RESEARCH CENTRE 2024
Inria Centre at the University of

Bordeaux ACTIVITY REPORT

IN PARTNERSHIP WITH:

Institut Polytechnique de Bordeaux, PrOj ecCt- Te aln

Université de Bordeaux, CNRS
STORM

STatic Optimizations, Runtime Methods

IN COLLABORATION WITH: Laboratoire Bordelais de Recherche en
Informatique (LaBRI)

DOMAIN

Networks, Systems and Services,
Distributed Computing

THEME

Distributed and High Performance
Computing

Contents

Project-Team STORM 1
1 Team members, visitors, external collaborators 2
2 Overall objectives 3
3 Research program 5
3.1 Parallel Computing and Architectures 5
3.2 Scientificand Societal Stakes 5
3.3 Towards More AbStractiont i i it i i e e e e e 6
4 Application domains 7
4.1 Application domains benefitingfromHPC 7
4.2 Application in High performance computing/BigData 7
5 Highlights of the year 7
5.1 AWArdSo e e e e 7
6 New software, platforms, open data 7
6.1 Newsoftware i 7
6.1.1 AFF3CT . . . o i e e e 7
6.1.2 PARCOACH e e e e 8
6.1.3 MIPP . . . o e e 8
6.1.4 CERE e 9
6.1.5 DUF . . . o e e e 9
6.1.6 MBI e e 9
6.1.7 EasyPAP e e e e 9
6.1.8 StarPU 10
7 New results 11
7.1 Scheduling for Pipelined and Replicated Task Chains and Graphs for Software-Defined Radio 11
7.2 Optimization Space Exploration e 11
7.3 Task scheduling with memory constraints 12
7.4 Programming Heterogeneous Architectures Using Hierarchical Tasks 12
7.5 Optimal Time and Energy-Aware Client Selection Algorithms for Federated Learning on
Heterogeneous Resources v vt ittt e e e 13
7.6 Task scheduling to improve throughput and reduce latency for deep neural network inference 13
7.7 Predicting errors in parallel applicationswithML 13
7.8 Static-Dynamic analysis for Performance and Accuracy of Data Race Detection in MPI
One-Sided Programs ottt i e e e e e e e e e e 14
7.9 Leveraging private container networks for increased user isolation and flexibility on HPC
CIUSIETS o o e e 14
7.10 Multi-Criteria Mesh Partitioning for an Explicit Temporal Adaptive Task-Distributed Finite-
Volume Solver - Best Paper Award v it ittt e e e e e e e 14
7.11 MPI-BugBench: A Framework for Assessing MPI Correctness Tools 15
7.12 Designing Quality MPI Correctness Benchmarks: Insights and Metrics 15
7.13 Highlighting EasyPAP Improvements, 16
7.14 Automatic Dimensioning and Load Balancing on Heterogeneous Architectures 16

7.15 Improving energy efficiency of HPC applications using unbalanced GPU power capping . . 16
7.16 Approximation Algorithms for Scheduling with/without Deadline Constraints where Rejec-
tion Costs are Proportional to ProcessingTimes 17

8 Bilateral contracts and grants with industry
8.1 Bilateral contracts withindustry

8.1.1 Airbus. ...

8.1.2 ATOS/EVIDEN e

8.1.3 IFPEN. . ..
8.1.4 Qarnot . ..

9 Partnerships and cooperations
9.1 Internationalinitiatives
9.1.1 Inria associate team not involved in an IIL or an international program
9.1.2 Visitstointernationalteams

9.2 European initiatives
9.2.1 EuroHPC . .
9.3 National initiatives
9.3.1 PEPR
932 AID
9.3.3 DéfisInria .

9.3.4 InriaexploratoryactionS. v i it e e e e e e e

10 Dissemination

10.1 Promoting scientificactivities L L L e
10.1.1 Scientific events: organisation it
10.1.2 Scientificevents: selection L o e

10.1.3 Journal . . .
10.1.4 Invited talks

10.1.5 Leadership within the scientific community
10.1.6 Scientific eXpertisSe v v v v it e e e e e e e e e
10.1.7 Research administration L . e
10.2 Teaching - Supervision - Juries e

10.2.1 Teaching . .
10.2.2 Supervision
10.2.3 Juries
10.3 Popularization . . .

10.3.1 Specific official responsibilities in science outreach structures
10.3.2 Productions (articles, videos, podcasts, serious games, ...)
10.3.3 ParticipationinLiveevents i e e e e

11 Scientific production
11.1 Major publications

11.2 Publicationsof theyear e

11.3 Cited publications

17
17
17
18
18
18

19
19
19
19
20
20
20
20
21
21
22

22
22
22
22
22
23
23
23
24
24
24
26
27
27
27
28
28

Project STORM

Project-Team STORM

Creation of the Project-Team: 2017 July 01

Keywords

Computer sciences and digital sciences

Al.1.1. - Multicore, Manycore

Al.1.2. - Hardware accelerators (GPGPU, FPGA, etc.)
Al.1.4. - High performance computing

Al.1.5. - Exascale

Al.1.9. - Fault tolerant systems

Al.1.13. - Virtualization

A1.6. — Green Computing

A2.1.6. — Concurrent programming

A2.1.7. - Distributed programming

A2.4.1. — Analysis

A2.4.2. —Model-checking

A4.3. - Cryptography

A6.2.7. — High performance computing

A6.2.8. — Computational geometry and meshes

A9.6. — Decision support
Other research topics and application domains

B2.2.1. — Cardiovascular and respiratory diseases
B3.2. - Climate and meteorology

B4.2. — Nuclear Energy Production

B5.2.3. — Aviation

B5.2.4. — Aerospace

B6.2.2. — Radio technology

B6.2.3. — Satellite technology

B9.1. — Education

https://radar.inria.fr/keywords/2024/computing
https://radar.inria.fr/keywords/2024/other

