Section: Partnerships and Cooperations
National Initiatives
ANR
B3DCMB
ANR Decembre 2017 - Novembre 2021 This project is in the area of data analysis of cosmological data sets as collected by contemporary and forthcoming observatories. This is one of the most dynamic areas of modern cosmology. Our special target are data sets of Cosmic Microwave Background (CMB) anisotropies, measurements of which have been one of the most fruitful of cosmological probes. CMB photons are remnants of the very early evolution of the Universe and carry information about its physical state at the time when the Universe was much younger, hotter and denser, and simpler to model mathematically. The CMB has been, and continue to be, a unique source of information for modern cosmology and fundamental physics. The main objective of this project is to empower the CMB data analysis with novel high performance tools and algorithms superior to those available today and which are capable of overcoming the existing performance gap. Partners: AstroParticules et Cosmologie Paris 7 (PI R. Stompor), ENSAE Paris Saclay.
ANR Cine-Para
October 2015 - September 2019, Laura Grigori is Principal Coordinator for Inria Paris. Funding for Inria Paris is 145 Keuros. The funding for Inria is to combine Krylov subspace methods with parallel in time methods. Partners: University Pierre and Marie Curie, J. L. Lions Laboratory (PI Y. Maday), CEA, Paris Dauphine University, Paris 13 University.
Non-local DD
ANR appel à projet générique October 2015 - September 2020
This project in scientific computing aims at developing new domain decomposition methods for massively parallel simulation of electromagnetic waves in harmonic regime. The specificity of the approach that we propose lies in the use of integral operators not only for solutions local to each subdomain, but for coupling subdomains as well. The novelty of this project consists, on the one hand, in exploiting multi-trace formalism for domain decomposition and, on the other hand, considering optimized Schwarz methods relying on Robin type transmission conditions involving quasi-local integral operators.
Soil-3D
ANR appel à projet générique October 2015 - September 2020
In spite of decades of work on the modeling of greenhouse gas emission such as CO2 and N2O and on the feedback effects of temperature and water content on soil carbon and nitrogen transformations, there is no agreement on how these processes should be described, and models are widely conflicting in their predictions. Models need improvements to obtain more accurate and robust predictions, especially in the context of climate change, which will affect soil moisture regime.
The goal of this new project is now to go further using the models developed in MEPSOM to upscale heterogeneities identified at the scale of microbial habitats and to produce macroscopic factors for biogeochemical models running at the field scale.
To achieve this aim, it will be necessary to work at different scales: the micro-scale of pores (μm) where the microbial habitats are localized, the meso-scale of cores at which laboratory measurements on CO2 and N2O fluxes can be performed, and the macro-scale of the soil profile at which outputs are expected to predict greenhouse gas emission. The aims of the project are to (i) develop new descriptors of the micro-scale 3D soil architecture that explain the fluxes measured at the macro-scale, (ii) Improve the performance of our 3D pore scale models to simulate both micro-and meso- scales at the same time. Upscaling methods like “homogeneization” would help to simulate centimeter samples which cannot be achieved now. The reduction of the computational time used to solve the diffusion equations and increase the number of computational units, (iii) develop new macro-functions describing the soil micro-heterogeneity and integrate these features into the field scale models.