EN FR
EN FR


Section: New Results

Systemic integration

This year, we have considered characteristics of interactions of cortico-basal loops [32], firstly to continue the development of a software environment based on the Minecraft videogame allowing for the survival behavior of an autonomous agent [25], [24] and secondly to revisit the principles of habits formation.

The dorsal pallium (a.k.a. the cortex in the mammals) makes a large loop circuit with the basal ganglia and the thalamus known to control and adapt behavior but the who's who of the functional roles of these structures is still debated. Influenced by the Triune brain theory that was proposed in the early sixties, many current theories propose a hierarchical organization on the top of which stands the cortex to which the subcortical structures are subordinated. In particular, habits formation has been proposed to reflect a switch from conscious on-line control of behavior by the cortex, to a fully automated subcortical control. We have proposed in [3] instead to revalue the function of the network in light of the current experimental evidence concerning the anatomy and physiology of the basal ganglia-cortical circuits in vertebrates.

This theory is supported by a model [11] that includes interactions between the cortex, the basal ganglia and the thalamus based on a dual competition. We hypothesize that the striatum, the subthalamic nucleus, the internal pallidum (GPi), the thalamus, and the cortex are involved in closed feedback loops through the hyperdirect and direct pathways. These loops support a competition process that results in the ability of basal ganglia to make a cognitive decision followed by a motor decision. Considering lateral cortical interactions, another competition takes place inside the cortex allowing the latter to make a cognitive and a motor decision. We show how this dual competition endows the model with two regimes. One is driven by reinforcement learning, the other by Hebbian learning. The final decision is made according to a combination of these two mechanisms with a gradual transfer from the former to the latter. We confirmed these theoretical results on primates (Macaca mulata) using a novel paradigm predicted by the model.