2 Inria Annual Report 2024

1 Team members, visitors, external collaborators

Research Scientists
¢ QOlivier Aumage [Team leader, INRIA, Researcher]
¢ Laercio Lima Pilla [CNRS, Researcher, until Nov 2024]
¢ Mihail Popov [INRIA, ISFP, until Sep 2024]

o Emmanuelle Saillard [INRIA, Researcher]

Faculty Members
e Marie-Christine Counilh [UNIV BORDEAUX, Associate Professor]
¢ Amina Guermouche [BORDEAUX INP, Associate Professor]
¢ Raymond Namyst [UNIV BORDEAUX, Professor]
e Samuel Thibault [UNIV BORDEAUX, Professor]
¢ Pierre-André Wacrenier [UNIV BORDEAUX, Associate Professor]

PhD Students
¢ Vincent Alba [UNIV BORDEAUX]
¢ Asia Auville [INRIA, from Oct 2024]
¢ Albert D Aviau De Piolant [INRIA]
¢ Lise Jolicoeur [CEA, CIFRE]
o Alice Lasserre [INRIA]
¢ Alan Lira Nunes [INRIA, from Jun 2024, Joint PhD Thesis with UF Fluminense, Brazil]
e Alan Lira Nunes [UF Fluminense, Brazil, until May 2024, Joint PhD with UF Fluminense, Brazil]
e Thomas Morin [UNIV BORDEAUX]
¢ Diane Orhan [UNIV BORDEAUX]
¢ Lana Scravaglieri [[FPEN, CIFRE]
* Radjasouria Vinayagame [ATOS, CIFRE]

Technical Staff
* Francois Cheminade [INRIA, Engineer, from Sep 2024, AID AFF3CT]
¢ Guillaume Doyen [INRIA, Engineer, from Dec 2024, EUROHPC MICROCARD-2]
¢ Nicolas Ducarton [INRIA, Engineer, from Oct 2024, PEPR NumPEx]
¢ Nicolas Ducarton [UNIV BORDEAUX, Engineer, until Sep 2024, EUROHPC MICROCARD]
* Nathalie Furmento [CNRS, Engineer]
¢ Andrea Lesavourey [INRIA, Engineer, until Sep 2024, AID AFF3CT]
¢ Romain Lion [INRIA, Engineer, DGAC MAMBO]
¢ Joachim Rosseel [INRIA, Engineer, from Apr 2024, AID AFF3CT]
¢ Victor-Benjamin Villain [INRIA, Engineer, from Dec 2024, AID AFF3CT]

Project STORM 3

Interns and Apprentices

L]

Asia Auville [INRIA, Intern, from Mar 2024 until Sep 2024]
Abdelbarie El Metni [INRIA, Intern, from Mar 2024 until Aug 2024]
Jules Evans [INRIA, Intern, from Mar 2024 until May 2024]

Theo Grandsart [INRIA, Intern, from Jun 2024 until Aug 2024]
Patrick Gutsche [ENS DE LYON, Intern, from Jun 2024 until Jul 2024]

Evan Potin [INRIA, Intern, from Mar 2024 until Aug 2024]

Administrative Assistant

Ellie Correa Da Costa De Castro Pinto [INRIA]

Visiting Scientist

L]

Mariza Ferro [UFF NITEROI BRAZIL, until Mar 2024]

External Collaborator

Jean-Marie Couteyen [AIRBUS]

2 Overall objectives

Runtime systems successfully support the complexity and heterogeneity of modern architectures thanks
to their dynamic task management. Compiler optimizations and analyses are aggressive in iterative
compilation frameworks, suitable for library generations or domain specific languages (DSL), in particular
for linear algebra methods. To alleviate the difficulties for programming heterogeneous and parallel
machines, we believe it is necessary to provide inputs with richer semantics to runtime and compiler
alike, and in particular by combining both approaches.

This general objective is declined into three sub-objectives, the first concerning the expression of
parallelism itself, the second the optimization and adaptation of this parallelism by compilers and
runtimes and the third concerning the necessary user feed back, either as debugging or simulation results,
to better understand the first two steps.

1.

Expressing parallelism: As shown in the following figure, we propose to work on parallelism
expression through Application Programming Interfaces, C++ enhanced with libraries or pragmas,
Domain Specific Languages, PGAS languages able to capture the essence of the algorithms used
through usual parallel languages such as SyCL, OpenMP and through high performance libraries.
The language richer semantics will be driven by applications, with the idea to capture at the
algorithmic level the parallelism of the problem and perform dynamic data layout adaptation,
parallel and algorithmic optimizations. The principle here is to capture a higher level of semantics,
enabling users to express not only parallelism but also different algorithms.

. Optimizing and adapting parallelism: The goal is to address the evolving hardware, by providing

mechanisms to efficiently run the same code on different architectures. This implies to adapt
parallelism to the architecture by either changing the granularity of the work or by adjusting the
execution parameters. We rely on the use of existing parallel libraries and their composition, and
more generally on the separation of concerns between the description of tasks, that represent
semantic units of work, and the tasks to be executed by the different processing units. Splitting
or coarsening moldable tasks, generating code for these tasks, and exploring runtime parameters
(e.g., frequency, vectorization, prefetching, scheduling) is part of this work.

Inria Annual Report 2024

Performance Feedback

(MAQAD)

Domain Specific Languages
{Qiral, SYCL, P-EDGE, SOTL)

I
Parallzl Languages
{OpenMP, OpenCL)

Compiler
{IKlang-Omp}

Runtime System
(StarPU}

Parallel Architectures
(SIMD, multicare CPU, GPL, manysare attelerators)

Figure 1: STORM Big Picture

Perfarmance Abstraction

{StarPU J SimGrid}

Project STORM 5

3. Finally, the abstraction we advocate for requires to propose a feed back loop. This feed back has two
objectives: to make users better understand their application and how to change the expression of
parallelism if necessary, but also to propose an abstracted model for the machine. This allows to
develop and formalize the compilation, scheduling techniques on a model, not too far from the
real machine. Here, simulation techniques are a way to abstract the complexity of the architecture
while preserving essential metrics.

