from Sep 2022]

¢ Lana Scravaglieri [I[FPEN, CIFRE, from Nov 2022]

¢ (Célia Tassadit Ait Kaci [Inria, from Mar 2022 until Sep 2022, PhD contract extension]

¢ Radjasouria Vinayagame [ATOS, CIFRE, from Dec 2022]



Project STORM

Technical Staff

L]

Nathalie Furmento [CNRS, Engineer]

Amina Guermouche [UNIV BORDEAUX, Engineer, until Aug 2022]
Kun He [Inria, Engineer]

Romain Lion [Inria, Engineer, until Jun 2022]

Mariem Makni [UNIV BORDEAUX, Engineer, from Aug 2022]
Chiheb Sakka [Inria, Engineer, until Jul 2022]

Bastien Tagliaro [Inria, Engineer]

Philippe Virouleau [Inria, Engineer, from Oct 2022]

Interns and Apprentices

Vincent Alba [Inria, Intern, from Feb 2022 until Jul 2022]

Pélagie Alves [Inria, Intern, from Mar 2022 until Aug 2022]

Edgar Baucher [Inria, until May 2022]

Charles Goedefroit [Inria, from May 2022 until Jul 2022]

Alice Lasserre [Inria, Intern, from Feb 2022 until Jul 2022]
Charles Martin [Inria, from May 2022 until Jul 2022]

Thomas Morin [Inria, Intern, from Aug 2022 until Sep 2022]
Thomas Morin [Inria, until Apr 2022]

Thomas Morin [Inria, Intern, from May 2022 until Jun 2022]
Diane Orhan [ENS RENNES, Intern, from Feb 2022 until Jul 2022]

Pierre-Antoine Rouby [Inria, Intern, from Feb 2022 until Jul 2022]

Administrative Assistant

Sabrina Duthil [Inria]

External Collaborator

L]

Jean-Marie Couteyen [AIRBUS]

2 Overall objectives

Runtime systems successfully support the complexity and heterogeneity of modern architectures thanks
to their dynamic task management. Compiler optimizations and analyses are aggressive in iterative
compilation frameworks, suitable for library generations or domain specific languages (DSL), in particular
for linear algebra methods. To alleviate the difficulties for programming heterogeneous and parallel
machines, we believe it is necessary to provide inputs with richer semantics to runtime and compiler

alike, and in particular by combining both approaches.

This general objective is declined into three sub-objectives, the first concerning the expression of
parallelism itself, the second the optimization and adaptation of this parallelism by compilers and
runtimes and the third concerning the necessary user feed back, either as debugging or simulation results,

to better understand the first two steps.



Inria Annual Report 2022

Performance Feedback

(MAQAD)

Domain Specific Languages
{Qiral, SYCL, P-EDGE, SOTL)

I
Parallzl Languages
{OpenMP, OpenCL)

Compiler
{IKlang-Omp}

Runtime System
(StarPU}

Parallel Architectures
(SIMD, multicare CPU, GPL, manysare attelerators)

Figure 1: STORM Big Picture

Perfarmance Abstraction

{StarPU J SimGrid}



Project STORM 5

1. Expressing parallelism: As shown in the following figure, we propose to work on parallelism
expression through Domain Specific Languages, PGAS languages, C++ enhanced with libraries or
even pragmas able to capture the essence of the algorithms used through usual parallel languages
such as SyCL, OpenMP and through high performance libraries. The language richer semantics
will be driven by applications, with the idea to capture at the algorithmic level the parallelism of
the problem and perform dynamic data layout adaptation, parallel and algorithmic optimizations.
The principle here is to capture a higher level of semantics, enabling users to express not only
parallelism but also different algorithms.

2. Optimizing and adapting parallelism: The goal is to address the evolving hardware, by providing
mechanisms to efficiently run the same code on different architectures. This implies to adapt
parallelism to the architecture by either changing the granularity of the work or by adjusting the
execution parameters. We rely on the use of existing parallel libraries and their composition, and
more generally on the separation of concern between the description of tasks, that represent
semantic units of work, and the tasks to be executed by the different processing units. Splitting
or coarsening moldable tasks, generating code for these tasks, and exploring runtime parameters
(e.g., frequency, vectorization, prefetching, scheduling) is part of this work.

