Section: Scientific Foundations
High performance numerical computing
Beside basic research activities related to the design of numerical methods and resolution algorithms for the wave propagation models at hand, the team is also committed to demonstrating the benefits of the proposed numerical methodologies in the simulation of challenging three-dimensional problems pertaining to computational electromagnetics and computation geoseismics. For such applications, parallel computing is a mandatory path. Nowadays, modern parallel computers most often take the form of clusters of heterogeneous multiprocessor systems, combining multiple core CPUs with accelerator cards (e.g Graphical Processing Units - GPUs), with complex hierarchical distributed-shared memory systems. Developing numerical algorithms that efficiently exploit such high performance computing architectures raises several challenges, especially in the context of a massive parallelism. In this context, current efforts of the team are towards the exploitation of multiple levels of parallelism (computing systems combining CPUs and GPUs) through the study of hierarchical SPMD (Single Program Multiple Data) strategies for the parallelization of unstructured mesh based solvers.