3 Research program

3.1 Parallel Computing and Architectures

Following the current trends of the evolution of HPC systems architectures, it is expected that future
Exascale systems (i.e. Sustaining 10'® flops) will have millions of cores. Although the exact architectural
details and trade-offs of such systems are still unclear, it is anticipated that an overall concurrency level of
0(10%) threads/tasks will probably be required to feed all computing units while hiding memory latencies.
It will obviously be a challenge for many applications to scale to that level, making the underlying system
sound like “embarrassingly parallel hardware.”

From the programming point of view, it becomes a matter of being able to expose extreme parallelism
within applications to feed the underlying computing units. However, this increase in the number of
cores also comes with architectural constraints that actual hardware evolution prefigures: computing
units will feature extra-wide SIMD and SIMT units that will require aggressive code vectorization or
“SIMDization”, systems will become hybrid by mixing traditional CPUs and accelerators units, possibly
on the same chip as the AMD APU solution, the amount of memory per computing unit is constantly
decreasing, new levels of memory will appear, with explicit or implicit consistency management, etc. As a
result, upcoming extreme-scale system will not only require unprecedented amount of parallelism to be
efficiently exploited, but they will also require that applications generate adaptive parallelism capable to
map tasks over heterogeneous computing units.

The current situation is already alarming, since European HPC end-users are forced to invest in a
difficult and time-consuming process of tuning and optimizing their applications to reach most of current
supercomputers’ performance. It will go even worse with the emergence of new parallel architectures
(tightly integrated accelerators and cores, high vectorization capabilities, etc.) featuring unprecedented
degree of parallelism that only too few experts will be able to exploit efficiently. As highlighted by the
ETP4HPC initiative, existing programming models and tools won’t be able to cope with such a level of
heterogeneity, complexity and number of computing units, which may prevent many new application
opportunities and new science advances to emerge.

The same conclusion arises from a non-HPC perspective, for single node embedded parallel architec-
tures, combining heterogeneous multicores, such as the ARM big.LITTLE processor and accelerators such
as GPUs or DSPs. The need and difficulty to write programs able to run on various parallel heterogeneous
architectures has led to initiatives such as HSA, focusing on making it easier to program heterogeneous
computing devices. The growing complexity of hardware is a limiting factor to the emergence of new
usages relying on new technology.

3.2 Scientific and Societal Stakes

In the HPC context, simulation is already considered as a third pillar of science with experiments and the-
ory. Additional computing power means more scientific results, and the possibility to open new fields of
simulation requiring more performance, such as multi-scale, multi-physics simulations. Many scientific
domains able to take advantage of Exascale computers, these “Grand Challenges” cover large panels of
science, from seismic, climate, molecular dynamics, theoretical and astrophysics physics... Besides, more
widespread compute intensive applications are also able to take advantage of the performance increase
at the node level. For embedded systems, there is still an on-going trend where dedicated hardware is
progressively replaced by off-the-shelf components, adding more adaptability and lowering the cost of
devices. For instance, Error Correcting Codes in cell phones are still hardware chips, but new software
and adaptative solutions relying on low power multicores are also explored for antenna. New usages
are also appearing, relying on the fact that large computing capacities are becoming more affordable

6 Inria Annual Report 2024

and widespread. This is the case for instance with Deep Neural Networks where the training phase can
be done on supercomputers and then used in embedded mobile systems. Even though the computing
capacities required for such applications are in general a different scale from HPC infrastructures, there is
still a need in the future for high performance computing applications.

However, the outcome of new scientific results and the development of new usages for these systems
will be hindered by the complexity and high level of expertise required to tap the performance offered by
future parallel heterogeneous architectures. Maintenance and evolution of parallel codes are also limited
in the case of hand-tuned optimization for a particular machine, and this advocates for a higher and
more automatic approach.

3.3 Towards More Abstraction

As emphasized by initiatives such as the European Exascale Software Initiative (EESI), the European
Technology Platform for High Performance Computing (ETP4HPC), or the International Exascale Soft-
ware Initiative (IESP), the HPC community needs new programming APIs and languages for expressing
heterogeneous massive parallelism in a way that provides an abstraction of the system architecture
and promotes high performance and efficiency. The same conclusion holds for mobile, embedded
applications that require performance on heterogeneous systems.

This crucial challenge given by the evolution of parallel architectures therefore comes from this need
to make high performance accessible to the largest number of developers, abstracting away architectural
details providing some kind of performance portability, and provided a high level feed-back allowing
the user to correct and tune the code. Disruptive uses of the new technology and groundbreaking new
scientific results will not come from code optimization or task scheduling, but they require the design
of new algorithms that require the technology to be tamed in order to reach unprecedented levels of
performance.

Runtime systems and numerical libraries are part of the answer, since they may be seen as building
blocks optimized by experts and used as-is by application developers. The first purpose of runtime
systems is indeed to provide abstraction. Runtime systems offer a uniform programming interface for a
specific subset of hardware or low-level software entities (e.g., POSIX-thread implementations). They
are designed as thin user-level software layers that complement the basic, general purpose functions
provided by the operating system calls. Applications then target these uniform programming interfaces
in a portable manner. Low-level, hardware dependent details are hidden inside runtime systems. The
adaptation of runtime systems is commonly handled through drivers. The abstraction provided by
runtime systems thus enables portability. Abstraction alone is however not enough to provide portability
of performance, as it does nothing to leverage low-level-specific features to get increased performance
and does nothing to help the user tune his code. Consequently, the second role of runtime systems is
to optimize abstract application requests by dynamically mapping them onto low-level requests and
resources as efficiently as possible. This mapping process makes use of scheduling algorithms and
heuristics to decide the best actions to take for a given metric and the application state at a given point
in its execution time. This allows applications to readily benefit from available underlying low-level
capabilities to their full extent without breaking their portability. Thus, optimization together with
abstraction allows runtime systems to offer portability of performance. Numerical libraries provide sets
of highly optimized kernels for a given field (dense or sparse linear algebra, tensor products, etc.) either
in an autonomous fashion or using an underlying runtime system.