3. Finally, the abstraction we advocate for requires to propose a feed back loop. This feed back has two
objectives: to make users better understand their application and how to change the expression of
parallelism if necessary, but also to propose an abstracted model for the machine. This allows to
develop and formalize the compilation, scheduling techniques on a model, not too far from the
real machine. Here, simulation techniques are a way to abstract the complexity of the architecture
while preserving essential metrics.

3 Research program

3.1 Parallel Computing and Architectures

Following the current trends of the evolution of HPC systems architectures, it is expected that future
Exascale systems (i.e. Sustaining 10'® flops) will have millions of cores. Although the exact architectural
details and trade-offs of such systems are still unclear, it is anticipated that an overall concurrency level of
0(10°) threads/tasks will probably be required to feed all computing units while hiding memory latencies.
It will obviously be a challenge for many applications to scale to that level, making the underlying system
sound like “embarrassingly parallel hardware.”

From the programming point of view, it becomes a matter of being able to expose extreme parallelism
within applications to feed the underlying computing units. However, this increase in the number of
cores also comes with architectural constraints that actual hardware evolution prefigures: computing
units will feature extra-wide SIMD and SIMT units that will require aggressive code vectorization or
“SIMDization”, systems will become hybrid by mixing traditional CPUs and accelerators units, possibly
on the same chip as the AMD APU solution, the amount of memory per computing unit is constantly
decreasing, new levels of memory will appear, with explicit or implicit consistency management, etc. As a
result, upcoming extreme-scale system will not only require unprecedented amount of parallelism to be
efficiently exploited, but they will also require that applications generate adaptive parallelism capable to
map tasks over heterogeneous computing units.

The current situation is already alarming, since European HPC end-users are forced to invest in a
difficult and time-consuming process of tuning and optimizing their applications to reach most of current
supercomputers’ performance. It will go even worse with the emergence of new parallel architectures
(tightly integrated accelerators and cores, high vectorization capabilities, etc.) featuring unprecedented
degree of parallelism that only too few experts will be able to exploit efficiently. As highlighted by the
ETP4HPC initiative, existing programming models and tools won’t be able to cope with such a level of
heterogeneity, complexity and number of computing units, which may prevent many new application
opportunities and new science advances to emerge.

The same conclusion arises from a non-HPC perspective, for single node embedded parallel architec-
tures, combining heterogeneous multicores, such as the ARM big.LITTLE processor and accelerators such



6 Inria Annual Report 2022

as GPUs or DSPs. The need and difficulty to write programs able to run on various parallel heterogeneous
architectures has led to initiatives such as HSA, focusing on making it easier to program heterogeneous
computing devices. The growing complexity of hardware is a limiting factor to the emergence of new
usages relying on new technology.

3.2 Scientific and Societal Stakes

In the HPC context, simulation is already considered as a third pillar of science with experiments and the-
ory. Additional computing power means more scientific results, and the possibility to open new fields of
simulation requiring more performance, such as multi-scale, multi-physics simulations. Many scientific
domains able to take advantage of Exascale computers, these “Grand Challenges” cover large panels of
science, from seismic, climate, molecular dynamics, theoretical and astrophysics physics... Besides, more
widespread compute intensive applications are also able to take advantage of the performance increase
at the node level. For embedded systems, there is still an on-going trend where dedicated hardware is
progressively replaced by off-the-shelf components, adding more adaptability and lowering the cost of
devices. For instance, Error Correcting Codes in cell phones are still hardware chips, but new software
and adaptative solutions relying on low power multicores are also explored for antenna. New usages
are also appearing, relying on the fact that large computing capacities are becoming more affordable
and widespread. This is the case for instance with Deep Neural Networks where the training phase can
be done on supercomputers and then used in embedded mobile systems. Even though the computing
capacities required for such applications are in general a different scale from HPC infrastructures, there is
still a need in the future for high performance computing applications.

However, the outcome of new scientific results and the development of new usages for these systems
will be hindered by the complexity and high level of expertise required to tap the performance offered by
future parallel heterogeneous architectures. Maintenance and evolution of parallel codes are also limited
in the case of hand-tuned optimization for a particular machine, and this advocates for a higher and
more automatic approach.

