EN FR
EN FR


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 1A. Ballesta.

    Approche combinée expérimentale et mathématique pour la personnalisation sur base moléculaire des thérapies anticancéreuses standards et chronomodulées, Université Paris Sud - Paris XI, June 2011.

    http://hal.inria.fr/tel-00628629/en
  • 2P. Gabriel.

    Équations de transport-fragmentation et applications aux maladies à prions, Université Pierre et Marie Curie - Paris VI, June 2011.

Articles in International Peer-Reviewed Journal

  • 3M. Artzrouni, C.B. Begg, R. Chabiniok, J. Clairambault, AJ.E. Foss, J. Hargrove, E.K. Lee, J.H. Siggers, M. Tindall.

    The First International Workshop on the Role and Impact of Mathematics in Medicine: A collective account, in: Amer. J. Transl. Res., 2011, vol. 3, p. 492–497.
  • 4E. Audusse, F. Benkhaldoun, J. Sainte-Marie, M. Seaid.

    Multilayer Saint-Venant Equations over movable beds., in: DCDS-B, 2011, vol. 15, p. 917–934.
  • 5E. Audusse, M.-O. Bristeau, M. Pelanti, J. Sainte-Marie.

    Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model. Kinetic interpretation and numerical validation., in: J. Comp. Phys., 2011, vol. 230, p. 3453-3478. [ DOI : 10.1016/j.jcp.2011.01.042 ]

    http://hal.inria.fr/hal-00654642/en/
  • 6E. Audusse, M.-O. Bristeau, B. Perthame, J. Sainte-Marie.

    A multilayer Saint-Venant system with mass exchanges for Shallow Water flows. Derivation and numerical validation., in: ESAIM : M2AN, 2011, vol. 45, p. 169-200. [ DOI : 10.1051/m2an/2010036 ]

    http://hal.inria.fr/inria-00551428/en/
  • 7A. Ballesta, J. Clairambault, S. Dulong, F. Lévi.

    Theoretical Optimization of Irinotecan-based Anticancer Strategies in case of Drug-induced Efflux, in: Appl. Math. Lett., 2011, vol. 24, p. 1251–1256.
  • 8A. Ballesta, S. Dulong, C. Abbara, B. Cohen, A. Okyar, J. Clairambault, F. Lévi.

    A Combined Experimental and Mathematical Approach for Molecular-based Optimization of Irinotecan Circadian Delivery, in: PLoS Comp. Biol., 2011, vol. 7, e1002143 p. [ DOI : 10.1371/journal.pcbi.1002143, 2011 ]
  • 9M.-O. Bristeau, N. Goutal, J. Sainte-Marie.

    Numerical simulations of a non-hydrostatic Shallow Water model, in: Computers & fluids, 2011, vol. 47, no 1, p. 51-64. [ DOI : 10.1016/j.compfluid.2011.02.013 ]

    http://hal.inria.fr/hal-00654634/en/
  • 10M. J. Caceres, J. A. Carrillo, B. Perthame.

    Analysis of Nonlinear Noisy Integrate and Fire Neuron Models: blow-up and steady states, in: Journal of Mathematical Neuroscience, 2011, vol. 1, no 7.

    http://www.mathematical-neuroscience.com/content/1/1/7
  • 11V. Calvez, M. Doumic Jauffret, P. Gabriel.

    Self-similarity in a General Aggregation-Fragmentation Problem; Application to Fitness Analysis, in: J. Math. Pures Appl., November 2011, accepted.

    http://hal.archives-ouvertes.fr/hal-00539279/fr/
  • 12F. Cerreti, B. Perthame, C. Schmeiser, M. Tang, N. Vauchelet.

    Waves for an hyperbolic Keller-Segel model and branching instabilities, in: Mathematical Models and Methods in Applied Sciences, 2011, vol. 21, no Suppl., p. 825–842.

    http://arxiv.org/abs/0912.1792
  • 13I. Cheddadi, P. Saramito, B. Dollet, C. Raufaste, F. Graner.

    Understanding and predicting viscous, elastic, plastic flows, in: Eur. Phys. J. E. Soft matter, 2011, vol. 34, 11001 p. [ DOI : 10.1140/epje/i2011-11001-4 ]
  • 14J. Clairambault.

