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2 Overall objectives

Our group focuses on developing automated techniques to compute semantic properties of programs and
other systems with a computational semantics in general. Such properties include (but are not limited to)
important classes of correctness properties.

Verifying safety critical systems (such as avionics systems) is an important motivation to compute
such properties. Indeed, a fault in an avionics system, such as a runtime error in the fly-by-wire command
software, may cause an accident, with loss of life. As these systems are also very complex and are
developed by large teams and maintained over long periods, their verification has become a crucial
challenge. Safety critical systems are not limited to avionics: software runtime errors in cruise control
management systems were recently blamed for causing unintended acceleration in certain Toyota models
(the case was settled with a 1.2 billion dollars fine in March 2014, after years of investigation and several
trials). Similarly, other transportation systems (railway), energy production systems (nuclear power plants,
power grid management), medical systems (pacemakers, surgery and patient monitoring systems), and
value transfers in decentralized systems (smart contracts), rely on complex software, which should be
verified.

Beyond the field of embedded systems, other pieces of software may cause very significant harm in the
case of bugs, as demonstrated by the Heartbleed security hole: due to a wrong protocol implementation,
many websites could leak private information, over years.

An important example of semantic properties is the class of safety properties. A safety property
typically specifies that some (undesirable) event will never occur, whatever the execution of the program
that is considered. For instance, the absence of runtime error is a very important safety property. Other
important classes of semantic properties include liveness properties (i.e., properties that specify that
some desirable event will eventually occur) such as termination and security properties, such as the
absence of information flows from private to public channels.

All these software semantic properties are not decidable, as can be shown by reduction to the halting
problem. Therefore, there is no chance to develop any fully automatic technique able to decide, for any
system, whether or not it satisfies some given semantic property.

The classic development techniques used in industry involve testing, which is not sound, as it
only gives information about a usually limited test sample: even after successful test-based validation,
situations that were untested may generate a problem. Furthermore, testing is costly in the long term,
as it should be re-done whenever the system to verify is modified. Machine-assisted verification is
another approach which verifies human specified properties. However, this approach also presents a
very significant cost, as the annotations required to verify large industrial applications would be huge.

By contrast, the antique group focuses on the design of semantic analysis techniques that should be
sound (i.e., compute semantic properties that are satisfied by all executions) and automatic (i.e., with no
human interaction), although generally incomplete (i.e., not able to compute the best —in the sense of:
most precise— semantic property). As a consequence of incompleteness, we may fail to verify a system
that is actually correct. For instance, in the case of verification of absence of runtime error, the analysis
may fail to validate a program, which is safe, and emit false alarms (that is reports that possibly dangerous
operations were not proved safe), which need to be discharged manually. Even in this case, the analysis
provides information about the alarm context, which may help disprove it manually or refine the analysis.

The methods developed by the antique group are not limited to the analysis of software. We also
consider complex biological systems (such as models of signaling pathways, i.e. cascades of protein
interactions, which enable signal communication among and within cells), described in higher level
languages, and use abstraction techniques to reduce their combinatorial complexity and capture key
properties so as to get a better insight in the underlying mechanisms of these systems.
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3 Research program

3.1 Semantics

Semantics plays a central role in verification since it always serves as a basis to express the properties
of interest, that need to be verified, but also additional properties, required to prove the properties of
interest, or which may make the design of static analysis easier.

For instance, if we aim for a static analysis that should prove the absence of runtime error in some
class of programs, the concrete semantics should define properly what error states and non error states
are, and how program executions step from a state to the next one. In the case of a language like C, this
includes the behavior of floating point operations as defined in the IEEE 754 standard. When considering
parallel programs, this includes a model of the scheduler, and a formalization of the memory model.

In addition to the properties that are required to express the proof of the property of interest, it
may also be desirable that semantics describe program behaviors in a finer manner, so as to make
static analyses easier to design. For instance, it is well known that, when a state property (such as the
absence of runtime error) is valid, it can be established using only a state invariant (i.e., an invariant
that ignores the order in which states are visited during program executions). Yet searching for trace
invariants (i.e., that take into account some properties of program execution history) may make the static
analysis significantly easier, as it will allow it to make finer case splits, directed by the history of program
executions. To allow for such powerful static analyses, we often resort to a non standard semantics, which
incorporates properties that would normally be left out of the concrete semantics.

3.2 Abstract interpretation and static analysis

Once a reference semantics has been fixed and a property of interest has been formalized, the definition
of a static analysis requires the choice of an abstraction. The abstraction ties a set of abstract predicates to
the concrete ones, which they denote. This relation is often expressed with a concretization function that
maps each abstract element to the concrete property it stands for. Obviously, a well chosen abstraction
should allow one to express the property of interest, as well as all the intermediate properties that are
required in order to prove it (otherwise, the analysis would have no chance to achieve a successful
verification). It should also lend itself to an efficient implementation, with efficient data-structures
and algorithms for the representation and the manipulation of abstract predicates. A great number of
abstractions have been proposed for all kinds of concrete data types, yet the search for new abstractions is
a very important topic in static analysis, so as to target novel kinds of properties, to design more efficient
or more precise static analyses.

Once an abstraction is chosen, a set of sound abstract transformers can be derived from the concrete
semantics and that account for individual program steps, in the abstract level and without forgetting
any concrete behavior. A static analysis follows as a result of this step by step approximation of the
concrete semantics, when the abstract transformers are all computable. This process defines an abstract
interpretation [36]. The case of loops requires a bit more work as the concrete semantics typically relies
on a fixpoint that may not be computable in finitely many iterations. To achieve a terminating analysis we
then use widening operators [36], which over-approximate the concrete union and ensure termination.

A static analysis defined that way always terminates and produces sound over-approximations of the
programs behaviors. Yet, these results may not be precise enough for verification. This is where the art of
static analysis design comes into play through, among others:

• the use of more precise, yet still efficient enough abstract domains;

• the combination of application-specific abstract domains;

• the careful choice of abstract transformers and widening operators.

3.3 Applications of the notion of abstraction in semantics

In the previous subsections, we sketched the steps in the design of a static analyzer to infer some family
of properties, which should be implementable, and efficient enough to succeed in verifying non trivial
systems.
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The same principles can be applied successfully to other goals. In particular, the abstract interpreta-
tion framework should be viewed as a very general tool to compare different semantics, not necessarily
with the goal of deriving a static analyzer. Such comparisons may be used in order to prove two semantics
equivalent (i.e., one is an abstraction of the other and vice versa), or that a first semantics is strictly
more expressive than another one (i.e., the latter can be viewed an abstraction of the former, where
the abstraction actually makes some information redundant, which cannot be recovered). A classical
example of such comparison is the classification of semantics of transition systems [35], which provides
a better understanding of program semantics in general. For instance, this approach can be applied to
get a better understanding of the semantics of a programming language, but also to select which concrete
semantics should be used as a foundation for a static analysis, or to prove the correctness of a program
transformation, compilation or optimization.

3.4 From properties to explanations

In many application domains, we can go beyond the proof that a program satisfies its specification.
Abstractions can also offer new perspectives to understand how complex behaviors of programs emerge
from simpler computation steps. Abstractions can be used to find compact and readable representations
of sets of traces, causal relations, and even proofs. For instance, abstractions may decipher how the col-
lective behaviors of agents emerge from the orchestration of their individual ones in distributed systems
(such as consensus protocols, models of signaling pathways). Another application is the assistance for
the diagnostic of alarms of a static analyzer.

Complex systems and software have often times intricate behaviors, leading to executions that are
hard to understand for programmers and also difficult to reason about with static analyzers. Shared
memory and distributed systems are notorious for being hard to reason about due to the interleaving
of actions performed by different processes and the non-determinism of the network that might lose,
corrupt, or duplicate messages. Reduction theorems, e.g., Lipton’s theorem, have been proposed to
facilitate reasoning about concurrency, typically transforming a system into one with a coarse-grained
semantics that usually increases the atomic sections. We investigate reduction theorems for distributed
systems and ways to compute the coarse-grained counter part of a system automatically. Compared
with shared memory concurrency, automated methods to reason about distributed systems have been
less investigated in the literature. We take a programming language approach based on high-level
programming abstractions. We focus on partially-synchronous communication closed round-based
models, introduced in the distributed algorithms community for its simpler proof arguments. The high-
level language is compiled into a low-level (asynchronous) programming language. Conversely, systems
defined under asynchronous programming paradigms are decompiled into the high-level programming
abstractions. The correctness of the compilation/decompilation process is based on reduction theorems
(in the spirit of Lipton and Elrad-Francez) that preserve safety and liveness properties.

In models of signaling pathways, collective behavior emerges from competition for common resources,
separation of scales (time/concentration), non linear feedback loops, which are all consequences of
mechanistic interactions between individual bio-molecules (e.g., proteins). While more and more details
about mechanistic interactions are available in the literature, understanding the behavior of these models
at the system level is far from easy. Causal analysis helps explaining how specific events of interest
may occur. Model reduction techniques combine methods from different domains such as the analysis
of information flow used in communication protocols, and tropicalization methods that comes from
physics. The result is lower dimension systems that preserve the behavior of the initial system while
focusing of the elements from which emerges the collective behavior of the system.

The abstraction of causal traces offer nice representation of scenarios that lead to expected or un-
expected events. This is useful to understand the necessary steps in potential scenarios in signaling
pathways; this is useful as well to understand the different steps of an intrusion in a protocol. Lastly,
traces of computation of a static analyzer can themselves be abstracted, which provides assistance to
classify true and false alarms. Abstracted traces are symbolic and compact representations of sets of
counter-examples to the specification of a system which help one to either understand the origin of bugs,
or to find that some information has been lost in the abstraction leading to false alarms.
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4 Application domains

4.1 Verification of safety critical embedded software

The verification of safety critical embedded software is a very important application domain for our group.
First, this field requires a high confidence in software, as a bug may cause disastrous events. Thus, it offers
an obvious opportunity for a strong impact. Second, such software usually have better specifications
and a better design than many other families of software, hence are an easier target for developing new
static analysis techniques (which can later be extended for more general, harder to cope with families of
programs). This includes avionics, automotive and other transportation systems, medical systems . . .