3.3 Towards More Abstraction

As emphasized by initiatives such as the European Exascale Software Initiative (EESI), the European
Technology Platform for High Performance Computing (ETP4HPC), or the International Exascale Soft-
ware Initiative (IESP), the HPC community needs new programming APIs and languages for expressing
heterogeneous massive parallelism in a way that provides an abstraction of the system architecture
and promotes high performance and efficiency. The same conclusion holds for mobile, embedded
applications that require performance on heterogeneous systems.

This crucial challenge given by the evolution of parallel architectures therefore comes from this need
to make high performance accessible to the largest number of developers, abstracting away architectural
details providing some kind of performance portability, and provided a high level feed-back allowing
the user to correct and tune the code. Disruptive uses of the new technology and groundbreaking new
scientific results will not come from code optimization or task scheduling, but they require the design
of new algorithms that require the technology to be tamed in order to reach unprecedented levels of
performance.

Runtime systems and numerical libraries are part of the answer, since they may be seen as building
blocks optimized by experts and used as-is by application developers. The first purpose of runtime
systems is indeed to provide abstraction. Runtime systems offer a uniform programming interface for a
specific subset of hardware or low-level software entities (e.g., POSIX-thread implementations). They
are designed as thin user-level software layers that complement the basic, general purpose functions
provided by the operating system calls. Applications then target these uniform programming interfaces
in a portable manner. Low-level, hardware dependent details are hidden inside runtime systems. The
adaptation of runtime systems is commonly handled through drivers. The abstraction provided by
runtime systems thus enables portability. Abstraction alone is however not enough to provide portability
of performance, as it does nothing to leverage low-level-specific features to get increased performance
and does nothing to help the user tune his code. Consequently, the second role of runtime systems is
to optimize abstract application requests by dynamically mapping them onto low-level requests and



Project STORM 7

resources as efficiently as possible. This mapping process makes use of scheduling algorithms and
heuristics to decide the best actions to take for a given metric and the application state at a given point
in its execution time. This allows applications to readily benefit from available underlying low-level
capabilities to their full extent without breaking their portability. Thus, optimization together with
abstraction allows runtime systems to offer portability of performance. Numerical libraries provide sets
of highly optimized kernels for a given field (dense or sparse linear algebra, tensor products, etc.) either
in an autonomous fashion or using an underlying runtime system.

Application domains cannot resort to libraries for all codes however, computation patterns such as
stencils are a representative example of such difficulty. The compiler technology plays here a central role,
in managing high level semantics, either through templates, domain specific languages or annotations.
Compiler optimizations, and the same applies for runtime optimizations, are limited by the level of
semantics they manage and the optimization space they explore. Providing part of the algorithmic
knowledge of an application, and finding ways to explore a larger space of optimization would lead
to more opportunities to adapt parallelism, memory structures, and is a way to leverage the evolving
hardware. Compilers and runtime play a crucial role in the future of high performance applications,
by defining the input language for users, and optimizing/transforming it into high performance code.
Adapting the parallelism and its orchestration according to the inputs, to energy, to faults, managing
heterogeneous memory, better define and select appropriate dynamic scheduling methods, are among
the current works of the STORM team.

The results of the team research in 2022 reflect this focus. Results presented in Sections 7.18, 7.2,
9.4.1 correspond to efforts for higher abstractions through C++ or PGAS, and for decoupling algorithmics
from parallel optimizations. Static and dynamic optimizations are presented in 7.2, 7.10, 7.1 are on the
optimization of communications and their parallelism, while Sections 7.5, 7.3, 7.4 focus on efficient
compilation schemes for parallelism. In particular, the works presented in Sections 7.3, 7.4 describes new
methods resorting to Al to improve the compiled code. Results described in Sections 7.10, 7.9 provide
feed-back information, through error detection for parallel executions. The work described in Sections
7.11,7.207.217.227.13,7.19,7.12 and 7.16 focus in particular on StarPU and its development in order
to better abstract architecture, resilience, energy saving, integration in other tools and optimizations.
The works described in Sections 7.14 and 7.15 correspond to scheduling methods for lightweight tasks or
repetitive task graphs. Sections 7.7 and 7.13 focus on optimizations for energy savings, for Al and for HPC
applications, based on scheduling optimizations. A wider automatic survey on scheduling methods is
proposed in 7.6.