Application domains cannot resort to libraries for all codes however, computation patterns such as
stencils are a representative example of such difficulty. The compiler technology plays here a central role,
in managing high level semantics, either through templates, domain specific languages or annotations.
Compiler optimizations, and the same applies for runtime optimizations, are limited by the level of
semantics they manage and the optimization space they explore. Providing part of the algorithmic
knowledge of an application, and finding ways to explore a larger space of optimization would lead
to more opportunities to adapt parallelism, memory structures, and is a way to leverage the evolving
hardware. Compilers and runtime play a crucial role in the future of high performance applications,
by defining the input language for users, and optimizing/transforming it into high performance code.
Adapting the parallelism and its orchestration according to the inputs, to energy, to faults, managing
heterogeneous memory, better define and select appropriate dynamic scheduling methods, are among

Project STORM 7

the current works of the STORM team.

4 Application domains

4.1 Application domains benefiting from HPC

The application domains of this research are the following:
¢ Health and heart disease analysis (see MICROCARD and MICROCARD-2 projects 9.2.1)
¢ Software infrastructures for Telecommunications (see AFF3CT 9.3.2)
* Aeronautics (collaboration with Airbus, J.-M. Couteyen, MAMBO project 8.1.1)

* CO2 storage (collaboration with IFPEN, see 8.1.3)

4.2 Application in High performance computing/Big Data

Most of the research of the team has application in the domain of software infrastructure for HPC and
compute intensive applications.

5 Highlights of the year

5.1 Awards

The Inria - Académie des Sciences - Dassault Systemes innovation price was awarded to Samuel THIBAULT
(STORM) and Brice GOGLIN (TADaaM) for the hwloc software.

6 New software, platforms, open data

6.1 New software
6.1.1 AFF3CT

Name: A Fast Forward Error Correction Toolbox
Keywords: High-Performance Computing, Signal processing, Error Correction Code

Functional Description: AFF3CT proposes high performance Error Correction algorithms for Polar,
Turbo, LDPC, RSC (Recursive Systematic Convolutional), Repetition and RA (Repeat and Accumu-
late) codes. These signal processing codes can be parameterized in order to optimize some given
metrics, such as Bit Error Rate, Bandwidth, Latency, ...using simulation. For the designers of such
signal processing chain, AFF3CT proposes also high performance building blocks so to develop
new algorithms. AFF3CT compiles with many compilers and runs on Windows, Mac OS X, Linux
environments and has been optimized for x86 (SSE, AVX instruction sets) and ARM architectures
(NEON instruction set).

URL: https://aff3ct.github.io/

Publications: hal-02358306, hal-01965629, hal-01977885, hal-01203105, hal-01363980, hal-01363975,
hal-01987848, hal-01965633

Contact: Olivier Aumage

Partners: IMS, LIP6

https://aff3ct.github.io/
https://hal.inria.fr/hal-02358306
https://hal.inria.fr/hal-01965629
https://hal.inria.fr/hal-01977885
https://hal.inria.fr/hal-01203105
https://hal.inria.fr/hal-01363980
https://hal.inria.fr/hal-01363975
https://hal.inria.fr/hal-01987848
https://hal.inria.fr/hal-01965633

8 Inria Annual Report 2024

6.1.2 PARCOACH

Name: PARallel Control flow Anomaly CHecker
Keywords: Verification, HPC

Scientific Description: PARCOACH verifies programs in two steps. First, it statically verifies applications
with a data- and control-flow analysis and outlines execution paths leading to potential deadlocks.
The code is then instrumented, displaying an error and synchronously interrupting all processes if
the actual scheduling leads to a deadlock situation.

Functional Description: Supercomputing plays an important role in several innovative fields, speeding
up prototyping or validating scientific theories. However, supercomputers are evolving rapidly with
now millions of processing units, posing the questions of their programmability. Despite the emer-
gence of more widespread and functional parallel programming models, developing correct and
effective parallel applications still remains a complex task. As current scientific applications mainly
rely on the Message Passing Interface (MPI) parallel programming model, new hardwares designed
for Exascale with higher node-level parallelism clearly advocate for an MPI+X solutions with X a
thread-based model such as OpenMP. But integrating two different programming models inside
the same application can be error-prone leading to complex bugs - mostly detected unfortunately
at runtime. PARallel COntrol flow Anomaly CHecker aims at helping developers in their debugging
phase.

URL: https://parcoach.github.io/index.html

Publications: hal-03882459, hal-03374614, hal-00920901, hal-01078762, hal-01078759, hal-01252321,
hal-01253204, hal-01199718, hal-01420655, hal-01937316, hal-02390025

Contact: Emmanuelle Saillard

Participants: Emmanuelle Saillard, Denis Barthou, Philippe Virouleau, Tassadit Ait Kaci

6.1.3 MIPP

Name: Mylntrinsics++

Keywords: SIMD, Vectorization, Instruction-level parallelism, C++, Portability, HPC, Embedded

Scientific Description: MIPP is a portable and Open-source wrapper (MIT license) for vector intrinsic
functions (SIMD) written in C++11. It works for SSE, AVX, AVX-512 and ARM NEON (32-bit and
64-bit) instructions.

Functional Description: MIPP enables writing portable and yet highly optimized kernels to exploit the
vector processing capabilities of modern processors. It encapsulates architecture specific SIMD
intrinsics routine into a header-only abstract C++ API.

