EN FR
EN FR


Section: Application Domains

Complex fluid flow simulations

The team is interested in some numerical methods for the simulation of systems of PDEs describing complex flows, like for instance, mixture flows or granular gases.

Let us first focus on fluid mixture flows. The fluid is described by its density, its velocity and its pressure. These quantities obey mass and momentum conservation. On the one hand, when we deal with the 2D variable density incompressible Navier-Stokes equations, we aim to study the ability of the numerical scheme to reproduce some instabilities phenomena such as the Rayleigh-Taylor instability. On the other hand, diffuse interface models have gained renewed interest for the last few years in fluid mechanics applications. From a physical viewpoint, they allow to describe some phase transition phenomena. If the Fick's law relates the divergence of the velocity field to derivatives of the density, one obtains the so called Kazhikhov-Smagulov model  [61] . Here, the density of the mixture is naturally highly non homogeneous, and the constitutive law accounts for diffusion effects between the constituents of the mixture. The first phenomena that we want to reproduce are the powder-snow avalanches. We investigate the influence of the characteristics parameters (Froude, Schmidt and Reynolds numbers) on the progression of the front. Other similar hydrodynamic models arise in combustion theory or transport of pollutants.

Kinetic theory of molecular gases models a gas as a system of elastically colliding spheres, conserving mechanical energy during impact. Once initialized, it takes a molecular gas not more than few collisions per particle to relax to its equilibrium state, characterized by a Maxwellian velocity distribution and a certain homogeneous density (in the absence of external forces). A granular gas is a system of dissipatively colliding, macroscopic particles (grains). This slight change in the microscopic dynamics (converting energy into heat) cause drastic changes in the behavior of the gas: granular gases are open systems, which exhibits self-organized spatio-temporal cluster formations, and has no equilibrium distribution. They can be used to model silos, avalanches, pollen or planetary rings.