Section: New Results
Methodological developments
Traveling waves for a model of hematopoiesis
The formation and development of blood cells (hematopoiesis) is a very complex process. This process involves a small population of cells called hematopoietic stem cells (HSCs). The HSCs are undifferentiated cells, located in the bone marrow before they become mature blood cells and enter the blood stream. They have a unique ability to produce either similar cells (self-renewal), or cells engaged in one of different lineages of blood cells: red blood cells, white cells and platelets (differentiation). The HSCs can be either in a proliferating or in a quiescent phase. In [6], we distinguish between dividing cells that enter directly to the quiescent phase and dividing cells that return to the proliferating phase to divide again. We propose a mathematical model describing the dynamics of HSC population, taking into account their spatial distribution. The resulting model is an age-structured reaction-diffusion system. The method of characteristics reduces this model to a coupled reaction-diffusion equation and difference equation with delay. We study the existence of traveling wave fronts connecting the zero steady state with the unique positive uniform one. We use a monotone iteration technique coupled with the upper and lower solutions method.
A hybrid finite volume method for advection equations and its applications in population dynamics
We present in [30] a very adapted finite volume numerical scheme for transport type-equation. The scheme is an hybrid one combining an anti-dissipative method with down-winding approach for the flux ( [35]; [36]) and an high accurate method as the WENO5 one ( [37]). The main goal is to construct a scheme able to capture in exact way the numerical solution of transport type-equation without artifact like numerical diffusion or without “stairs” like oscillations and this for any regular or discontinuous initial distribution. This kind of numerical hybrid scheme is very suitable when properties on the long term asymptotic behavior of the solution are of central importance in the modeling what is often the case in context of population dynamics where the final distribution of the considered population and its mass preservation relation are required for prediction.
Inferring gene regulatory networks from single-cell data: a mechanistic approach
The recent development of single-cell transcriptomics has enabled gene expression to be measured in individual cells instead of being population-averaged. Despite this considerable precision improvement, inferring regulatory networks remains challenging because stochasticity now proves to play a fundamental role in gene expression. In particular, mRNA synthesis is now acknowledged to occur in a highly bursty manner. We propose in [21] to view the inference problem as a fitting procedure for a mechanistic gene network model that is inherently stochastic and takes not only protein, but also mRNA levels into account. We first explain how to build and simulate this network model based upon the coupling of genes that are described as piecewise-deterministic Markov processes. Our model is modular and can be used to implement various biochemical hypotheses including causal interactions between genes. However, a naive fitting procedure would be intractable. By performing a relevant approximation of the stationary distribution, we derive a tractable procedure that corresponds to a statistical hidden Markov model with interpretable parameters. This approximation turns out to be extremely close to the theoretical distribution in the case of a simple toggle-switch, and we show that it can indeed fit real single-cell data. As a first step toward inference, our approach was applied to a number of simple two-gene networks simulated in silico from the mechanistic model and satisfactorily recovered the original networks. Our results demonstrate that functional interactions between genes can be inferred from the distribution of a mechanistic, dynamical stochastic model that is able to describe gene expression in individual cells. This approach seems promising in relation to the current explosion of single-cell expression data.