For instance, the verification of avionics systems represent a very high percentage of the cost of an
airplane (about 30 % of the overall airplane design cost). The state of the art development processes
mainly resort to testing in order to improve the quality of software. Depending on the level of criticality
of a software (at the highest levels, any software failure would endanger the flight) a set of software
requirements are checked with test suites. This approach is both costly (due to the sheer amount of
testing that needs to be performed) and unsound (as errors may go unnoticed, if they do not arise on the
test suite).

By contrast, static analysis can ensure higher software quality at a lower cost. Indeed, a static analyzer
will catch all bugs of a certain kind. Moreover, a static analysis run typically lasts a few hours, and can be
integrated in the development cycle in a seamless manner. For instance, ASTRÉE successfully verified the
absence of runtime error in several families of safety critical fly-by-wire avionic software, in at most a day
of computation, on standard hardware. Other kinds of synchronous embedded software have also been
analyzed with good results.

In the future, we plan to greatly extend this work so as to verify other families of embedded software
(such as communication, navigation and monitoring software) and other families of properties (such as
security and liveness properties).

Embedded software in charge of communication, navigation, and monitoring typically relies on
a parallel structure, where several threads are executed concurrently, and manage different features
(input, output, user interface, internal computation, logging . . . ). This structure is also often found in
automotive software. An even more complex case is that of distributed systems, where several separate
computers are run in parallel and take care of several sub-tasks of a same feature, such as braking.
Such a logical structure is not only more complex than the synchronous one, but it also introduces new
risks and new families of errors (deadlocks, data-races...). Moreover, such less well designed, and more
complex embedded software often utilizes more complex data-structures than synchronous programs
(which typically only use arrays to store previous states) and may use dynamic memory allocation, or
build dynamic structures inside static memory regions, which are actually even harder to verify than
conventional dynamically allocated data structures. Complex data-structures also introduce new kinds of
risks (the failure to maintain structural invariants may lead to runtime errors, non termination, or other
software failures). To verify such programs, we will design additional abstract domains, and develop
new static analysis techniques, in order to support the analysis of more complex programming language
features such as parallel and concurrent programming with threads and manipulations of complex data
structures. Due to their size and complexity, the verification of such families of embedded software is a
major challenge for the research community.

Furthermore, embedded systems also give rise to novel security concerns. It is in particular the
case for some aircraft-embedded computer systems, which communicate with the ground through
untrusted communication media. Besides, the increasing demand for new capabilities, such as enhanced
on-board connectivity, e.g. using mobile devices, together with the need for cost reduction, leads to
more integrated and interconnected systems. For instance, modern aircrafts embed a large number of
computer systems, from safety-critical cockpit avionics to passenger entertainment. Some systems meet
both safety and security requirements. Despite thorough segregation of subsystems and networks, some
shared communication resources raise the concern of possible intrusions. Because of the size of such
systems, and considering that they are evolving entities, the only economically viable alternative is to
perform automatic analyses. Such analyses of security and confidentiality properties have never been
achieved on large-scale systems where security properties interact with other software properties, and
even the mapping between high-level models of the systems and the large software base implementing

http://www.astree.ens.fr/
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them has never been done and represents a great challenge. Our goal is to prove empirically that the
security of such large scale systems can be proved formally, thanks to the design of dedicated abstract
interpreters.

The long term goal is to make static analysis more widely applicable to the verification of industrial
software.

4.2 Static analysis of software components and libraries

An important goal of our work is to make static analysis techniques easier to apply to wider families of
software. Then, in the longer term, we hope to be able to verify less critical, yet very commonly used
pieces of software. Those are typically harder to analyze than critical software, as their development
process tends to be less rigorous. In particular, we will target operating systems components and libraries.
As of today, the verification of such programs is considered a major challenge to the static analysis
community.

As an example, most programming languages offer Application Programming Interfaces (API) provid-
ing ready-to-use abstract data structures (e.g., sets, maps, stacks, queues, etc.). These APIs, are known
under the name of containers or collections, and provide off-the-shelf libraries of high level operations,
such as insertion, deletion and membership checks. These container libraries give software developers a
way of abstracting from low-level implementation details related to memory management, such as dy-
namic allocation, deletion and pointer handling or concurrency aspects, such as thread synchronization.
Libraries implementing data structures are important building bricks of a huge number of applications,
therefore their verification is paramount. We are interested in developing static analysis techniques that
will prove automatically the correctness of large audience libraries such as Glib and Threading Building
Blocks.

4.3 Models of mechanistic interactions between proteins

Computer Science takes a more and more important role in the design and the understanding of biological
systems such as signaling pathways, self assembly systems, DNA repair mechanisms. Biology has gathered
large data-bases of facts about mechanistic interactions between proteins, but struggles to draw an overall
picture of how these systems work as a whole. High level languages designed in Computer Science allow
one to collect these interactions in integrative models, and provide formal definitions (i.e., semantics) for
the behavior of these models. This way, modelers can encode their knowledge, following a bottom-up
discipline, without simplifying a priori the models at the risk of damaging the key properties of the system.
Yet, the systems that are obtained this way suffer from combinatorial explosion (in particular, in the
number of different kinds of molecular components, which can arise at run-time), which prevents from a
naive computation of their behavior.

We develop various analyses based on abstract interpretation, and tailored to different phases of the
modeling process. We propose automatic static analyses in order to detect inconsistencies in the early
phases of the modeling process. These analyses are similar to the analysis of classical safety properties of
programs. They involve both forward and backward reachability analyses as well as causality analyses,
and can be tuned at different levels of abstraction. We also develop automatic static analyses in order to
identify key elements in the dynamics of these models. The results of these analyses are sent to another
tool, which is used to automatically simplify models. The correctness of this simplification process is
proved by the means of abstract interpretation: this ensures formally that the simplification preserves
the quantitative properties that have been specified beforehand by the modeler. The whole pipeline is
parameterized by a large choice of abstract domains which exploits different features of the high level
description of models.

4.4 Consensus

Fault-tolerant distributed systems provide a dependable service on top of unreliable computers and
networks. Famous examples are geo-replicated data-bases, distributed file systems, or blockchains.
Fault-tolerant protocols replicate the system and ensure that all (unreliable) replicas are perceived from
the outside as one single reliable machine. To give the illusion of a single reliable machine “consensus”
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protocols force replicas to agree on the “current state” before making this state visible to an outside
observer. We are interested in (semi-)automatically proving the total correctness of consensus algorithms
in the benign case (messages are lost or processes crash) or the Byzantine case (processes may lie about
their current state). In order to do this, we first define new reduction theorems to simplify the behaviors
of the system and, second, we introduce new static analysis methods to prove the total correctness
of adequately simplified systems. We focus on static analysis based Satisfiability Modulo Theories
(SMT) solvers which offers a good compromise between automation and expressiveness. Among our
benchmarks are Paxos, PBFT (Practical Byzantine Fault-Tolerance), and blockchain algorithms (Red-Belly,
Tendermint, Algorand). These are highly challenging benchmarks, with a lot of non-determinism coming
from the interleaving semantics and from the adversarial environment in which correct processes execute,
environment that can drop messages, corrupt them, etc. Moreover, these systems were originally designed
for a few servers but today are deployed on networks with thousands of nodes. The “optimizations” for
scalability can no longer be overlooked and must be considered as integral part of the algorithms,
potentially leading to specifications weaker than the so much desired consensus.

4.5 Smart contracts

Blockchain applications in finance have emerged in 2020 as the lead applications. The new field called
decentralised finance (or also open finance) re-creates basic financial functionalities such as ireeversible
and reverible swaps of assets. There are broad goals to our research in this emerging area: structuring
contract languages which guarantee good execution properties by construction, and finding mechanisms
that foster liquidity.

We are investigating several other problems in decentralised finance: protocols for capital-efficient
decentralised exchanges; general convex problems for the optimal routing and arbitrage in the network
of exchange platforms; and the economics of the competition between two-sided exchange platforms.

4.6 Static analysis of data science software

Nowadays, thanks to advances in machine learning and the availability of vast amounts of data, computer
software plays an increasingly important role in assisting or even autonomously performing tasks in
our daily lives. As data science software becomes more and more widespread, we become increasingly
vulnerable to programming errors. In particular, programming errors that do not cause failures can have
serious consequences since code that produces an erroneous but plausible result gives no indication
that something went wrong. This issue becomes particularly worrying knowing that machine learning
software, thanks to its ability to efficiently approximate or simulate more complex systems, is slowly
creeping into mission critical scenarios. However, programming errors are not the only concern. Another
important issue is the vulnerability of machine learning models to adversarial examples, that is, small
input perturbations that cause the model to misbehave in unpredictable ways. More generally, a critical
issue is the notorious difficulty to interpret and explain machine learning software. Finally, as we are
witnessing widespread adoption of software with far-reaching societal impact — i.e., to automate decision-
making in fields such as social welfare, criminal justice, and even health care — a number of recent cases
have evidenced the importance of ensuring software fairness as well as data privacy. Going forward, data
science software will be subject to more and more legal regulations (e.g., the European General Data
Protection Regulation adopted in 2016) as well as administrative audits.

It is thus paramount to develop method and tools that can keep up with these developments and
enhance our understanding of data science software and ensure it behaves correctly and reliably. In
particular, we are interesting in developing new static analyses specifically tailored to the idiosyncrasies
of data science software. This makes it a new and exciting area for static analysis, offering a wide variety
of challenging problems with huge potential impact on various interdisciplinary application domains
[38].
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5 Social and environmental responsibility

5.1 Impact of research results

We are advising several companies such as Bender operating on the Tezos blockchain, think tanks such
as the CDC Labchain (Caisse des Dépots), and other informal development groups such as Jaxnet on
decentralised finance protocols and mechanism design for consensus incentives.