    Commitment of mathematicians in medicine. A personal experience, and generalisations, in: Acta Biotheoretica, 2011, vol. 59, p. 201–211. [ DOI : 10.1007/s10441-011-9140-2 ]
  • 15J. Clairambault.

    Optimising cancer pharmacotherapeutics using mathematical modelling and a systems biology approach, in: Personalized Medicine, 2011, vol. 8, p. 271–286.
  • 16J. Clairambault, S. Gaubert, T. Lepoutre.

    Circadian rhythm and cell population growth, in: Mathematical and Computer Modelling, 2011, vol. 53, p. 1558–1567.
  • 17M. Doumic, M. Hoffmann, P. Reynaud, V. Rivoirard.

    Nonparametric estimation of the division rate of a size-structured population, in: SIAM J. Appl. Math., 2011, vol. 71, no 6, p. 1918–1940.
  • 18M. Doumic, M. Hoffmann, P. Reynaud, V. Rivoirard.

    Nonparametric estimation of the division rate of a size-structured population, in: SIAM J. Num. Anal., 2011, accepted.

    http://hal.archives-ouvertes.fr/hal-00578694/fr/
  • 19D. Drasdo, S. Höhme.

    Pushing, Pulling and the possible effect of a granular or cellular embedding medium on the growth of cell populations, in: New Journal of Physics, 2011, re-submitted.
  • 20P. Gabriel.

    Long-time asymptotics for nonlinear growth-fragmentation equations, in: Comm. Math. Sci., 2011, accepted.
  • 21P. Gabriel.

    The shape of the polymerization rate in the prion equation, in: Math. Comput. Modelling, 2011, vol. 53, no 7-8, p. 1451–1456, Submitted.
  • 22N. Goutal, J. Sainte-Marie.

    A kinetic interpretation of the section-averaged Saint-Venant system for natural river hydraulics., in: International Journal for Numerical Methods in Fluids, 2011, vol. 67, no 7, p. 914-938. [ DOI : 10.1002/fld.2401 ]

    http://hal.inria.fr/inria-00551487/en/
  • 23H.-G. Holzhuetter, D. Drasdo, T. Preusser, J. Lippert, A. M. Henney.

    A remark on duality solutions for some weakly nonlinear scalar conservation laws, in: WIRES, 2011, in press.
  • 24F. James, N. Vauchelet.

    A remark on duality solutions for some weakly nonlinear scalar conservation laws, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, June 2011, vol. 349, p. 657-661, 6 pages. [ DOI : 10.1016/j.crma.2011.05.004 ]

    http://hal.inria.fr/hal-00591119/en
  • 25C. Jourdana, N. Vauchelet.

    Analysis of a diffusive effective mass model for nanowires, in: Kinetic and Related Models, 2011, vol. 4, no 4, p. 1121–1142.

    http://hal.inria.fr/hal-00593984/en
  • 26A. Lorz.

    A coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay, in: Commun. Math. Sci., 2012, vol. 10, no 2, p. 555–574.

    http://www.intlpress.com/CMS/p/2012/issue10-2/CMSV10-2-a07-lorz.pdf
  • 27A. Lorz, S. Mirrahimi, B. Perthame.

    Dirac mass dynamics in multidimensional nonlocal parabolic equations, in: Comm. Partial Differential Equations, 2011, vol. 36, no 6, p. 1071–1098.

    http://dx.doi.org/10.1080/03605302.2010.538784, http://arxiv.org/abs/1011.1768
  • 28S. Mirrahimi, B. Perthame, J.Y. Wakano.

    Evolution of species trait through resource competition, in: J. Math. Biol., 2011, Published on line, June 2011.

    http://dx.doi.org/10.1007/s00285-011-0447-z
  • 29G. Nadin, B. Perthame, M. Tang.

    Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation, in: C. R. Math. Acad. Sci. Paris, 2011, vol. 349, no 9-10, p. 553–557.

    http://dx.doi.org/10.1016/j.crma.2011.03.008, http://arxiv.org/abs/1011.4561
  • 30M. Pelanti, F. Bouchut, A. Mangeney.