Release Contributions: ARM SVE support

URL: https://github.com/aff3ct/MIPP

Publications: hal-01888010, tel-03118420

Contact: Olivier Aumage

Participants: Adrien Cassagne, Denis Barthou, Edgar Baucher, Olivier Aumage

Partner: LIP6

https://parcoach.github.io/index.html
https://hal.inria.fr/hal-03882459
https://hal.inria.fr/hal-03374614
https://hal.inria.fr/hal-00920901
https://hal.inria.fr/hal-01078762
https://hal.inria.fr/hal-01078759
https://hal.inria.fr/hal-01252321
https://hal.inria.fr/hal-01253204
https://hal.inria.fr/hal-01199718
https://hal.inria.fr/hal-01420655
https://hal.inria.fr/hal-01937316
https://hal.inria.fr/hal-02390025
https://github.com/aff3ct/MIPP
https://hal.inria.fr/hal-01888010
https://hal.inria.fr/tel-03118420

Project STORM 9

6.1.4 CERE

Name: Codelet Extractor and REplayer
Keywords: Checkpointing, Profiling

Functional Description: CERE finds and extracts the hotspots of an application as isolated fragments
of code, called codelets. Codelets can be modified, compiled, run, and measured independently
from the original application. Code isolation reduces benchmarking cost and allows piecewise
optimization of an application.

Contact: Mihail Popov

Partners: Université de Versailles St-Quentin-en-Yvelines, Exascale Computing Research

6.1.5 DUF
Name: Dynamic Uncore Frequency Scaling
Keywords: Power consumption, Energy efficiency, Power capping, Frequency Domain

Functional Description: Just as core frequency, uncore frequency usage depends on the target applica-
tion. As a matter of fact, the uncore frequency is the frequency of the L3 cache and the memory
controllers. However, it is not well managed by default. DUF manages to reach power and energy
saving by dynamically adapting the uncore frequency to the application needs while respecting a
user-defined tolerated slowdown. Based on the same idea, it is also able to dynamically adapt the
power cap.

Contact: Amina Guermouche

6.1.6 MBI

Name: MPI Bugs Initiative
Keywords: MPI, Verification, Benchmarking, Tools

Functional Description: Ensuring the correctness of MPI programs becomes as challenging and im-
portant as achieving the best performance. Many tools have been proposed in the literature to
detect incorrect usages of MPI in a given program. However, the limited set of code samples each
tool provides and the lack of metadata stating the intent of each test make it difficult to assess
the strengths and limitations of these tools. We have developped the MPI BUGS INITIATIVE, a
complete collection of MPI codes to assess the status of MPI verification tools. We introduce a
classification of MPI errors and provide correct and incorrect codes covering many MPI features
and our categorization of errors.

Publication: hal-03474762
Contact: Emmanuelle Saillard

Participants: Emmanuelle Saillard, Martin Quinson

6.1.7 EasyPAP

Name: easyPAP

Functional Description: EasyPAP provides students with a simple and attractive programming environ-
ment to facilitate their discovery of the main concepts of parallel programming.

EasyPAP is a framework providing interactive visualization, real-time monitoring facilities, and
off-line trace exploration utilities. Students focus on parallelizing 2D computation kernels using
Pthreads, OpenMP, OpenCL, MPI, SIMD intrinsics, or a mix of them.

https://hal.inria.fr/hal-03474762

10 Inria Annual Report 2024

EasyPAP was designed to make it easy to implement multiple variants of a given kernel, and to
experiment with and understand the influence of many parameters related to the scheduling policy
or the data decomposition.

URL: https://gforgeron.gitlab.io/easypap/

Contact: Raymond Namyst

6.1.8 StarPU

Name: The StarPU Runtime System
Keywords: Runtime system, High performance computing

Scientific Description: Traditional processors have reached architectural limits which heterogeneous
multicore designs and hardware specialization (eg. coprocessors, accelerators, ...) intend to address.
However, exploiting such machines introduces numerous challenging issues at all levels, ranging
from programming models and compilers to the design of scalable hardware solutions. The design
of efficient runtime systems for these architectures is a critical issue. StarPU typically makes it
much easier for high performance libraries or compiler environments to exploit heterogeneous
multicore machines possibly equipped with GPGPUs or Cell processors: rather than handling
low-level issues, programmers may concentrate on algorithmic concerns.Portability is obtained
by the means of a unified abstraction of the machine. StarPU offers a unified offloadable task
abstraction named "codelet". Rather than rewriting the entire code, programmers can encapsulate
existing functions within codelets. In case a codelet may run on heterogeneous architectures, it is
possible to specify one function for each architectures (eg. one function for CUDA and one function
for CPUs). StarPU takes care to schedule and execute those codelets as efficiently as possible over
the entire machine. In order to relieve programmers from the burden of explicit data transfers,
a high-level data management library enforces memory coherency over the machine: before a
codelet starts (eg. on an accelerator), all its data are transparently made available on the compute
resource.Given its expressive interface and portable scheduling policies, StarPU obtains portable
performances by efficiently (and easily) using all computing resources at the same time. StarPU
also takes advantage of the heterogeneous nature of a machine, for instance by using scheduling
strategies based on auto-tuned performance models.

StarPU is a task programming library for hybrid architectures.

The application provides algorithms and constraints: - CPU/GPU implementations of tasks, - A
graph of tasks, using StarPU’s rich C API.

StarPU handles run-time concerns: - Task dependencies, - Optimized heterogeneous schedul-
ing, - Optimized data transfers and replication between main memory and discrete memories, -
Optimized cluster communications.

Rather than handling low-level scheduling and optimizing issues, programmers can concentrate
on algorithmic concerns!

Functional Description: StarPU is a runtime system that offers support for heterogeneous multicore
machines. While many efforts are devoted to design efficient computation kernels for those
architectures (e.g. to implement BLAS kernels on GPUs), StarPU not only takes care of offloading
such kernels (and implementing data coherency across the machine), but it also makes sure the
kernels are executed as efficiently as possible.