We are advising static analysis companies including AbsInt Angewandte Informatik (static analysis
for the verification of embedded software) and MatrixLead (static analysis for spreadsheet applications).

6 Highlights of the year

• Jérôme Boillot was a member of the team Mopsa who won the Gold Medal (Winner) of SV-Comp’s
SoftwareSystems category 2024. The competition will take place at TACAS. The detailed results are
available here.

• Josselin Giet and Félix Ridoux received the Radhia Cousot Award for the best student paper at SAS
2023. The details are available here.

7 New software, platforms, open data

7.1 New software

7.1.1 APRON

Scientific Description: The APRON library is intended to be a common interface to various underlying
libraries/abstract domains and to provide additional services that can be implemented independ-
ently from the underlying library/abstract domain, as shown by the poster on the right (presented
at the SAS 2007 conference. You may also look at:

Functional Description: The Apron library is dedicated to the static analysis of the numerical variables
of a program by abstract interpretation. Its goal is threefold: provide ready-to-use numerical
abstractions under a common API for analysis implementers, encourage the research in numerical
abstract domains by providing a platform for integration and comparison of domains, and provide
a teaching and demonstration tool to disseminate knowledge on abstract interpretation.

URL: http://apron.cri.ensmp.fr/library/

Contact: Antoine Miné

Participants: Antoine Miné, Bertrand Jeannet

7.1.2 Astrée

Name: The AstréeA Static Analyzer of Asynchronous Software

Keywords: Static analysis, Static program analysis, Program verification, Software Verification, Abstrac-
tion

Scientific Description: Astrée analyzes structured C programs, with complex memory usages, but
without dynamic memory allocation nor recursion. This encompasses many embedded pro-
grams as found in earth transportation, nuclear energy, medical instrumentation, and aerospace
applications, in particular synchronous control/command. The whole analysis process is entirely
automatic.

Astrée discovers all runtime errors including:

undefined behaviors in the terms of the ANSI C99 norm of the C language (such as division by 0 or
out of bounds array indexing),

https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/2024/results/results-verified/
https://staticanalysis.org/
http://apron.cri.ensmp.fr/library/
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any violation of the implementation-specific behavior as defined in the relevant Application Binary
Interface (such as the size of integers and arithmetic overflows),

any potentially harmful or incorrect use of C violating optional user-defined programming guidelines
(such as no modular arithmetic for integers, even though this might be the hardware choice),

failure of user-defined assertions.

Functional Description: Astrée analyzes structured C programs, with complex memory usages, but
without dynamic memory allocation nor recursion. This encompasses many embedded programs
as found in earth transportation, nuclear energy, medical instrumentation, and aerospace ap-
plications, in particular synchronous control/command. The whole analysis process is entirely
automatic.

Astrée discovers all runtime errors including: - undefined behaviors in the terms of the ANSI C99
norm of the C language (such as division by 0 or out of bounds array indexing), - any violation
of the implementation-specific behavior as defined in the relevant Application Binary Interface
(such as the size of integers and arithmetic overflows), - any potentially harmful or incorrect use
of C violating optional user-defined programming guidelines (such as no modular arithmetic for
integers, even though this might be the hardware choice), - failure of user-defined assertions.

Astrée is a static analyzer for sequential programs based on abstract interpretation. The Astrée static
analyzer aims at proving the absence of runtime errors in programs written in the C programming
language.

URL: http://www.astree.ens.fr/

Contact: Patrick Cousot

Participants: Antoine Miné, Jerome Feret, Laurent Mauborgne, Patrick Cousot, Radhia Cousot, Xavier
Rival

Partners: CNRS, ENS Paris, AbsInt Angewandte Informatik GmbH

7.1.3 AstréeA

Name: The AstréeA Static Analyzer of Asynchronous Software

Keywords: Static analysis, Static program analysis

Scientific Description: AstréeA analyzes C programs composed of a fixed set of threads that commu-
nicate through a shared memory and synchronization primitives (mutexes, FIFOs, blackboards,
etc.), but without recursion nor dynamic creation of memory, threads nor synchronization objects.
AstréeA assumes a real-time scheduler, where thread scheduling strictly obeys the fixed priority
of threads. Our model follows the ARINC 653 OS specification used in embedded industrial aero-
nautic software. Additionally, AstréeA employs a weakly-consistent memory semantics to model
memory accesses not protected by a mutex, in order to take into account soundly hardware and
compiler-level program transformations (such as optimizations). AstréeA checks for the same
run-time errors as Astrée , with the addition of data-races.

Functional Description: AstréeA is a static analyzer prototype for parallel software based on abstract
interpretation. The AstréeA prototype is a fork of the Astrée static analyzer that adds support for
analyzing parallel embedded C software.

URL: http://www.astree.ens.fr/

Contact: Patrick Cousot

Participants: Antoine Miné, Jerome Feret, Patrick Cousot, Radhia Cousot, Xavier Rival

Partners: CNRS, ENS Paris, AbsInt Angewandte Informatik GmbH

http://www.astree.ens.fr/
http://www.astree.ens.fr/
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7.1.4 ClangML

Keyword: Compilation

Functional Description: ClangML is an OCaml binding with the Clang front-end of the LLVM compiler
suite. Its goal is to provide an easy to use solution to parse a wide range of C programs, that can
be called from static analysis tools implemented in OCaml, which allows to test them on existing
programs written in C (or in other idioms derived from C) without having to redesign a front-end
from scratch. ClangML features an interface to a large set of internal AST nodes of Clang , with an
easy to use API. Currently, ClangML supports all C language AST nodes, as well as a large part of the
C nodes related to C++ and Objective-C.

URL: https://github.com/Antique-team/clangml/tree/master/clang

Contact: Xavier Rival

Participants: Devin Mccoughlin, François Berenger, Pippijn Van Steenhoven

7.1.5 FuncTion

Scientific Description: FuncTion is based on an extension to liveness properties of the framework to
analyze termination by abstract interpretation proposed by Patrick Cousot and Radhia Cousot.
FuncTion infers ranking functions using piecewise-defined abstract domains. Several domains
are available to partition the ranking function, including intervals, octagons, and polyhedra. Two
domains are also available to represent the value of ranking functions: a domain of affine ranking
functions, and a domain of ordinal-valued ranking functions (which allows handling programs
with unbounded non-determinism).

Functional Description: FuncTion is a research prototype static analyzer to analyze the termination
and functional liveness properties of programs. It accepts programs in a small non-deterministic
imperative language. It is also parameterized by a property: either termination, or a recurrence or a
guarantee property (according to the classification by Manna and Pnueli of program properties).
It then performs a backward static analysis that automatically infers sufficient conditions at the
beginning of the program so that all executions satisfying the conditions also satisfy the property.

URL: http://www.di.ens.fr/~urban/FuncTion.html

Contact: Caterina Urban

Participants: Antoine Miné, Caterina Urban

7.1.6 HOO

Name: Heap Abstraction for Open Objects

Functional Description: JSAna with HOO is a static analyzer for JavaScript programs. The primary
component, HOO, which is designed to be reusable by itself, is an abstract domain for a dynamic
language heap. A dynamic language heap consists of open, extensible objects linked together by
pointers. Uniquely, HOO abstracts these extensible objects, where attribute/field names of objects
may be unknown. Additionally, it contains features to keeping precise track of attribute name/value
relationships as well as calling unknown functions through desynchronized separation.

As a library, HOO is useful for any dynamic language static analysis. It is designed to allow ab-
stractions for values to be easily swapped out for different abstractions, allowing it to be used for a
wide-range of dynamic languages outside of JavaScript.

Contact: Arlen Cox

Participant: Arlen Cox

https://github.com/Antique-team/clangml/tree/master/clang
http://www.di.ens.fr/~urban/FuncTion.html
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7.1.7 MemCAD

Name: The MemCAD static analyzer

Keywords: Static analysis, Abstraction

Functional Description: MemCAD is a static analyzer that focuses on memory abstraction. It takes as
input C programs, and computes invariants on the data structures manipulated by the programs.
It can also verify memory safety. It comprises several memory abstract domains, including a flat
representation, and two graph abstractions with summaries based on inductive definitions of
data-structures, such as lists and trees and several combination operators for memory abstract
domains (hierarchical abstraction, reduced product). The purpose of this construction is to offer
a great flexibility in the memory abstraction, so as to either make very efficient static analyses of
relatively simple programs, or still quite efficient static analyses of very involved pieces of code. The
implementation consists of over 30 000 lines of ML code, and relies on the ClangML front-end. The
current implementation comes with over 300 small size test cases that are used as regression tests.

URL: http://www.di.ens.fr/~rival/memcad.html

Contact: Xavier Rival

Participants: Antoine Toubhans, François Berenger, Huisong Li, Xavier Rival

7.1.8 KAPPA

Name: A rule-based language for modeling interaction networks

Keywords: Systems Biology, Modeling, Static analysis, Simulation, Model reduction

Scientific Description: OpenKappa is a collection of tools to build, debug and run models of biological
pathways. It contains a compiler for the Kappa Language, a static analyzer (for debugging models),
a simulator, a compression tool for causal traces, and a model reduction tool.

Functional Description: Kappa is provided with the following tools: - a compiler - a stochastic simulator
- a static analyzer - a trace compression algorithm - an ODE generator.

Release Contributions: On line UI, Simulation is based on a new data-structure (see ESOP 2017 ), New
abstract domains are available in the static analyzer (see SASB 2016), Local traces (see TCBB 2018),
Reasoning on polymers (see SASB 2018).