    A Riemann Solver for Single-Phase and Two-Phase Shallow Flow Models based on Relaxation. Relations with Roe and VFRoe Solvers., in: J. Comput. Phys., 2011, vol. 230, no 3, p. 515-550.
  • 31B. Perthame, C. Schmeiser, M. Tang, N. Vauchelet.

    Traveling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion: existence and branching instabilities, in: Nonlinearity, 2011, vol. 24, p. 1253–1270.

    http://hal.inria.fr/inria-00522131
  • 32B. Perthame, P. E. Souganidis.

    A homogenization approach to flashing ratchets, in: NoDEA Nonlinear Differential Equations Appl., 2011, vol. 18, no 1, p. 45–58.

    http://dx.doi.org/10.1007/s00030-010-0083-0
  • 33I. Ramis-Conde, D. Drasdo.

    From Genotypes to Phenotypes: classification of the tumour profiles in the cadherin adhesion pathway., in: Physical Biology, 2011, in revision.
  • 34J. Sainte-Marie.

    Vertically averaged models for the free surface Euler system. Derivation and kinetic interpretation., in: Mathematical Models and Methods in Applied Sciences, 2011, vol. 21, p. 459-490. [ DOI : 10.1142/S0218202511005118 ]

    http://hal.inria.fr/inria-00551484/en/
  • 35J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan, B. Perthame.

    Directional persistence of chemotactic bacteria in a traveling concentration wave, in: PNAS, 2011, vol. 108, no 39, p. 16235–16240.

    http://www.mathematical-neuroscience.com/content/1/1/7
  • 36H. Özbay, C. Bonnet, H. Benjelloun, J. Clairambault.

    Stability analysis of cell dynamics in leukemia, in: Mathematical Modelling of Natural Phenomena, 2012, Accepted.

International Conferences with Proceedings

  • 37F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre, T. Ouillon.

    Proliferation in cell population models with age structure, in: Proceedings of ICNAAM 2011, Kallithea Chalkidis (Greece), American Institute of Physics, 2011, p. 1212–1215.

    http://dx.doi.org/10.1063/1.3637834
  • 38L. Dimitrio, R. Natalini, L. Milanesi.

    A Mathematical Model for the Enhanced Cytoplasmic Transport - How to Get (Faster) to the Nucleus, in: BIOINFORMATICS, 2011, p. 39-46.

Scientific Books (or Scientific Book chapters)

  • 39F. Billy, J. Clairambault, O. Fercoq.

    Optimisation of Cancer Drug Treatments Using Cell Population Dynamics, in: Mathematical Methods and Models in Biomedicine, U. Ledzewicz, H. Schättler, A. Friedman, E. Kashdan (editors), Springer, 2012, p. 257–299, in press.
  • 40D. Drasdo, S. Höhme, J. Hengstler.

    A quantitative mathematical modeling approach to liver regeneration, in: Liver regeneration, D. Häussinger (editor), De Gruyter, Boston, 2011.
  • 41D. Drasdo, S. Höhme, J. Hengstler.

    Systems biology to model liver regeneration, in: Encyclopedia of Systems Biology, O. Wolkenhauer, H. Yokota, K. Cho (editors), Springer, 2011.
  • 42J. Hengstler, M. Gehrmann, S. Höhme, D. Drasdo, J. Steward, M. Schmidt.

    Systems biology, bioinformatics and medicine approaches to cancer progression outcomes, in: Cancer Systems Biology, Bioinformatics and Medicine, A. Cesario, F. Marcus (editors), Springer, 2011, p. 297–308.
  • 43J. Hengstler, P. Godoy, R. Reif, J. Steward, M. Schug, T. Heise, A. Oberemm, A. Bräuning, S. Zellmer, J. Boettger, R. Gebhardt, S. Höhme, D. Drasdo, M. Schwarz.

    The virtual liver. Spatial-temporal modelling of tissue damage and regeneration, in: Alternative testing strategies & AXLR8-2 Workshop report on a Roadmap to innovative toxicity testing, Berlin: AXLR8 Consortium 2011, T. Seidle, H. Spielmann (editors), Springer, 2011, p. 218 – 225.
  • 44S. Höhme, S. Hammad, A. Othman, I. von Recklinghausen, J. Boettger, R. Gebhardt, O. Dirsch, J. Hengstler, D. Drasdo.