Release Contributions: StarPU is a runtime system that offers support for heterogeneous multicore
machines. While many efforts are devoted to design efficient computation kernels for those
architectures (e.g. to implement BLAS kernels on GPUs), StarPU not only takes care of offloading
such kernels (and implementing data coherency across the machine), but it also makes sure the
kernels are executed as efficiently as possible.

URL: https://starpu.gitlabpages.inria.fr/

https://gforgeron.gitlab.io/easypap/
https://starpu.gitlabpages.inria.fr/

Project STORM 11

Publications: tel-04213186, inria-00326917, inria-00378705, inria-00384363, inria-00411581, inria-00421333,
inria-00467677, inria-00523937, inria-00547614, inria-00547616, inria-00547847, inria-00550877,
inria-00590670, inria-00606195, inria-00606200, inria-00619654, hal-00643257, hal-00648480, hal-
00654193, hal-00661320, hal-00697020, hal-00714858, hal-00725477, hal-00772742, hal-00773114,
hal-00773571, hal-00773610, hal-00776610, tel-00777154, hal-00803304, hal-00807033, hal-00824514,
hal-00851122, hal-00853423, hal-00858350, hal-00911856, hal-00920915, hal-00925017, hal-00926144,
tel-00948309, hal-00966862, hal-00978364, hal-00978602, hal-00987094, hal-00992208, hal-01005765,
hal-01011633, hal-01081974, hal-01101045, hal-01101054, hal-01120507, hal-01147997, tel-01162975,
hal-01180272, hal-01181135, hal-01182746, hal-01223573, tel-01230876, hal-01283949, hal-01284004,
hal-01284136, hal-01284235, hal-01316982, hal-01332774, hal-01353962, hal-01355385, hal-01361992,
hal-01372022, hal-01386174, hal-01387482, hal-01409965, hal-01410103, hal-01473475, hal-01474556,
tel-01483666, hal-01502749, hal-01507613, hal-01517153, tel-01538516, hal-01616632, hal-01618526,
hal-01718280, tel-01816341, hal-01842038, tel-01959127, hal-02120736, hal-02275363, hal-02296118,
hal-02403109, hal-02421327, hal-02872765, hal-02914793, hal-02933803, hal-02943753, hal-02970529,
hal-02985721, hal-03144290, hal-03273509, hal-03290998, hal-03298021, hal-03318644, hal-03348787,
hal-03552243, hal-03609275, hal-03623220, hal-03773486, hal-03773985, hal-03789625, hal-03936659,
tel-03989856, hal-04005071, hal-04088833, hal-04115280, hal-04146714, hal-04236246, tel-04260094,
tel-04316145, hal-04548787, hal-04646530, hal-04668550, hal-04690154

Contact: Nathalie Furmento

Participants: Cedric Augonnet, Olivier Aumage, Nathalie Furmento, Samuel Thibault, Simon Archipoff,
Bérenger Bramas, Alfredo Buttari, Jérome Clet-Ortega, Terry Cojean, Nicolas Collin, Camille Coti,
Ludovic Courtes, Alexandre Denis, Lionel Eyraud Dubois, Maxime Gonthier, Amina Guermouche,
Kun He, Sylvain Henry, Andra Hugo, Antoine Jego, Lolc Jouans, Mehdi Juhoor, Yanis Khorsi, Xavier
Lacoste, Romain Lion, Benoit Lize, Gwenole Lucas, Mariem Makni, Thomas Morin, Raymond
Namyst, Cyril Roelandt, Corentin Salingue, Lucas Schnorr, Marc Sergent, Luka Stanisic, Ludovic
Stordeur, Philippe Swartvagher, Francois Tessier, Leo Villeveygoux, Philippe Virouleau, Pierre
Wacrenier

7 New results

7.1 Scheduling for Pipelined and Replicated Task Chains and Graphs for Software-
Defined Radio

Participants: Olivier Aumage, Denis Barthou, Laércio Lima Pilla, Diane Orhan.

Software-Defined Radio (SDR) represents a move from dedicated hardware to software implement-
ations of digital communication standards. This approach offers flexibility, shorter time to market,
maintainability, and lower costs, but it requires an optimized distribution of SDR tasks in order to meet
performance requirements. In this context, we study the problem of scheduling SDR linear stateless
and stateful tasks. Following OTAC, an algorithm that we previously proposed that provides optimal
throughput while also minimizing the number of allocated hardware resources for the pipelined workflow
scheduling problem (based on pipelined and replicated parallelism on homogeneous resources), we have
studied how to schedule multiple task chains over a shared pool of homogeneous resources, and how to
apply these ideas to task graphs composed of multiple internal task chains. Our approach combines the
solutions for multiple-choice knapsack problems, graph algorithms, and graph partitioners to achieve
high throughput while avoiding the use of unnecessary resources.