Finally, Section 7.17 present an on-going effort on improving the Chameleon library and strengthening
its relation with StarPU and the NewMadeleine communication library. They represent real-life applica-
tions for the runtime methods we develop. Section 7.19 presents application to bigdata application, and
7.8 to cardiac simulation.

4 Application domains

4.1 Application domains benefiting from HPC
The application domains of this research are the following:
¢ Bioinformatics
¢ Health and heart disease analysis (see EXACARD 9.4.1 and Microcard project projects 9.3.1)
¢ Software infrastructures for Telecommunications (see AFF3CT, 7.18)
¢ Aeronautics (collaboration with Airbus, J.-M. Couteyen)

* Video games (collaboration with Ubisoft, see 8.1)

4.2 Application in High performance computing/Big Data

Most of the research of the team has application in the domain of software infrastructure for HPC and
compute intensive applications.



8 Inria Annual Report 2022

5 Highlights of the year

5.1 Awards
¢ Amina Guermouche joined the permanent team members in September 2022.

¢ Three PhD students of the team defended their PhD at the end of the year: Célia Tassadit Ait Kaci,
Van-Man Nguyen and Romain Lion.

6 New software and platforms

6.1 New software
6.1.1 Chameleon

Keywords: Runtime system, Task-based algorithm, Dense linear algebra, HPC, Task scheduling

Scientific Description: Chameleon is part of the MORSE (Matrices Over Runtime Systems @ Exascale)
project. The overall objective is to develop robust linear algebra libraries relying on innovative
runtime systems that can fully benefit from the potential of those future large-scale complex
machines.

We expect advances in three directions based first on strong and closed interactions between the
runtime and numerical linear algebra communities. This initial activity will then naturally expand
to more focused but still joint research in both fields.

1. Fine interaction between linear algebra and runtime systems. On parallel machines, HPC applica-
tions need to take care of data movement and consistency, which can be either explicitly managed
at the level of the application itself or delegated to a runtime system. We adopt the latter approach
in order to better keep up with hardware trends whose complexity is growing exponentially. One
major task in this project is to define a proper interface between HPC applications and runtime
systems in order to maximize productivity and expressivity. As mentioned in the next section, a
widely used approach consists in abstracting the application as a DAG that the runtime system
is in charge of scheduling. Scheduling such a DAG over a set of heterogeneous processing units
introduces a lot of new challenges, such as predicting accurately the execution time of each type of
task over each kind of unit, minimizing data transfers between memory banks, performing data
prefetching, etc. Expected advances: In a nutshell, a new runtime system API will be designed to
allow applications to provide scheduling hints to the runtime system and to get real-time feedback
about the consequences of scheduling decisions.

2. Runtime systems. A runtime environment is an intermediate layer between the system and the
application. It provides low-level functionality not provided by the system (such as scheduling or
management of the heterogeneity) and high-level features (such as performance portability). In
the framework of this proposal, we will work on the scalability of runtime environment. To achieve
scalability it is required to avoid all centralization. Here, the main problem is the scheduling of
the tasks. In many task-based runtime environments the scheduler is centralized and becomes
a bottleneck as soon as too many cores are involved. It is therefore required to distribute the
scheduling decision or to compute a data distribution that impose the mapping of task using, for
instance the so-called “owner-compute” rule. Expected advances: We will design runtime systems
that enable an efficient and scalable use of thousands of distributed multicore nodes enhanced
with accelerators.

3. Linear algebra. Because of its central position in HPC and of the well understood structure of its
algorithms, dense linear algebra has often pioneered new challenges that HPC had to face. Again,
dense linear algebra has been in the vanguard of the new era of petascale computing with the
design of new algorithms that can efficiently run on a multicore node with GPU accelerators. These
algorithms are called “communication-avoiding” since they have been redesigned to limit the
amount of communication between processing units (and between the different levels of memory
hierarchy). They are expressed through Direct Acyclic Graphs (DAG) of fine-grained tasks that



Project STORM 9

are dynamically scheduled. Expected advances: First, we plan to investigate the impact of these
principles in the case of sparse applications (whose algorithms are slightly more complicated but
often rely on dense kernels). Furthermore, both in the dense and sparse cases, the scalability on
thousands of nodes is still limited, new numerical approaches need to be found. We will specifically
design sparse hybrid direct/iterative methods that represent a promising approach.

