EN FR
EN FR


Section: Research Program

Automated Deduction

The main goal is to prove the validity of assertions obtained from program analysis. To this end, we develop techniques and automated deduction systems based on rewriting and constraint solving. The verification of recursive data structures relies on inductive reasoning or the manipulation of equations and it also exploits some form of reasoning modulo properties of selected operators (such as associativity and/or commutativity).

Rewriting, which allows us to simplify expressions and formulae, is a key ingredient for the effectiveness of many state-of-the-art automated reasoning systems. Furthermore, a well-founded rewriting relation can also be exploited to implement reasoning by induction. This observation forms the basis of our approach to inductive reasoning, with high degree of automation and the possibility to refute false conjectures.

The constraints are the key ingredient to postpone the activity of solving complex symbolic problems until it is really necessary. They also allow us to increase the expressivity of the specification language and to refine theorem-proving strategies. As an example of this, the handling of constraints for unification problems or for the orientation of equalities in the presence of interpreted operators (e.g., commutativity and/or associativity function symbols) will possibly yield shorter automated proofs.

Finally, decision procedures are being considered as a key ingredient for the successful application of automated reasoning systems to verification problems. A decision procedure is an algorithm capable of efficiently deciding whether formulae from certain theories (such as Presburger arithmetic, lists, arrays, and their combination) are valid or not. We develop techniques to build and to combine decision procedures for the domains which are relevant to verification problems. We also perform experimental evaluation of the proposed techniques by combining propositional reasoning (implemented by means of Boolean solvers, e.g., SAT solvers) and decision procedures to get solvers for the problem of Satisfiability Modulo Theories (SMT).