EN FR
EN FR


Section: Research Program

Axis1: Representation of biological organisms and their forms in silico

The modeling of organism development requires a formalization of the concept of form, i.e. a mathematical definition of what is a form and how it can change in time, together with the development of efficient algorithms to construct corresponding computational representations from observations, to manipulate them and associate local molecular and physical information with them. Our aim is threefold. First, we will develop new computational structures that make it possible to represent complex forms efficiently in space and time. For branching forms, the challenge will be to reduce the computational burden of the current tree-like representations that usually stems from their exponential increase in size during growth. For tissue structures, we will seek to develop models that integrate seamlessly continuous representations of the cell geometry and discrete representations of their adjacency network in dynamical and adaptive framework. Second, we will explore the use of machine learning strategies to set up robust and adaptive strategies to construct form representations in computers from imaging protocols. Finally, we will develop the notion of digital atlases of development, by mapping patterns of molecular (gene activity, hormones concentrations, cell polarity, ...) and physical (stress, mechanical properties, turgidity, ...) expressions observed at different stages of development on models representing average form development and by providing tools to manipulate and explore these digital atlases.