URL: http://www.kappalanguage.org/

Contact: Jerome Feret

Participants: Jean Krivine, Jerome Feret, Kim-Quyen Ly, Pierre Boutillier, Russ Harmer, Vincent Danos,
Walter Fontana, Antoine Pouille, Matthieu Bougueon

Partners: ENS Lyon, Université Paris-Diderot, HARVARD Medical School

7.1.9 QUICr

Functional Description: QUICr is an OCaml library that implements a parametric abstract domain for
sets. It is constructed as a functor that accepts any numeric abstract domain that can be adapted to
the interface and produces an abstract domain for sets of numbers combined with numbers. It is
relational, flexible, and tunable. It serves as a basis for future exploration of set abstraction.

Contact: Arlen Cox

Participant: Arlen Cox

http://www.di.ens.fr/~rival/memcad.html
http://www.kappalanguage.org/
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7.1.10 Zarith

Functional Description: Zarith is a small (10K lines) OCaml library that implements arithmetic and
logical operations over arbitrary-precision integers. It is based on the GNU MP library to efficiently
implement arithmetic over big integers. Special care has been taken to ensure the efficiency of
the library also for small integers: small integers are represented as Caml unboxed integers and
use a specific C code path. Moreover, optimized assembly versions of small integer operations are
provided for a few common architectures.

Zarith is currently used in the Astrée analyzer to enable the sound analysis of programs featuring
64-bit (or larger) integers. It is also used in the Frama-C analyzer platform developed at CEA LIST
and Inria Saclay.

URL: http://forge.ocamlcore.org/projects/zarith

Contact: Antoine Miné

Participants: Antoine Miné, Pascal Cuoq, Xavier Leroy

7.1.11 PYPPAI

Name: Pyro Probabilistic Program Analyzer

Keywords: Probability, Static analysis, Program verification, Abstraction

Functional Description: PYPPAI is a program analyzer to verify the correct semantic definition of prob-
abilistic programs written in Pyro. At the moment, PYPPAI verifies consistency conditions between
models and guides used in probabilistic inference programs.

PYPPAI is written in OCaml and uses the pyml Python in OCaml library. It features a numerical
abstract domain based on Apron, an abstract domain to represent zones in tensors, and dedicated
abstract domains to describe distributions and states in probabilistic programs.

URL: https://github.com/wonyeol/static-analysis-for-support-match

Contact: Xavier Rival

8 New results

8.1 Foundations
A Categorical Framework for Program Semantics and Semantic Abstraction.

Participants: Jérémy Dubut, Shin-ya Katsumata, Xavier Rival (correspondant).

Categorical semantics of type theories are often characterized as structure-preserving functors. This is
because in category theory both the syntax and the domain of interpretation are uniformly treated as
structured categories, so that we can express interpretations as structure-preserving functors between
them. This mathematical characterization of semantics makes it convenient to manipulate and to reason
about relationships between interpretations. Motivated by this success of functorial semantics, we
address the question of finding a functorial analogue in abstract interpretation, a general framework
for comparing semantics, so that we can bring similar benefits of functorial semantics to semantic
abstractions used in abstract interpretation. Major differences concern the notion of interpretation that
is being considered. Indeed, conventional semantics are value-based whereas abstract interpretation
typically deals with more complex properties. In this paper, we propose a functorial approach to abstract
interpretation and study associated fundamental concepts therein. In our approach, interpretations are
expressed as oplax functors in the category of posets, and abstraction relations between interpretations

http://forge.ocamlcore.org/projects/zarith
https://github.com/wonyeol/static-analysis-for-support-match
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are expressed as lax natural transformations representing concretizations. We present examples of these
formal concepts from monadic semantics of programming languages and discuss soundness.

This work has been accepted for publishation at MFPS 2023 [17].

8.2 Abstract domains

A generic framework to coarse-grain stochastic reaction networks by Abstract Interpretation

Participants: Jérôme Boillot, Jérôme Feret.

In [12], we present symbolic methods to improve the precision of static analyses of modular integer
expressions based on Abstract Interpretation. Like similar symbolic methods, the idea is to simplify on-
the-fly arithmetic expressions before they are given to abstract transfer functions of underlying abstract
domains. When manipulating fixed-length integer data types, casts and overflows generally act like
modulo computations which hinder the use of symbolic techniques. The goal of this article is to formalize
how modulo operations can be safely eliminated by abstracting arbitrary arithmetic expressions into sum,
product, or division of linear forms with integer coefficients, while simplifying them. We provide some
rules to simplify arithmetic expressions that are involved in the computation of linear interpolations,
while ensuring the soundness of the transformation.

All these methods have been incorparated in three static analyzers: a toy analyzer publicly available,
the ASTRÉE statis analyzer, and the MOPSA open-source static analysis platform. In particular, MOPSA
aims at broadening their application to the general software development community. The symbolic sim-
plification of expressions involving modular integer expressions turned out to be very useful to solve some
corner cases that other tools could not attack. Jérôme Boillot has participated to the team Mopsa who won
the Gold Medal (Winner) of SV-Comp’s SoftwareSystems category 2024. The competition will take place
at TACAS 2024. The detailed results are available at: https://sv-comp.sosy-lab.org/2024/results/results-
verified/.

A Formal Framework to Measure the Incompleteness of Abstract Interpretations

Participants: Marco Campion, Caterina Urban, Mila Dalla Preda, Roberto Giaco-
bazzi.

In program analysis by abstract interpretation, backward-completeness represents no loss of pre-
cision between the result of the analysis and the abstraction of the concrete execution, while forward-
completeness stands for no imprecision between the concretization of the analysis result and the concrete
execution. Program analyzers satisfying one of the two properties (or both) are considered precise. Regret-
tably, as for all approximation methods, the presence of false alarms is most of the time unavoidable and
therefore we need to deal somehow with incompleteness of both. To this end, a new property called partial
completeness has recently been formalized as a relaxation of backward-completeness allowing a limited
amount of imprecision measured by quasi-metrics. However, the use of quasi-metrics enforces distance
functions to adhere precisely the abstract domain ordering, thus not suitable to be used to weaken the
forward-completeness property which considers also abstract domains that are not necessarily based
on Galois Connections. In [13] (published at SAS 2023), we formalize a weaker form of quasi-metric,
called pre-metric, which can be defined on all domains equipped with a pre-order relation. We show
how this newly defined notion of pre-metric allows us to derive other pre-metrics on other domains by
exploiting the concretization and, when available, the abstraction maps, according to the information
and the corresponding level of approximation that we want to measure. Finally, by exploiting pre-metrics
as our imprecision meter, we introduce the partial forward/backward-completeness properties.

https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/2024/results/results-verified/
https://sv-comp.sosy-lab.org/2024/results/results-verified/
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Monotonicity and the Precision of Program Analysis

Participants: Marco Campion, Mila Dalla Preda, Roberto Giacobazzi, Cater-
ina Urban.

It is widely known that the precision of a program analyzer is closely related to intensional program
properties, namely, properties concerning how the program is written. Less is known about a possible
relation between what the program extensionally computes, namely, its input-output relation, and the
precision of a program analyzer. In our paper [4] accepted for publication at POPL 2024, we explore this
potential connection in an effort to isolate program fragments that can be precisely analyzed by abstract
interpretation, namely, programs for which there exists a complete abstract interpretation. In the field of
static inference of numeric invariants, this happens for programs, or parts of programs, that manifest
a monotone (either non-decreasing or non-increasing) behavior. In the paper, we first formalize the
notion of program monotonicity with respect to a given input and a set of numerical variables of interest.
A sound proof system is then introduced with judgments specifying whether a program is monotone
relatively to a set of variables and a set of inputs. The interest in monotonicity is justified because we
prove that the family of monotone programs admits a complete abstract interpretation over a specific
class of non-trivial numerical abstractions and inputs. This class includes all non-relational abstract
domains that refine interval analysis (i.e., at least as precise as the intervals abstraction) and that satisfy a
topological convexity hypothesis.

8.3 Causal analysis

Participants: Jérôme Feret (correspondant), Aurélie Kong Win Chang,
Grégor Goeßler.

In [18], we introduce a small step semantics for a subset of Core Erlang modeling its monitoring and
signal systems. The goal of our semantics is to enable the construction of causal explanations for property
violations, which will be the object of future work. As a first axis of reflection, we chose to study the impact
of the order of messages on a faulty behavior. We present our semantics and discuss some of our design
choices. This work is a part of a broader project on causal debugging of concurrent programs in Erlang.

8.4 Application to computational systems biology

Software sciences have a role to play in the description, the organization, the execution, and the analysis
of the molecular interaction systems such as biological signaling pathways. These systems involve a huge
diversity of bio-molecular entities whereas their dynamics may be driven by races for shared resources,
interactions at different time- and concentration-scales, and non-linear feedback loops. Understanding
how the behavior of the populations of proteins orchestrates itself from their individual interactions,
which is the holy grail on systems biology, requires dedicated languages offering adapted levels of
abstraction and efficient analysis tools.

Static analysis and model reduction

Participants: Jérôme Feret.

In our habilitation thesis [24], we describe the design of formal tools for Kappa, a site-graph rewriting
language inspired by bio-chemistry. In particular, we introduce a static analysis to compute some
properties on the biological entities that may arise in models, so as to increase our confidence in them.
We also present a model reduction approach based on a study of the flow of information between the
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different regions of the biological entities and the potential symmetries. This approach is applied both in
the differential and in the stochastic semantics.

The first three chapters of [24] forms the material for a course that has been taught at EJCIM 2023, the
PhD spring school of the CNRS research group informatic mathematics (GDR IM) [27].

Faithful Model Reduction of Discrete Biological Systems

Participants: Jérôme Feret, Albin Salazar.