Overall end point. The overall goal of the MORSE associate team is to enable advanced numerical
algorithms to be executed on a scalable unified runtime system for exploiting the full potential of
future exascale machines.

Functional Description: Chameleon is a dense linear algebra software relying on sequential task-based
algorithms where sub-tasks of the overall algorithms are submitted to a Runtime system. A Runtime
system such as StarPU is able to manage automatically data transfers between not shared memory
area (CPUs-GPUgs, distributed nodes). This kind of implementation paradigm allows to design
high performing linear algebra algorithms on very different type of architecture: laptop, many-
core nodes, CPUs-GPUs, multiple nodes. For example, Chameleon is able to perform a Cholesky
factorization (double-precision) at 80 TFlop/s on a dense matrix of order 400 000 (i.e. 4 min 30 s).

Release Contributions: Chameleon includes the following features:
- BLAS 3, LAPACK one-sided and LAPACK norms tile algorithms - Support QUARK and StarPU run-
time systems and PaRSEC since 2018 - Exploitation of homogeneous and heterogeneous platforms
through the use of BLAS/LAPACK CPU kernels and cuBLAS/MAGMA CUDA kernels - Exploitation
of clusters of interconnected nodes with distributed memory (using OpenMPI)

URL: https://gitlab.inria.fr/solverstack/chameleon

Contact: Emmanuel Agullo

Participants: Cédric Castagnede, Samuel Thibault, Emmanuel Agullo, Florent Pruvost, Mathieu Faverge

Partners: Innovative Computing Laboratory (ICL), King Abdullha University of Science and Technology,
University of Colorado Denver

6.1.2 KStar

Name: The KStar OpenMP Compiler

Keywords: Source-to-source compiler, OpenMBP, Task scheduling, Compilers, Data parallelism

Functional Description: The KStar software is a source-to-source OpenMP compiler for languages C
and C++. The KStar compiler translates OpenMP directives and constructs into API calls from
the StarPU runtime system or the XKaapi runtime system. The KStar compiler is virtually fully
compliant with OpenMP 3.0 constructs. The KStar compiler supports OpenMP 4.0 dependent tasks
and accelerated targets.

Release Contributions: update support for StarPU data_lookup to account for API change

URL: https://gitlab.inria.fr/kstar/kstar

Publications: hal-01517153, hal-01372022, hal-01081974

Contact: Olivier Aumage

Participants: Nathalie Furmento, Olivier Aumage, Philippe Virouleau, Samuel Thibault


https://gitlab.inria.fr/solverstack/chameleon
https://gitlab.inria.fr/kstar/kstar
https://hal.inria.fr/hal-01517153
https://hal.inria.fr/hal-01372022
https://hal.inria.fr/hal-01081974

10

Inria Annual Report 2022

6.1.3 AFF3CT

Name: A Fast Forward Error Correction Toolbox

Keywords: High-Performance Computing, Signal processing, Error Correction Code

Functional Description: AFF3CT proposes high performance Error Correction algorithms for Polar,

Turbo, LDPC, RSC (Recursive Systematic Convolutional), Repetition and RA (Repeat and Accumu-
late) codes. These signal processing codes can be parameterized in order to optimize some given
metrics, such as Bit Error Rate, Bandwidth, Latency, ...using simulation. For the designers of such
signal processing chain, AFF3CT proposes also high performance building blocks so to develop
new algorithms. AFF3CT compiles with many compilers and runs on Windows, Mac OS X, Linux
environments and has been optimized for x86 (SSE, AVX instruction sets) and ARM architectures
(NEON instruction set).

News of the Year: The AFF3CT toolbox was successfully used to develop a the software implementation

of real- time DVB-S2 transceiver. For this purpose, USRP modules were combined with multicore
and SIMD CPUs. Thus some components are directly from the AFF3CT library and others such as
the synchronization functions have been added. The transceiver code is portable on x86 and ARM
architectures.