7.2 Optimization Space Exploration

https://hal.inria.fr/tel-04213186
https://hal.inria.fr/inria-00326917
https://hal.inria.fr/inria-00378705
https://hal.inria.fr/inria-00384363
https://hal.inria.fr/inria-00411581
https://hal.inria.fr/inria-00421333
https://hal.inria.fr/inria-00467677
https://hal.inria.fr/inria-00523937
https://hal.inria.fr/inria-00547614
https://hal.inria.fr/inria-00547616
https://hal.inria.fr/inria-00547847
https://hal.inria.fr/inria-00550877
https://hal.inria.fr/inria-00590670
https://hal.inria.fr/inria-00606195
https://hal.inria.fr/inria-00606200
https://hal.inria.fr/inria-00619654
https://hal.inria.fr/hal-00643257
https://hal.inria.fr/hal-00648480
https://hal.inria.fr/hal-00654193
https://hal.inria.fr/hal-00654193
https://hal.inria.fr/hal-00661320
https://hal.inria.fr/hal-00697020
https://hal.inria.fr/hal-00714858
https://hal.inria.fr/hal-00725477
https://hal.inria.fr/hal-00772742
https://hal.inria.fr/hal-00773114
https://hal.inria.fr/hal-00773571
https://hal.inria.fr/hal-00773610
https://hal.inria.fr/hal-00776610
https://hal.inria.fr/tel-00777154
https://hal.inria.fr/hal-00803304
https://hal.inria.fr/hal-00807033
https://hal.inria.fr/hal-00824514
https://hal.inria.fr/hal-00851122
https://hal.inria.fr/hal-00853423
https://hal.inria.fr/hal-00858350
https://hal.inria.fr/hal-00911856
https://hal.inria.fr/hal-00920915
https://hal.inria.fr/hal-00925017
https://hal.inria.fr/hal-00926144
https://hal.inria.fr/tel-00948309
https://hal.inria.fr/hal-00966862
https://hal.inria.fr/hal-00978364
https://hal.inria.fr/hal-00978602
https://hal.inria.fr/hal-00987094
https://hal.inria.fr/hal-00992208
https://hal.inria.fr/hal-01005765
https://hal.inria.fr/hal-01011633
https://hal.inria.fr/hal-01081974
https://hal.inria.fr/hal-01101045
https://hal.inria.fr/hal-01101054
https://hal.inria.fr/hal-01120507
https://hal.inria.fr/hal-01147997
https://hal.inria.fr/tel-01162975
https://hal.inria.fr/hal-01180272
https://hal.inria.fr/hal-01181135
https://hal.inria.fr/hal-01182746
https://hal.inria.fr/hal-01223573
https://hal.inria.fr/tel-01230876
https://hal.inria.fr/hal-01283949
https://hal.inria.fr/hal-01284004
https://hal.inria.fr/hal-01284136
https://hal.inria.fr/hal-01284235
https://hal.inria.fr/hal-01316982
https://hal.inria.fr/hal-01332774
https://hal.inria.fr/hal-01353962
https://hal.inria.fr/hal-01355385
https://hal.inria.fr/hal-01361992
https://hal.inria.fr/hal-01372022
https://hal.inria.fr/hal-01386174
https://hal.inria.fr/hal-01387482
https://hal.inria.fr/hal-01409965
https://hal.inria.fr/hal-01410103
https://hal.inria.fr/hal-01473475
https://hal.inria.fr/hal-01474556
https://hal.inria.fr/tel-01483666
https://hal.inria.fr/hal-01502749
https://hal.inria.fr/hal-01507613
https://hal.inria.fr/hal-01517153
https://hal.inria.fr/tel-01538516
https://hal.inria.fr/hal-01616632
https://hal.inria.fr/hal-01618526
https://hal.inria.fr/hal-01718280
https://hal.inria.fr/tel-01816341
https://hal.inria.fr/hal-01842038
https://hal.inria.fr/tel-01959127
https://hal.inria.fr/hal-02120736
https://hal.inria.fr/hal-02275363
https://hal.inria.fr/hal-02296118
https://hal.inria.fr/hal-02403109
https://hal.inria.fr/hal-02421327
https://hal.inria.fr/hal-02872765
https://hal.inria.fr/hal-02914793
https://hal.inria.fr/hal-02933803
https://hal.inria.fr/hal-02943753
https://hal.inria.fr/hal-02970529
https://hal.inria.fr/hal-02985721
https://hal.inria.fr/hal-03144290
https://hal.inria.fr/hal-03273509
https://hal.inria.fr/hal-03290998
https://hal.inria.fr/hal-03298021
https://hal.inria.fr/hal-03318644
https://hal.inria.fr/hal-03348787
https://hal.inria.fr/hal-03552243
https://hal.inria.fr/hal-03609275
https://hal.inria.fr/hal-03623220
https://hal.inria.fr/hal-03773486
https://hal.inria.fr/hal-03773985
https://hal.inria.fr/hal-03789625
https://hal.inria.fr/hal-03936659
https://hal.inria.fr/tel-03989856
https://hal.inria.fr/hal-04005071
https://hal.inria.fr/hal-04088833
https://hal.inria.fr/hal-04115280
https://hal.inria.fr/hal-04146714
https://hal.inria.fr/hal-04236246
https://hal.inria.fr/tel-04260094
https://hal.inria.fr/tel-04316145
https://hal.inria.fr/hal-04548787
https://hal.inria.fr/hal-04646530
https://hal.inria.fr/hal-04668550
https://hal.inria.fr/hal-04690154

12 Inria Annual Report 2024

Participants: Olivier Aumage, Mihail Popov, Lana Scravaglieri.

HPC systems expose configuration options that help users optimize their applications’execution.
Questions related to the best thread and data mapping, number of threads, or cache prefetching have
been posed for different applications, yet they have been mostly limited to a single optimization objective
(e.g., performance) and a fixed application problem size. Unfortunately, optimization strategies that work
well in one scenario may generalize poorly when applied in new contexts.

In previous work[37], we investigated the impact of configuration options and different problem sizes
over both performance and energy: NUMA-related options and cache prefetchers provide significantly
more gains for energy (5.9x) than performance (1.85x) over a standard baseline configuration.

In the context of Lana Scravaglieri Ph.D. thesis and in collaboration with IFP Energies nouvelles
(IFPEN), we further carry this research by focusing on the exploration of SIMD transformations over
carbon storage applications. To do so, we are designing a more general exploration infrastructure,
CORHPEX, that can easly incorporate more diverse optimization knobs and applications. This work is
under review.

7.3 Task scheduling with memory constraints

Participants: Maxime Gonthier, Samuel Thibault.

When dealing with larger and larger datasets processed by task-based applications, the amount of system
memory may become too small to fit the working set, depending on the task scheduling order. We had
previously introduced a dynamic strategy with a locality-aware principle, and we had observed that the
obtained behavior is actually very close to the proven-optimal behavior. We have submitted the results to
JPDC, a RR of the draft is available [27].