In the last decades, logical or discrete models have emerged as a successful paradigm for capturing
and predicting the behaviors of systems of molecular interactions. Intuitively, they consist in sampling
the abundance of each kind of biochemical entity within finite sets of intervals and deriving transitions
accordingly. On one hand, formallyproven sound derivation from more precise descriptions (such as
from reaction networks) may include many fictitious behaviors. On the other hand, direct modeling
usually favors dominant interactions with no guarantee on the behaviors that are neglected.

In his PhD [28] from which is also extracted the paper [15], Albin Salazar formalize a sound coarse-
graining approach for stochastic reaction networks. Its originality relies on two main ingredients. Firstly,
we abstract values by intervals that overlap in order to introduce a minimal effort for the system to go
back to the previous interval, hence limiting fictitious oscillations in the coarse-grained models. Secondly,
we compute for pairs of transitions (in the coarse-grained model) bounds on the probabilities on which
one will occur first. We illustrate our ideas on two case studies and demonstrate how techniques from
Abstract Interpretation can be used to design more precise discretization methods, while providing a
framework to further investigate the underlying structure of logical and discrete models.

Modeling populations of hepatic stellar cells

Participants: Matthieu Bouguéon, Jérôme Feret, Anne Siegel, Nathalie Théret.

Hepatic fibrosis is an excessive response to cicatrisation that is induced by chronical lesions. It is
characterised by an accumulation of the extracellular matrix, mainly made of collagene, which increases
the rigidity of tissues and leads to severe liver disorders. The activation of hepatic stellar cells, induced by
the TGF-β growth factor is the main processus at the origin of hepatic fibrosis.

So as to study the dynamics of hepatic stellar cells during the development and the reversion of
bibrosis, Matthieu Bouguéon has, in his PhD thesis [26], codirectied by Anne Siegel and Nathalie Théret,
and comentored by Jérôme Feret, developped a multi-scale model integrating several states of the hepatic
stellar cells and their production of collagene, under the influence of TGF-β1. This model is implemented
in Kappa. Besides being the first multi-scale model in Kappa, this model captures the plasticity of stellar
cells during the development and the reversion of fibrosis. The model predicts that the inactivation of
fibrosis plays an essential role in the development of fibrosis. The model has been validated by new
experiments in mouses and the predictions have been validated by RNAseq data in fibrotic patients.

8.5 Static Analysis of Machine Learning Software

Verifying Attention Robustness of Deep Neural Networks against Semantic Perturbations

Participants: Satoshi Munakata, Caterina Urban, Haruki Yokoyama, Koji Yamamoto,
Kazuki Munakata.

It is known that deep neural networks (DNNs) classify an input image by paying particular attention to
certain specific pixels; a graphical representation of the magnitude of attention to each pixel is called
a saliency-map. Saliency-maps are used to check the validity of the classification decision basis, e.g.,

https://ejcim23.sciencesconf.org/
https://www.gdr-im.fr/
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it is not a valid basis for classification if a DNN pays more attention to the background rather than the
subject of an image. Semantic perturbations can significantly change the saliency-map. In [20], we
propose the first verification method for attention robustness, i.e., the local robustness of the changes in
the saliency-map against combinations of semantic perturbations. Specifically, our method determines
the range of the perturbation parameters (e.g., the brightness change) that maintains the difference
between the actual saliency-map change and the expected saliency-map change below a given threshold
value. Our method is based on activation region traversals, focusing on the outermost robust boundary
for scalability on larger DNNs. Experimental results demonstrate that our method can show the extent
to which DNNs can classify with the same basis regardless of semantic perturbations and report on
performance and performance factors of activation region traversals.

Abstract Interpretation-Based Feature Importance for Support Vector Machines

Participants: Abhinandan Pal, Francesco Ranzato, Caterina Urban, Marco Zanella.

In [22] (accepted for publication at VMCAI 2024), we propose a symbolic representation for support
vector machines (SVMs) by means of abstract interpretation, a well-known and successful technique for
designing and implementing static program analyses. We leverage this abstraction in two ways: (1) to
enhance the interpretability of SVMs by deriving a novel feature importance measure, called abstract
feature importance (AFI), that does not depend in any way on a given dataset of the accuracy of the
SVM and is very fast to compute, and (2) for verifying stability, notably individual fairness, of SVMs and
producing concrete counterexamples when the verification fails. We implemented our approach and we
empirically demonstrated its effectiveness on SVMs based on linear and nonlinear (polynomial and radial
basis function) kernels. Our experimental results show that, independently of the accuracy of the SVM,
our AFI measure correlates much more strongly with the stability of the SVM to feature perturbations
than feature importance measures widely available in machine learning software such as permutation
feature importance. It thus gives better insight into the trustworthiness of SVMs.

8.6 Static Analysis of Jupyter Notebooks

Static Analysis of Data Transformations in Jupyter Notebooks

Participants: Luca Negrini, Guruprerana Shabadi, Caterina Urban.

Jupyter notebooks used to pre-process and polish raw data for data science and machine learning
processes are challenging to analyze. Their data-centric code manipulates dataframes through call to
library functions with complex semantics, and the properties to track over it vary widely depending on
the verification task. In [21] (published at SOAP 2023), we presents a novel abstract domain that simplifies
writing analyses for such programs, by extracting a unique Control Flow Graph (CFG) from the notebook
that contains all transformations applied to the data. Several properties can then be determined by
analyzing such CFG, that is simpler than the original Python code. In the paper, we present a first use case
that exploits our analysis to infer the required shape of the dataframes manipulated by the notebook.

8.7 Shape analysis

A Product of Shape and Sequence Abstractions.

Participants: Josselin Giet, Félix Ridoux, Xavier Rival (correspondant).
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Traditional separation logic-based shape analyses utilize in- ductive summarizing predicates so as to
capture general properties of the layout of data-structures, to verify accurate manipulations of, e.g.,
various forms of lists or trees. However, they also usually abstract away contents properties, so that they
may only verify memory safety and invariance of data-structure shapes. In this paper, we introduce
a novel abstract domain to describe sequences of values of unbounded size, and track constraints on
their length and on extremal values contained in them. We define a reduced product of such a sequence
abstraction together with an existing shape abstraction so as to infer both shape and contents properties
of data-structures. We report on the implementation of the sequence domain, its integration into a static
analyzer for C code, and we evaluate its ability to verify partial functional correctness properties for list
and tree algorithms.

This work has been accepted for publishation at SAS 2023 [16].

8.8 Static Analysis of Probabilistic Programming Languages and Optimization Al-
gorithms

Towards the verification of semantic assumptions required by probabilistic inference algorithms

Participants: Wonyeol Lee, Hangyeol Wu, Xavier Rival (correspondant), Hong-
seok Yang.

Probabilistic programming is the idea of writing models from statistics and machine learning using
program notations and reasoning about these models using generic inference engines. Recently its
combination with deep learning has been explored intensely, which led to the development of so called
deep probabilistic programming languages, such as Pyro, Edward and ProbTorch. At the core of this
development lie inference engines based on stochastic variational inference algorithms. When asked to
find information about the posterior distribution of a model written in such a language, these algorithms
convert this posterior-inference query into an optimisation problem and solve it approximately by a
form of gradient ascent or descent. We analysed one of the most fundamental and versatile variational
inference algorithms, called score estimator or REINFORCE, using tools from denotational semantics and
program analysis. We formally expressed what this algorithm does on models denoted by programs, and
exposed implicit assumptions made by the algorithm on the models. The violation of these assumptions
may lead to an undefined optimisation objective or the loss of convergence guarantee of the optimisation
process. We then describe rules for proving these assumptions, which can be automated by static
program analyses. Some of our rules use nontrivial facts from continuous mathematics, and let us replace
requirements about integrals in the assumptions, such as integrability of functions defined in terms of
programs’ denotations, by conditions involving differentiation or boundedness, which are much easier
to prove automatically (and manually). Following our general methodology, we have developed a static
program analysis for the Pyro programming language that aims at discharging the assumption about
what we call model-guide support match. Our analysis is applied to the eight representative model-guide
pairs from the Pyro webpage, which include sophisticated neural network models such as AIR. It found a
bug in one of these cases, and revealed a non-standard use of an inference engine in another, and showed
that the assumptions are met in the remaining six cases.

Moreover, we have implemented an analysis for differentiability and other classes of smoothness
properties. This analysis can be ran on regular Python programs or on Pyro programs, and verify the
differentiability properties required for the sound definition of model guide pairs.,

The basis for this method has been published at POPL 2020 [34].

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference

Participants: Wonyeol Lee, Xavier Rival (correspondant), Hongseok Yang.

We proposed a static analysis for discovering differentiable or more generally smooth parts of a given
probabilistic program, and showed how the analysis can be used to improve the pathwise gradient estim-
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ator, one of the most popular methods for posterior inference and model learning. Our improvement
increases the scope of the estimator from differentiable models to non-differentiable ones without requir-
ing manual intervention of the user; the improved estimator automatically identifies differentiable parts
of a given probabilistic program using our static analysis, and applies the pathwise gradient estimator
to the identified parts while using a more general but less efficient estimator, called score estimator, for
the rest of the program. Our analysis has a surprisingly subtle soundness argument, partly due to the
misbehaviours of some target smoothness properties when viewed from the perspective of program
analysis designers. For instance, some smoothness properties, such as partial differentiability and partial
continuity, are not preserved by function composition, and this makes it difficult to analyse sequential
composition soundly without heavily sacrificing precision. We formulated five assumptions on a target
smoothness property, prove the soundness of our analysis under those assumptions, and show that
our leading examples satisfy these assumptions. We have also shown that by using information from
our analysis instantiated for differentiability, our improved gradient estimator satisfies an important
differentiability requirement and thus computes the correct estimate on average (i.e., returns an unbiased
estimate) under a regularity condition. Our experiments with representative probabilistic programs in
the Pyro language show that our static analysis is capable of identifying smooth parts of those programs
accurately, and making our improved pathwise gradient estimator exploit all the opportunities for high
performance in those programs.