    Modeling liver regeneration in a virtual lobe, in: Medical Springer Edition, Springer, 2011.

Other Publications

  • 45E. Audusse, C. Chalons, O. Delestre, J. Giesselmann, N. Goutal, M. Jodeau, G. Sadaka, J. Sainte-Marie.

    Sediment transport modelling : relaxation schemes for Saint-Venant - Exner and three layers models., 2011, submitted.
  • 46S. Ayata, M. Lévy, O. Aumont, O. Bernard, J. Sainte-Marie, A. Sciandra, A. Tagliabue.

    Phytoplankton growth formulation in marine ecosystem models: should we take into account photo-adaptation and variable stochiometry in oligotrophic areas, 2011, submitted.
  • 47A. Ballesta, M. Doumic Jauffret, G. Gillet.

    Modelling Src control on the mitochondrial pathway of apoptosis, implications for cancer therapeutics, 2011, submitted.
  • 48F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre, T. Ouillon, S. Saito.

    Synchronisation and control of proliferation in cycling cell population models with age structure, 2012, In revision.
  • 49A.-C. Boulanger, J. Sainte-Marie.

    A 2D model for the coupling of hydrodynamics and biology. Kinetic interpretation and numerical validation within the framework of algae growth in raceways., 2011, submitted.
  • 50A.-C. Boulanger, J. Sainte-Marie.

    Analytical solutions for the free surface hydrostatic Euler equations, 2011, submitted.
  • 51I. Cheddadi, P. Saramito, F. Graner.

    Stationary Couette flows of elastoviscoplastic fluids are non-unique, 2011, Version 2, November 2011.

    http://hal.inria.fr/hal-00616273/en
  • 52M. Doumic Jauffret, M. Hoffmann, P. Reynaud-Bouret, V. Rivoirard.

    Nonparametric estimation of the division rate of a size-structured population, 2011, Version1, March 2011.

    http://hal.inria.fr/hal-00578694/en
  • 53M. Doumic Jauffret, L. M. Tine.

    A General Inverse Problem for the Growth-Fragmentation Equation, 2011.

    http://hal.inria.fr/hal-00634539/en
  • 54P. Gabriel, S.P. Garbett, D.R. Tyson, G.F. Webb.

    The contribution of age structure to cell population responses to targeted therapeutics, 2011.

    http://hal.archives-ouvertes.fr/hal-00649178/en/
  • 55F. James, N. Vauchelet.

    Chemotaxis: from kinetic equations to aggregate dynamics, 2011, 25 pages.

    http://hal.inria.fr/hal-00605479/en
  • 56A. Krinner, M. Zscharnack, A. Bader, D. Drasdo, A. Stolzing, M. Loeffler, J. Galle.

    Heterogeneity of mesenchymal Stem Cell Populations emerges from Differentiation and Aging, May 2011.
  • 57J. Touboul.

    On the dynamics of mean-field equations for stochastic neural fields with delays, 2011, Arxiv 1108.2407.

    http://arxiv.org/abs/1108.2407
  • 58J. Touboul.

    The propagation of chaos in Neural Fields, 2011, Arxiv 1108.2414.

    http://arxiv.org/abs/1108.2414
  • 59M. Tournus, A. Edwards, N. Seguin, B. Perthame.

    Analysis of a simplified model of the urine concentration mechanism, 2011, Version 1, September 2011.

    http://hal.inria.fr/hal-00605109/en
References in notes
  • 60E. Audusse, M.-O. Bristeau.

    A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes, in: J. Comp. Phys., 2005, vol. 206, p. 311-333.
  • 61M. Block, E. Schöll, D. Drasdo.

    Classifying the growth kinetics and surface dynamics in growing cell populations, in: Phys. Rev. Lett., 2008, vol. 99, no 24, p. 248101–104.
  • 62A. Bräuning, Y. Singh, B. Rignall, A. Buchmann, S. Hammad, A. Othman, I. von Recklinghausen, P. Godoy, S. Höhme, D. Drasdo, J. Hengstler, M. Schwarz.

