EN FR
EN FR


Section: Application Domains

Consensus

Fault-tolerant distributed systems provide a dependable service on top of unreliable computers and networks. Famous examples are geo-replicated data-bases, distributed file systems, or blockchains. Fault-tolerant protocols replicate the system and ensure that all (unreliable) replicas are perceived from the outside as one single reliable machine. To give the illusion of a single reliable machine “consensus” protocols force replicas to agree on the “current state” before making this state visible to an outside observer. We are interested in (semi-)automatically proving the total correctness of consensus algorithms in the benign case (messages are lost or processes crash) or the Byzantine case (processes may lie about their current state). In order to do this, we first define new reduction theorems to simplify the behaviors of the system and, second, we introduce new static analysis methods to prove the total correctness of adequately simplified systems. We focus on static analysis based Satisfiability Modulo Theories (SMT) solvers which offers a good compromise between automation and expressiveness. Among our benchmarks are Paxos, PBFT (Practical Byzantine Fault-Tolerance), and blockchain algorithms (Red-Belly, Tendermint, Algorand). These are highly challenging benchmarks, with a lot of non-determinism coming from the interleaving semantics and from the adversarial environment in which correct processes execute, environment that can drop messages, corrupt them, etc. Moreover, these systems were originally designed for a few servers but today are deployed on networks with thousands of nodes. The “optimizations” for scalability can no longer be overlooked and must be considered as integral part of the algorithms, potentially leading to specifications weaker than the so much desired consensus.