This work has been accepted for publication at POPL 2023 [10].

8.9 Static analysis for security properties

Sound Symbolic Execution via Abstract Interpretation and its Application to Security

Participants: Tamara Rezk, Xavier Rival (correspondant), Ignacio Tiraboschi.

Symbolic execution is a program analysis technique commonly utilized to determine whether programs
violate properties and, in case violations are found, to generate inputs that can trigger them. Used in the
context of security properties such as noninterference, symbolic execution is precise when looking for
counter-example pairs of traces when insecure information flows are found, however it is sound only up
to a bound thus it does not allow to prove the correctness of programs with executions beyond the given
bound. By contrast, abstract interpretation-based static analysis guarantees soundness but generally
lacks the ability to provide counter-example pairs of traces.

In this work, we propose to weave both to obtain the best of two worlds. We demonstrate this with a
series of static analyses, including a static analysis called DSym aimed at verifying noninterference. DSym
provides both semantically sound results and the ability to derive counter-example pairs of traces up to a
bound. It relies on a combination of symbolic execution and abstract domains inspired by the well known
notion of reduced product. We formalize DSym and prove its soundness as well as its relative precision
up to a bound. We also provide a prototype implementation of DSym and evaluate it on a sample of
challenging examples.

This work has been accepted for publication at VMCAI 2023 [23].

8.10 Reductions between synchronous and asynchronous programming abstrac-
tions

Testing consensus implementations using communication closure

Participants: Cezara Drăgoi, Constantin Enea, Burcu Kulahcioglu Ozkan,
Rupak Majumdar, Filip Niksic.
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Large scale production distributed systems are difficult to design and test. Correctness must be
ensured when processes run asynchronously, at arbitrary rates relative to each other, and in the presence
of failures, e.g., process crashes or message losses. These conditions create a huge space of executions that
is difficult to explore in a principled way. Current testing techniques focus on systematic or randomized
exploration of all executions of an implementation while treating the implemented algorithms as black
boxes. On the other hand, proofs of correctness of many of the underlying algorithms often exploit
semantic properties that reduce reasoning about correctness to a subset of behaviors. For example, the
communication-closure property, used in many proofs of distributed consensus algorithms, shows that
every asynchronous execution of the algorithm is equivalent to a lossy synchronous execution, thus
reducing the burden of proof to only that subset. In a lossy synchronous execution, processes execute in
lock-step rounds, and messages are either received in the same round or lost forever—such executions
form a small subset of all asynchronous ones.

In [37] we formulate the communication-closure hypothesis, which states that bugs in implement-
ations of distributed consensus algorithms will already manifest in lossy synchronous executions and
present a testing algorithm based on this hypothesis. We prioritize the search space based on a bound
on the number of failures in the execution and the rate at which these failures are recovered. We show
that a random testing algorithm based on sampling lossy synchronous executions can empirically find
a number of bugs—including previously unknown ones—in production distributed systems such as
Zookeeper, Cassandra, and Ratis, and also produce more understandable bug traces.

8.11 Distributed algorithms

Geometric bounds for convergence rates of averaging algorithms

Participants: Bernadette Charron-Bost.

We developed a generic method for bounding the convergence rate of an averaging algorithm running
in a multi-agent system with a time-varying network, where the associated stochastic matrices have a
time-independent Perron vector. This method provides bounds on convergence rates that unify and
refine most of the previously known bounds. They depend on geometric parameters of the dynamic
communication graph such as the normalized diameter or the bottleneck measure. As corollaries of these
geometric bounds, we show that the convergence rate of the Metropolis algorithm in a system of n agents
is less than 1−0.25n2 with any communication graph that may vary in time, but is permanently connected
and bidirectional. We prove a similar upper bound for the EqualNeighbor algorithm under the additional
assumptions that the number of neighbors of each agent is constant and that the communication graph is
not too irregular. Moreover our bounds offer improved convergence rates for several averaging algorithms
and specific families of communication graphs. Finally we extend our methodology to a time-varying
Perron vector and show how convergence times may dramatically degrade with even limited variations of
Perron vectors.

Computing Outside the Box: Average Consensus over Dynamic Networks

Participants: Bernadette Charron-Bost, Patrick Lambein-Monette.

Networked systems of autonomous agents, and applications thereof, often rely on the control primitive
of average consensus, where the agents are to compute the average of private initial values. To provide
reliable services that are easy to deploy, average consensus should continue to operate when the network
is subject to frequent and unpredictable change, and should mobilize few computational resources, so
that deterministic, low powered, and anonymous agents can partake in the network. In this stringent
adversarial context, we investigated the implementation of average consensus by distributed algorithms
over networks with bidirectional, but potentially short-lived, communication links. Inspired by convex
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recurrence rules for multi-agent systems, and the Metropolis average consensus rule in particular, we de-
signed a deterministic distributed algorithm that achieves asymptotic average consensus, which we show
to operate in polynomial time in a synchronous temporal model. The algorithm is easy to implement, has
low space and computational complexity, and is fully distributed, requiring neither symmetry-breaking
devices like unique identifiers, nor global control or knowledge of the network. In the fully decentralized
model that we adopt, to our knowledge, no other distributed average consensus algorithm has a better
temporal complexity. Our approach distinguishes itself from classical convex recurrence rules in that
the agent’s values may sometimes leave their previous convex hull. As a consequence, our convergence
bound requires a subtle analysis, despite the syntactic simplicity of our algorithm.

8.12 Modeling

A Kappa model for hepatic stellate cells activation by TGFB1

Participants: Matthieu Bougéon, Pierre Boutillier, Jérôme Feret, Octave Hazard,
Nathalie Théret.

We model as a realistic case study, a population of hepatic stellate cells under the effect of the TGFB1
protein. In this case study, the components will be occurrences of hepatic stellate cells in different states,
and occurrences of the protein TGFB1. The protein TGFB1 induces different behaviors of hepatic stellate
cells thereby contributing either to tissue repair or to fibrosis. Better understanding the overall behavior
of the mechanisms that are involved in these processes is a key issue to identify markers and therapeutic
targets likely to promote the resolution of fibrosis at the expense of its progression.

8.13 Static analysis of signaling pathways

Static analysis for rule-based models

Participants: Jérôme Feret.

In the context biochemical systems, in the first steps of modeling, static analysis helps the modeler
by warning about potential issues in the model. Then it provides useful properties to check that what
is implemented is what the modeler has in mind and to provide a quick overview of the model for the
people who have not written it. We recall the basic ingredients of the language Kappa and we explain how
local patterns can be used as a cornerstone to build extensible static analyses.

Rate Equations for Graphs

Participants: Vincent Danos, Tobias Heindel, Ricardo Honorato-Zimmer,
Sandro Stucki.

We combine ideas from: 1) graph transformation systems (GTSs) stemming from the theory of formal
languages and concurrency, and 2) mean field approximations (MFAs), a collection of approximation
techniques ubiquitous in the study of complex dynamics to build a framework which generates rate
equations for stochastic GTSs and from which one can derive MFAs of any order (no longer limited to
the humanly computable). The procedure for deriving rate equations and their approximations can be
automated. An implementation and example models are available online. We apply our techniques and
tools to derive an expression for the mean velocity of a two-legged walker protein on DNA.

https://rhz.github.io/fragger
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9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

9.1.1 Disco project with Tezos

Participants: Bernadette Charron-Bost, Cezara Drăgoi, Jérôme Feret, Xavier Rival.

• Title: DISCO: Synchronous Abstractions for Blockchain Infrastructures

• Type: Research contracts funded by Tezos

• Duration: September 2020 - September 2023

• Inria contact: Xavier Rival, Jérôme Feret

• Abstract: The literature in distributed computing distinguishes two main classes of computational
models: asynchronous models have better performance, whereas synchronous models provide
stronger formal guarantees. Implementations of distributed systems must operate in asynchronous
models of computation, where performance emerges from the load of the system. The correctness
of asynchronous protocols is very hard to prove, due to the challenges of concurrency, faults,
buffered message queues, and message loss, altering, and re-ordering by the network. In contrast,
synchronous models are based on (communication- closed) rounds, and this structure greatly
facilitates verification. There are no interleavings, and the cumulative size of reception buffers is
bounded by the number of processes in the network.

The goal of this project is to increase the confidence we have in blockchain systems. We pro-
pose to: (1) define a synchronous computational model for blockchain algorithms and build a
domain-specific language appropriate for this synchronous computational model, (2) equip the
domain-specific language with support for mechanized formal verification with a high degree of
automation, and (3) prototypically implement a dedicated runtime for efficiently executing, within
an asynchronous context, algorithms defined for a synchronous models, together with a formal
correctness proof that certifies the correctness of the synchronous abstraction with respect to the
asynchronous runtime.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an
Inria International Program

AISAPPL (Abstract Interpretation-based Static Analysis of Probabilistic Programming Languages),
2023–2025
Xavier Rival (INRIA Antique), Hongseok Yang (KAIST, South Korea)
The purpose of this associated team is to formalize conditions ensuring the well-definedness of the
semantics of probabilistic programs, and to investigate the application of static analysis techniques
in order to guarantee these conditions hold. It mainly targets the Pyro probabilistic programming
language (an overlay of Python, initially developped at Uber AI), but it studies concepts that are of
general interest in probabilistic programming.

10.2 International research visitors

10.2.1 Visits of international scientists

Other international visits to the team As part of the AISAPPL INRIA Associate INRIA Team, Hongseok
Yang visited ANTIQUE during Summer 2023 for one week.
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10.2.2 Visits to international teams

Research stays abroad Xavier Rival was invited for a one week visit at the University of Edinburgh for
collaboration with Ohad Kammar.

