EN FR
EN FR


Section: Application Domains

Locomotion and Interactions between walkers

Modeling and simulating locomotion and interactions between walkers is a very active, complex and competitive domain, interesting various disciplines such as mathematics, cognitive sciences, physics, computer graphics, rehabilitation etc. Locomotion and interactions between walkers are by definition at the very core of our society since they represent the basic synergies of our daily life. When walking in the street, we should produce a locomotor movement while taking information about our surrounding environment in order to interact with people, move without collision, alone or in a group, intercept, meet or escape to somebody. MimeTIC is an international key contributor in the domain of understanding and simulating locomotion and interactions between walkers. By combining an approach based on Human Movement Sciences and Computer Sciences, the team focuses on locomotor invariants which characterize the generation of locomotor trajectories, conducts challenging experiments focusing on visuo-motor coordination involved during interactions between walkers both using real and virtual set-ups. One main challenge is to consider and model not only the "average" behaviour of healthy younger adult but also extend to specific populations considering the effect of pathology or the effect of age (kids, older adults). As a first example, when patients cannot walk efficiently, in particular those suffering from central nervous system affections, it becomes very useful for practitioners to benefit from an objective evaluation of their capacities. To facilitate such evaluations, we have developed two complementary indices, one based on kinematics and the other one on muscle activations. One major point of our research is that such indices are usually only developed for children whereas adults with these affections are much more numerous. We extend this objective evaluation by using person-person interaction paradigm which allows studying visuo-motor strategies deficit in these specific populations.

Another fundamental question is the adaptation of the walking pattern according to anatomical constraints, such as pathologies in orthopedics, or adaptation to various human and non-human primates in paleoanthropoly. Hence, the question is to predict plausible locomotion according to a given morphology. This question raises fundamental questions about the variables that are regulated to control gait: balance control, minimum energy, minimum jerk...In MimeTIC we develop models and simulators to efficiently test hypothesis on gait control for given morphologies.