We have also tackled the same type of problem, but with a different situation, in collaboration with
the University of Uppsala. On their production cluster, various jobs use large files as input for their
computations. The current job scheduler does not take into account the fact that an input data can be
re-used between job executions, when they happen to need the same file, thus saving the time to transfer
the file. We have devised a heuristic that orders jobs according to input file affinity, thus improving
the rate of input data re-use, and leading to better overall usage of the platform over all jobs. This was
published at the APDCM workshop [14]

7.4 Programming Heterogeneous Architectures Using Hierarchical Tasks

Participants: Mathieu Faverge, Nathalie Furmento, Abdou Guermouche,
Thomas Morin, Raymond Namyst, Samuel Thibault, Pierre-
André Wacrenier.

The efficiency of heterogeneous parallel systems can be significantly improved by using task-based
programming models. Among these models, the Sequential Task Flow (STF) model is widely embraced
since it efficiently handles task graphs while offering ample optimization perspectives. However, STF
is limited to task graphs with task sizes that are fixed at submission, posing a challenge in determining
the optimal task granularity. For instance, in heterogeneous systems, the optimal task size varies across
different processing units. StarPU’s recursive tasks allow graphs with several task granularities by turning
some tasks into subgraphs dynamically at runtime. The decision to transform these tasks into subgraphs
is decided by a StarPU component called the Splitter [13, 24]. We propose a new policy for the Splitter,
which is designed for heterogeneous platforms, that relies on linear programming aimed at minimising
execution time and maximising resource utilization. This results in a dynamic well-balanced set com-
prising both small tasks to fill multiple CPU cores, and large tasks for efficient execution on accelerators

Project STORM 13

like GPU devices. Experimental evaluations show that just-in-time adaptations of the task graph lead to
improved performance across various dense linear algebra algorithms. This is pending submission to the
JPDC journal.

7.5 Optimal Time and Energy-Aware Client Selection Algorithms for Federated
Learning on Heterogeneous Resources

Participants: Laércio Lima Pilla, Alan Lira Nunez.

In [20], we study the effects of scheduling decisions over the performance and energy consumption of
Federated Learning (FL) models. FL systems allow training machine learning models distributed across
multiple clients, each one using private local data. Iteratively, the clients send their training contributions
to a server, which performs a merge to produce an enhanced global model. Due to resource and data
heterogeneity, client selection is crucial to optimize the system efficiency and improve the global model
generalization. Selecting more clients is likely to increase the overall energy consumption, while a small
number of clients may decline the performance of the trained model or require longer training time. We
propose two time-and energy-aware client selection algorithms, MEC and ECMTC, which are proven
regarding their optimality and evaluated against state-of-the-art algorithms on an extensive series of
experiments in both simulation and HPC platform scenarios. The results indicate the benefits of jointly
optimizing the time and energy consumption metrics using our proposals.

7.6 Task scheduling to improve throughput and reduce latency for deep neural
network inference

Participants: Jean-Francois David, Samuel Thibault.

Graphics Processing Units (GPUs) are widely used for training and inference of DNNs. However, this
exclusive use can quickly lead to saturation of GPU resources while CPU resources remain underutilized.
We proposed a performance evaluation of a solution that exploits processor heterogeneity by combining
the computational power of GPUs and CPUs. A solution was proposed for distributing the computational
load across the different processors to optimize their utilization and achieve better performance. A
solution for partitioning a DNN model with different computational resources was also proposed. This
solution transfers part of the load from the GPUs to the CPUs when necessary to reduce latency and
increase throughput. The partitioning of DNN models is performed using METIS to balance the compu-
tational load to be distributed among the different resources while minimizing communications. The
experimental results show that latency and throughput are improved for a number of DNN models [22,
11, 12]

7.7 Predicting errors in parallel applications with ML

Participants: Asia Auville, Mihail Popov, Emmanuelle Saillard.

Investigating if parallel applications are correct is a very challenging task. Yet, recent progress in ML
and text embedding show promising results in characterizing source code or the compiler intermediate
representation to identify optimizations. We propose to transpose such characterization methods to
the context of verification. In particular, we train ML models that take as labels the code correctness
along with intermediate representations embeddings as features. Results over small MPI verification
benchmarks including MBI and DataRaceBench demonstrate that we can train models that detect if a

14 Inria Annual Report 2024

code is correct with 90% accuracy and up to 75% over new unseen errors. This work, published at IPDPS
2024 [6], is a collaboration with the Iowa State University.

In the context of Asia Auville Ph.D. thesis, we are currently investigating the prediction capabilities of
ML models to detected errors beyond simple errors, by considering more complicated errors through
github repositories crawling. We are also planning to use LLMs models to not only detect errors, but also
to propose fixes. This work is done in collaboration with the University of Versailles and Intel.

7.8 Static-Dynamic analysis for Performance and Accuracy of Data Race Detection
in MPI One-Sided Programs

Participants: Emmanuelle Saillard, Samuel Thibault, Radjasouria Vinayagame.

To take advantage of asynchronous communication mechanisms provided by the recent platforms,
the Message Passing Interface (MPI) proposes operations based on one-sided communications. These
operations enable a better overlap of communications with computations. However, programmers must
manage data consistency and synchronization to avoid data races, which may be a daunting task. This
work proposes three solutions to improve the performance and the accuracy of the data race detection
in MPI one-sided programs. First, we extend the node-merging algorithm based of a Binary Search
Tree (BST) presented in a previous work that keeps track of memory accesses during execution to take
into account non-adjacent memory accesses. Then, we use an alias analysis to reduce the number of
load/store instrumented. Finally, we extend our analyses to manage synchronization routines. Our
solutions have been implemented in PARCOACH, a MPI verification tool. Experiments on real-life
applications show that our contributions lead to a better accuracy, a reduction of the memory usage by a
factor up to 4 of the dynamic analysis and a reduction of the overhead at runtime