Xavier Rival visited KAIST as part of the AISAPPL INRIA Associate Team.
Xavier Rival was Invited Professor at SNU (Seoul National University) for 5 weeks in Fall 2023.

10.3 National initiatives

10.3.1 DCore

Participants: Jérôme Feret, Gregor Gössler, Jean Krivine, Ivan Lanese, Claudio Ant-
ares Mezzina, Davide Sangiorgi, Jean-Bernard Stefani, German Vidál,
Gianluigi Zavattaro.

• Title: DCore - Causal Debugging for Concurrent Systems

• Type: ANR générique 2018

• Defi: Société de l’information et de la communication

• Instrument: ANR grant

• Duration: March 2019 - February 2023

• Coordinator: INRIA Grenoble - Rhône-Alpes (France)

• Others partners: IRIF (France), Inria Paris (France)

• Inria contact: Jérôme Feret

• Abstract: As software takes over more and more functionalities in embedded and safety-critical
systems, bugs may endanger the safety of human beings and of the environment, or entail heavy
financial losses. In spite of the development of verification and testing techniques, debugging
still plays a crucial part in the arsenal of the software developer. Unfortunately, usual debugging
techniques do not scale to large concurrent and distributed systems: they fail to provide precise
and efficient means to inspect and analyze large concurrent executions; they do not provide means
to automatically reveal software faults that constitute actual causes for errors; and they do not
provide succinct and relevant explanations linking causes (software bugs) to their effects (errors
observed during execution).

The overall objective of the project is to develop a semantically well-founded, novel form of concur-
rent debugging, which we call "causal debugging”, that aims to alleviate the deficiencies of current
debugging techniques for large concurrent software systems.

Briefly, the causal debugging technology developed by the DCore project will comprise and integrate
two main novel engines:

1. A reversible execution engine that allows programmers to backtrack and replay a concurrent
or distributed program execution, in a way that is both precise and efficient (only the exact
threads involved by a return to a target anterior or posterior program state are impacted);

2. a causal analysis engine that allows programmers to analyze concurrent executions, by asking
questions of the form "what caused the violation of this program property?”, and that allows
for the precise and efficient investigation of past and potential program executions.

The project will build its causal debugging technology on results obtained by members of the team,
as part of the past ANR project REVER, on the causal semantics of concurrent languages, and the
semantics of concurrent reversible languages, as well as on recent works by members of the project
on abstract interpretation, causal explanations and counterfactual causal analysis.
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The project primarily targets multithreaded, multicore and multiprocessor software systems, and
functional software errors, that is errors that arise in concurrent executions because of faults
(bugs) in software that prevents it to meet its intended function. Distributed systems, which can
be impacted by network failures and remote site failures are not an immediate target for DCore,
although the technology developed by the project should constitute an important contribution
towards full-fledged distributed debugging. Likewise, we do not target performance or security
errors, which come with specific issues and require different levels of instrumentation, although
the DCore technology should prove a key contribution in these areas as well.

10.3.2 SAFTA

• Title: SAFTA Static Analysis for Fault-Tolerant distributed Algorithms.

• Type: ANR JCJC 2018

• Duration: February 2018 - August 2023

• Coordinator: Cezara Drăgoi, CR Inria

• Abstract: Fault-tolerant distributed data structures are at the core distributed systems. Due to
the multiple sources of non-determinism, their development is challenging. The project aims to
increase the confidence we have in distributed implementations of data structures. We think that
the difficulty does not only come from the algorithms but from the way we think about distributed
systems. In this project we investigate partially synchronous communication-closed round based
programming abstractions that reduce the number of interleavings, simplifying the reasoning
about distributed systems and their proof arguments. We use partial synchrony to define reduction
theorems from asynchronous semantics to partially synchronous ones, enabling the transfer of
proofs from the synchronous world to the asynchronous one. Moreover, we define a domain
specific language, that allows the programmer to focus on the algorithm task, it compiles into
efficient asynchronous code, and it is equipped with automated verification engines.

10.3.3 ANR VERIAMOS

• Title: Verification of Abstract Machines for Operating Systems

• Type: ANR générique 2018

• Defi: Société de l’information et de la communication

• Instrument: ANR grant

• Duration: January 2019 - July 2024

• Coordinator: INRIA Paris (France)

• Others partners: LIP6 (France), IRISA (France), UGA (France)

• Inria contact: Xavier Rival

• Abstract: Operating System (OS) programming is notoriously difficult and error prone. Moreover,
OS bugs can have a serious impact on the functioning of computer systems. Yet, the verification of
OSes is still mostly an open problem, and has only been done using user-assisted approaches that
require a huge amount of human intervention. The VeriAMOS proposal relies on a novel approach
to automatically and fully verifying OS services, that combines Domain Specific Languages (DSLs)
and automatic static analysis. In this approach, DSLs provide language abstraction and let users
express complex policies in high-level simple code. This code is later compiled into low level C code,
to be executed on an abstract machine. Last, the automatic static analysis verifies structural and
robustness properties on the abstract machine and generated code. We will apply this approach to
the automatic, full verification of input/output schedulers for modern supports like SSDs.
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10.3.4 ANR EMASS

• Title: Analyse Mémoire Efficace de Logiciel Système

• Type: ANR appel 2022

• Defi: CE39 - Sécurité globale, résilience et gestion de crise, cybersécurité

• Instrument: ANR grant

• Duration: 2023 - 2027

• Coordinator: CEA Saclay

• Others partners: INRIA (France), Thalés (France)

• Inria contact: Xavier Rival

• Abstract: The goal of this project is to develop and integrate static analysis techniques that target
memory properties for low level code (such as operating system code), in order both to establish
safety and security properties. As part of this project, antique is carrying out research on the
analysis of programs using complex data-structures.

10.3.5 PEPR SecurEval

• Title: SecurEval, Improving Digital Systems Security Evaluation

• Type: PEPR

• Defi: PEPR Cybersécurité

• Instrument: PEPR

• Duration: 2022 - 2028

• Coordinator: CEA Saclay

• partners: CNRS, INRIA, CEA, INP Grenoble, Supelec, UGA, Université Paris Saclay, Université
Sorbonne nouvelle

• Inria contact: Xavier Rival and Jérôme Feret

• Abstract: This project targets methods to improve the security of software, using programming
languages techniques (static analysis, testing, programming languages). It gathers a large number
of academic partners (CNRS, INRIA, CEA, INP Grenoble, Supelec, UGA, Université Paris Saclay,
Université Sorbonne nouvelle). As part of this project, antique is investigating static analysis
techniques for the verification of safety and security proeprties.

10.3.6 PEPR SAIF

• Title: PEPR SAIF

• Type: PEPR

• Defi: PEPR IA

• Instrument: PEPR

• Duration: 2022 - 2028

• Coordinator: CEA Saclay
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• partners: INRIA Paris (project team antique), INRIA Saclay (project team TAU), and INRIA Rennes
(project team SuMo), Université Paris-Saclay (Formal Methods Laboratory, LMF), École Polytech-
nique (Computer Science Laboratory, LIX), CEA-List (Software Safety &Security Lab, LSL), and
Université de Bordeaux (Bordeaux Computer Science Laboratory)

• Inria contact: Caterina Urban

• Abstract: SAIF is a project led by Caterina Urban within the PEPR IA. The consortium includes INRIA
Paris (project team antique), INRIA Saclay (project team TAU), and INRIA Rennes (project team
SuMo), as well as Université Paris-Saclay (Formal Methods Laboratory, LMF), École Polytechnique
(Computer Science Laboratory, LIX), CEA-List (Software Safety &Security Lab, LSL), and Université
de Bordeaux (Bordeaux Computer Science Laboratory).
The overall goal of SAIF is to use the vast knowledge accumulated over decades in formal methods
to rethink them and address the novel safety concerns raised by machine learning-based systems.

10.3.7 INRIA Challenge SPAI

(Security Program Analyses for IoT), 2019–2023
Coordinated by Tamara Rezk (INDES), and with Daniel Le Métayer (PRIVATICS) Xavier Rival (ANTIQUE)
Manuel Serrano (INDES) Alan Schmitt (EPICURE) Robert de Simone (KAIROS)
This project aims at developing programming languages techniques to reason over security properties
of Internet of Things devices, where several clients, servers, and devices may communicate, and where
devices may either act upon or observe the physical world, hereby contributing to information flows. The
project already led to the design of not only a programming language able to describe such systems but
also of verification techniques for security.

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

General chair, scientific chair

• Caterina Urban is a member of the Steering Committee of the International Static Analysis Sym-
posium (SAS).

• Caterina Urban is a member of the Steering Committee of the International Workshop on the State
Of the Art in Program Analysis (SOAP).

• Caterina Urban is a member of the Steering Committee of the series of Summer Schools on Found-
ations of Programming and Software Systems (FoPSS).

• Caterina Urban is a member of the ETAPS Executive Board.

Member of the organizing committees

• Caterina Urban is a member of the organizing committee of the Mentoring Workshop at ETAPS
2024.

• Jérôme Feret, Xavier Rival, and Caterina Urban are members of the organizing committee of the
N40AI Workshop at POPL 2024.

• Caterina Urban was a member of the organizing committee of the Mentoring Workshop at ETAPS
2023.
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11.1.2 Scientific events: selection

Chair of conference program committees

• Caterina Urban is chairing the committee of the ETAPS Doctoral Dissertation Award 2024.

• Caterina Urban chaired the committee of the ETAPS Doctoral Dissertation Award 2023.

Member of the conference program committees

• Jérôme Feret served as a Member of the Program Committee of VMCAI 2023 (Verification, Model
Checking, and Abstract Interpretation).

• Caterina Urban is serving as a Member of the Program Committee of FoSSaCS 2025 (Foundations
of Software Science and Computation Structure).