URL: https://aff3ct.github.io/

Publications: hal-02358306, hal-01965629, hal-01977885, hal-01203105, hal-01363980, hal-01363975,

hal-01987848, hal-01965633

Authors: Adrien Cassagne, Bertrand Le Gal, Camille Leroux, Denis Barthou, Olivier Aumage

Contact: Denis Barthou

Partner: IMS

6.1.4 VITE

Name: Visual Trace Explorer

Keywords: Visualization, Execution trace

Functional Description: ViTE is a trace explorer. It is a tool made to visualize execution traces of large

parallel programs. It supports Pajé, a trace format created by Inria Grenoble, and OTF and OTF2
formats, developed by the University of Dresden and allows the programmer a simpler way to
analyse, debug and/or profile large parallel applications.

URL: https://solverstack.gitlabpages.inria.fr/vite/

Contact: Mathieu Faverge

Participant: Mathieu Faverge

6.1.5 PARCOACH

Name: PARallel Control flow Anomaly CHecker

Keywords: High-Performance Computing, Program verification, Debug, MPI, OpenMP, Compilation

Scientific Description: PARCOACH verifies programs in two steps. First, it statically verifies applications

with a data- and control-flow analysis and outlines execution paths leading to potential deadlocks.
The code is then instrumented, displaying an error and synchronously interrupting all processes if
the actual scheduling leads to a deadlock situation.


https://aff3ct.github.io/
https://hal.inria.fr/hal-02358306
https://hal.inria.fr/hal-01965629
https://hal.inria.fr/hal-01977885
https://hal.inria.fr/hal-01203105
https://hal.inria.fr/hal-01363980
https://hal.inria.fr/hal-01363975
https://hal.inria.fr/hal-01987848
https://hal.inria.fr/hal-01965633
https://solverstack.gitlabpages.inria.fr/vite/

Project STORM 11

Functional Description: Supercomputing plays an important role in several innovative fields, speeding
up prototyping or validating scientific theories. However, supercomputers are evolving rapidly with
now millions of processing units, posing the questions of their programmability. Despite the emer-
gence of more widespread and functional parallel programming models, developing correct and
effective parallel applications still remains a complex task. As current scientific applications mainly
rely on the Message Passing Interface (MPI) parallel programming model, new hardwares designed
for Exascale with higher node-level parallelism clearly advocate for an MPI+X solutions with X a
thread-based model such as OpenMP. But integrating two different programming models inside
the same application can be error-prone leading to complex bugs - mostly detected unfortunately
at runtime. PARallel COntrol flow Anomaly CHecker aims at helping developers in their debugging
phase.

URL: https://parcoach.github.io/index.html

Publications: hal-03882459, hal-03374614, hal-00920901, hal-01078762, hal-01078759, hal-01252321,
hal-01253204, hal-01199718, hal-01420655, hal-01937316, hal-02390025

Contact: Emmanuelle Saillard
Participants: Emmanuelle Saillard, Denis Barthou, Philippe Virouleau, Tassadit Ait Kaci

Partners: CEA, Bull - Atos Technologies

6.1.6 StarPU
Name: The StarPU Runtime System
Keywords: Multicore, GPU, Scheduling, HPC, Performance

Scientific Description: Traditional processors have reached architectural limits which heterogeneous
multicore designs and hardware specialization (eg. coprocessors, accelerators, ...) intend to address.
However, exploiting such machines introduces numerous challenging issues at all levels, ranging
from programming models and compilers to the design of scalable hardware solutions. The design
of efficient runtime systems for these architectures is a critical issue. StarPU typically makes it
much easier for high performance libraries or compiler environments to exploit heterogeneous
multicore machines possibly equipped with GPGPUs or Cell processors: rather than handling
low-level issues, programmers may concentrate on algorithmic concerns.Portability is obtained
by the means of a unified abstraction of the machine. StarPU offers a unified offloadable task
abstraction named "codelet". Rather than rewriting the entire code, programmers can encapsulate
existing functions within codelets. In case a codelet may run on heterogeneous architectures, it is
possible to specify one function for each architectures (eg. one function for CUDA and one function
for CPUs). StarPU takes care to schedule and execute those codelets as efficiently as possible over
the entire machine. In order to relieve programmers from the burden of explicit data transfers,
a high-level data management library enforces memory coherency over the machine: before a
codelet starts (eg. on an accelerator), all its data are transparently made available on the compute
resource.Given its expressive interface and portable scheduling policies, StarPU obtains portable
performances by efficiently (and easily) using all computing resources at the same time. StarPU
also takes advantage of the heterogeneous nature of a machine, for instance by using scheduling
strategies based on auto-tuned performance models.