• Caterina Urban is serving as a Member of the Program Committee of LPAR 2024 (Logic for Program-
ming, Artificial Intelligence and Reasoning).

• Caterina Urban is serving as a Member of the Program Committee of CAV 2024 (Computer-Aided
Verification).

• Caterina Urban is serving as a Member of the Program Committee of TACAS 2024 (Tools and
Algorithms for the Construction and Analysis of Systems).

• Caterina Urban served as a Member of the Program Committee of CAV 2023 (Computer-Aided
Verification).

• Caterina Urban served as a Member of the Program Committee of NFM 2024 (NASA Formal
Methods).

• Caterina Urban served as a Member of the Program Committee of ESOP 2023 (European Symposium
On Programming).

• Xavier Rival served as a Member of the Programm Committee of VMCAII 2024 (Verification, Model
Checking and Abstract Interpretation)

• Xavier Rival is serving as a Member of the Programm Committee of PLDI 2024 (Symposium on
Programming Languages and Implementation)

• Xavier Rival is serving as a Member of the Programm Committee of CSF 2024 (Conference on
Security Foundations)

• Xavier Rival is serving as a Member of the Programm Committee of SAS 2024 (Static Analysis
Symposium)

Reviewer

• Jérôme Feret served as a Reviewer for POPL 2023 (Principle of Programming Languages 2023).

11.1.3 Journal

Member of the editorial boards

• Caterina Urban is serving as Associated Editor for Transactions on Programming Languages and
Systems (TOPLAS).

• Caterina Urban is serving as a Guest Editor for the Special Issue on SAS 2022 of Formal Methods in
System Design (FMSD).

• Caterina Urban is serving as a Guest Editor for the Special Issue on CAV 2020 of Formal Methods in
System Design (FMSD).

https://popl23.sigplan.org/home/VMCAI-2023
https://popl23.sigplan.org/home/
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Reviewer - reviewing activities

• Jérôme Feret served as a reviewer for CNSNS (Communications in Nonlinear Science and Numerical
Simulation), TCBB (Transactions on Computational Biology and Bioinformatics), TCS (Theoretical
Computer Sciences).

11.1.4 Invited talks

• Caterina Urban will give an invited talk at the 17th International Scientific Conference on Informat-
ics (Informatics 2024).

• Caterina Urban will give an invited talk at the 29th Journées Formalisation des Activités Concur-
rentes (FAC 2024).

• Caterina Urban will give an invited talk at Quarkslab, Paris.

• Caterina Urban gave an invited talk at the International Symposium on Model Checking of Software
(SPIN 2023).

• Caterina Urban gave an invited talk at CEA-List, Palaiseau.

• Caterina Urban gave an invited talk at the Séminaire IRILL of the Center for Research and Innovation
on Free Software.

• Xavier Rival gaven an invited talk at the Seminar of the University of Edinburgh.

11.1.5 Leadership within the scientific community

Xavier Rival is a member of the IFIP Working Group 2.4 on Software Implementation Technologies.

11.1.6 Scientific expertise

• Caterina Urban is a member of the Scientific Advisory Board of the Laboratoire Méthodes Formelles
(LMF) de l’Université Paris-Saclay.

• Caterina Urban served as a member of the Assessment Committee for Associate Professor in
Systems and Software Engineering at the University of Copenhagen.

11.1.7 Research administration

• Jérôme Feret is a Member of the Laboratory Council of the Department of Computer Science of
École normale supérieure.

• Jérôme Feret is a Member of the PhD Review Committee (CSD) of Inria Paris.

• Jérôme Feret is Dean of Study of the Department of Computer Science of École normale supérieure.

• Xavier Rival is a Member of the Laboratory Council of the Department of Computer Science of
École normale supérieure.

• Xavier Rival is a Member of the Evaluation Committee of INRIA.

https://www.sciencedirect.com/journal/communications-in-nonlinear-science-and-numerical-simulation
https://www.computer.org/csdl/journal/tb
https://www.sciencedirect.com/journal/theoretical-computer-science
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11.2 Teaching - Supervision - Juries

11.2.1 Teaching

• Licence:

– Jérôme Feret and Xavier Rival (lectures), and Josselin Giet (tutorials), “Semantics and Applica-
tion to Verification”, 36h, L3, at École Normale Supérieure, France.

• Master:

– Bernadette Charron-Bost, ”Calculability in multi-agent networks”, 24h, M2, Parisian Master of
Research in Computer Science (MPRI), France.

– Bernadette Charron-Bost, ”Consensus problems”, 24h, M1 Ecole Polytechnique Master

– Jérôme Feret, Antoine Miné, Xavier Rival, and Caterina Urban, “Abstract Interpretation: ap-
plication to verification and static analysis”, 72h, M2. Parisian Master of Research in Computer
Science (MPRI), France.

– Jérôme Feret and François Fages, “Biochemical Programming”, 24h, M2. Parisian Master of
Research in Computer Science (MPRI), France.

– Jérôme Feret, Jean Krivine, Sébastien Légaré, and Matthieu Bouguéon. "Rule-based Model-
ling", 24h, M1. Interdisciplinary Approaches to Life Science (AIV), Master Program, Université
Paris-Descartes, France.

– Xavier Rival gave a lecture on Formal Methods for Systems Security at the EXED.

• PhD::

– Jérôme Feret, "Analyse statique et réduction de modèles de voies de signalisation intracellu-
laire", 6h, PhD School of the CNRS Informatics (EJCIM 2023) - Mathematics research group
(GDR IM), Poitier, France.

11.2.2 Supervision

• Internship: Bernadette Charron-Bost and Jérôme Feret surpervised the research project of Sylvain
Gay (4rd year student at ENS) and Vincent Peth (2nd year student at ENS). Fibration in graphs and
application to modular proofs of distributed algorithms.

• Internship: Caterina Urban supervised the M2 ENS Rennes internship of Naïm Moussaoui-Remil,
from March 2023 to August 2023, on “Static Analyses for Robust (Un)reachability”.

• Internship: Caterina Urban supervised the Master internship of Kevin Pinochet (University of
Chile), from January 2023 to April 2024, on “Input Data Usage Analyses for Jupyter Notebooks”.

• Internship: Caterina Urban supervised the Bachelor internship of Abhinandan Pal (IIT Kalyani),
from November 2022 to January 2023, on “Attention Robustness Static Analysis”.

• Internship: Xavier Rival supervised the Master Internship of Charles De Haro from March 2023 till
August 2023 on the static analysis based inference for smoothness properties (Paris MPRI Master)

• PhD in progress: Jérôme Boillot, Static Analysis of the setting of expanded memory in a dedicated
operating system, started in 2022 and supervised by Jérôme Feret.

• PhD in progress: Aurélie Kong Win Chang, Abstractions for causal analysis and explanations in
concurrent programs, started in 2021 and supervised by Gregor Gössler (INRIA Grenoble - Rhône
Alpes, Project team Spades) and Jérôme Feret.

• PhD in progress: Naïm Moussaoui-Remil, Static Analyses for Robust (Un)reachability, started in
2023 and supervised by



30 Inria Annual Report 2023

• Phd in progress: Serge Durand, Formal Specification of Machine Learning Algorithms, started in
2021 and supervised by Zakaria Chihani (CEA/List) and Caterina Urban.

• Phd in progress: Denis Mazzucato, Static Analysis by Abstract Interpretation of Quantitative Exten-
sional Program Properties, started in 2020 and supervised by Caterina Urban.

• PhD in progress: Valentin Barbazo, Static analysis of parallel programs operating over unbounded
dynamic data-structures, started in 2023, and supervised by Xavier Rival.

• PhD in progress: Josselin Giet, Static Analysis of components of operating systems by abstract
interpretation, started in 2020 and supervised by Xavier Rival.

• PhD in progress: Ignacio Tiraboschi, Static analysis of security properties for IoT systems, started in
2020 and co-supervised by Tamara Rezk (EP Indes) and Xavier Rival.

• PhD defended: Albin Salazar, Formal derivation of discrete models with separated time-scales,
started in 2019 and supervised by Jérôme Feret.

• PhD defended: Matthieu Bouguéon, Modélisation de la dynamique des cellules étoilées hépatiques
durant le developpement et la réversion de la fibrose, started in 2020 and supervised by Nathalie
Théret and Anne Siegel, and mentored by Jérôme Feret.

11.2.3 Juries

• Bernadette Charron-Bost served as a jury member for the Habilitation Thesis Committee of Jérôme
Feret (ENS).

• Jérôme Feret served as a member of the Review Committee for the PhD of Giann Karlo Aguirre
Samboni at École normale supérieure of Paris-Saclay (Defense: December 2023).

• Caterina Urban will serve as a Jury member for the defense of the PhD of Olivier Martinot (Université
Paris Cité, Defense: May or June 2023).

• Xavier Rival served as reviewer and president for the Habilitation Thesis Committee of Arthur
Charguéraud (University of Strasbourg).

• Xavier Rival served as a reviewer and jury member for the PhD of Santiago-Sara Bautista (Université
of Rennes I).

• Xavier Rival served as a jury member for the Habilitation Thesis Committee of Jérôme Feret (ENS).

11.3 Popularization

11.3.1 Internal or external Inria responsibilities

• Jérôme Feret served in the “admissibility” jury for INRIA researcher positions (CRCN) for the center
of “Paris” in 2023.

• Jérôme Feret served in the “admissibility” jury for INRIA researcher positions (CRCN) for the center
of “Paris-Saclay” in 2023.

• Jérôme Feret is a Member of the PhD Review Committee (CSD) of Inria Paris.

• Jérôme Feret is head of study of the department of computer science of École normale supérieure.

• Jérôme Feret is member of the laboratory board of the department of computer sciences of École
normale supérieure.

11.3.2 Interventions

• Jérôme Feret hosted eight fourteen years old students during three hours within the Antique team.
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12 Scientific production
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