StarPU is a task programming library for hybrid architectures.

The application provides algorithms and constraints: - CPU/GPU implementations of tasks, - A
graph of tasks, using StarPU’s rich C API.

StarPU handles run-time concerns: - Task dependencies, - Optimized heterogeneous schedul-
ing, - Optimized data transfers and replication between main memory and discrete memories, -
Optimized cluster communications.

Rather than handling low-level scheduling and optimizing issues, programmers can concentrate
on algorithmic concerns!


https://parcoach.github.io/index.html
https://hal.inria.fr/hal-03882459
https://hal.inria.fr/hal-03374614
https://hal.inria.fr/hal-00920901
https://hal.inria.fr/hal-01078762
https://hal.inria.fr/hal-01078759
https://hal.inria.fr/hal-01252321
https://hal.inria.fr/hal-01253204
https://hal.inria.fr/hal-01199718
https://hal.inria.fr/hal-01420655
https://hal.inria.fr/hal-01937316
https://hal.inria.fr/hal-02390025

12 Inria Annual Report 2022

Functional Description: StarPU is a runtime system that offers support for heterogeneous multicore
machines. While many efforts are devoted to design efficient computation kernels for those
architectures (e.g. to implement BLAS kernels on GPUs), StarPU not only takes care of offloading
such kernels (and implementing data coherency across the machine), but it also makes sure the
kernels are executed as efficiently as possible.

URL: https://starpu.gitlabpages.inria.fr/

Publications: hal-02943753, hal-02970529, hal-02985721, hal-03290998, hal-03552243, hal-03273509,
hal-03773486, inria-00378705, inria-00384363, inria-00411581, inria-00421333, inria-00467677,
inria-00523937, inria-00547614, inria-00547616, inria-00550877, inria-00590670, inria-00606195,
inria-00606200, inria-00619654, hal-00643257, hal-00648480, hal-00654193, hal-00661320, hal-
00697020, hal-00725477, hal-00772742, hal-00773114, hal-00773610, hal-00776610, tel-00777154,
hal-00803304, hal-00807033, hal-00824514, hal-00853423, hal-00858350, hal-00920915, hal-00925017,
hal-00926144, tel-00948309, hal-00966862, hal-00978364, hal-00978602, hal-00987094, hal-00992208,
hal-01005765, hal-01011633, hal-01081974, hal-01101045, hal-01101054, hal-01120507, hal-01147997,
tel-01162975, hal-01181135, hal-01182746, hal-01223573, hal-01283949, hal-01284004, hal-01284136,
hal-01284235, hal-01332774, hal-01353962, hal-01355385, hal-01361992, hal-01372022, hal-01386174,
hal-01409965, hal-01410103, hal-01473475, hal-01474556, tel-01483666, hal-01502749, hal-01517153,
tel-01538516, hal-01616632, hal-01618526, hal-01718280, tel-01816341, hal-01842038, tel-01959127,
hal-02275363, hal-02296118, hal-02403109, hal-02421327, hal-02872765, hal-02914793, hal-02933803

Contact: Olivier Aumage

Participants: Corentin Salingue, Andra Hugo, Benoit Lize, Cédric Augonnet, Cyril Roelandt, Frangois
Tessier, Jérome Clet-Ortega, Ludovic Courtes, Ludovic Stordeur, Marc Sergent, Mehdi Juhoor,
Nathalie Furmento, Nicolas Collin, Olivier Aumage, Pierre Wacrenier, Raymond Namyst, Samuel
Thibault, Simon Archipoff, Xavier Lacoste, Terry Cojean, Yanis Khorsi, Philippe Virouleau, Lolc
Jouans, Leo Villeveygoux

6.1.7 somp

Name: SOMP

Keywords: Simulation, Task scheduling, OpenMP

Functional Description: sOMP is a simulator for task-based applications running on shared-memory
architectures, utilizing the SimGrid framework. The aim is to predict the performance of applica-
tions on various machine designs while taking different memory models into account, using a trace
from a sequ