    Phenotype and growth behavior of residual β-catenin-positive hepatocytes in livers of β-catenin-deficient mice, in: Histochemistry and cell biology, 2010, vol. 134, no 5, p. 469–481.
  • 63H. Byrne, D. Drasdo.

    Individual-based and continuum models of growing cell populations: a comparison, in: J. Math. Biol., 2009, vol. 58, no 4-5, p. 657–687.
  • 64A. Decoene.

    Modèle hydrostatique pour les écoulements à surface libre tridimensionnels et schémas numériques, Université Pierre et Marie Curie, Paris 6, May 2006.
  • 65Y. Dolak, C. Schmeiser.

    Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms, in: J. Math. Biol., 2006, vol. 51, p. 595–615.
  • 66M. Doumic, P. Maia, J. Zubelli.

    On the Calibration of a Size-Structured Population Model from Experimental Data, in: Acta Biotheoretica, 2010.

    http://dx.doi.org/10.1007/s10441-010-9114-9
  • 67M. Doumic, B. Perthame, J. Zubelli.

    Numerical Solution of an Inverse Problem in Size-Structured Population Dynamics, in: Inverse Problems, 2009, vol. 25, no electronic version, 045008 p.
  • 68D. Drasdo.

    Coarse Graining in Simulated Cell Populations, in: Adv. Complex Syst., 2005, vol. 2 & 3, p. 319–363.
  • 69D. Drasdo, S. Höhme, M. Block.

    On the Role of Physics in the Growth and Pattern Formation of Multi-Cellular Systems: What can we Learn from Individual-Cell Based Models?, in: Journal of Statistical Physics, 2007, vol. 128, no 1-2, p. 287–345.
  • 70D. Drasdo, S. Höhme.

    A single-cell-based model of tumor growth in vitro: monolayers and spheroids, in: Phys. Biol., 2005, vol. 2, p. 133–147.
  • 71D. Drasdo, N. Jagiella, I. Ramis-Conde, I. Vignon-Clémentel, W. Weens.

    Modeling steps from a benign tumor to an invasive cancer: examples of intrinsically multi-scale problems, in: From single scale-based models to multiscale modeling, Eds. Chauvière, A. and Preziozi, L. and Verdier, C., 2009.
  • 72D. Drasdo, M. Kruspe.

    Emergence of regulatory networks in simulated evolutionary processes, in: Adv. Complex Syst., 2005, vol. 2 & 3, p. 285–318.
  • 73J. Galle, A. Krinner, P. Buske, D. Drasdo, M. Loeffler.

    On the impact of single cell biomechanics on the spatio-temporal organization of regenerative tissue, in: World Congress on Medical Physics and Biomedical Engineering, 2009, p. 185–188.
  • 74J. Galle, M. Loeffler, D. Drasdo.

    Modelling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro, in: Biophys. J., 2005, vol. 88, p. 62–75.
  • 75J.-F. Gerbeau, B. Perthame.

    Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation, in: Discrete and Continuous Dynamical Systems, Ser. B, 2001, vol. 1, no 1, p. 89-102.
  • 76S. Höhme, M. Brulport, A. Bauer, E. Bedawy, W. Schormann, R. Gebhardt, S. Zellmer, M. Schwarz, E. Bockamp, T. Timmel, J. Hengstler, D. Drasdo.

    Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration, in: Proc. Natl. Acad. Sci. (USA), 2010, vol. 107, no 23, p. 10371–10376.
  • 77S. Höhme, D. Drasdo.

    A cell-based simulation software for multi-cellular systems, in: Bioinformatics, 2010, vol. 26, no 20, p. 2641–2642.
  • 78S. Höhme, D. Drasdo.

    Biomechanical versus nutrient control: what determines the growth dynamics of mammalian cell population?, in: Mathematical Population Studies, 2010, vol. 17, no 3, p. 166–187.
  • 79S. Höhme, J.G. Hengstler, M. Brulport, A. Bauer, D. Drasdo.

    Towards modeling liver lobule regeneration in 3D, in: Proceedings of the Fifth International Workshop on Computational Systems Biology, Leipzig, 2008, p. 61–64.
  • 80S. Höhme, J. Hengstler, M. Brulport, M. Schäfer, A. Bauer, R. Gebhardt, D. Drasdo.

    Mathematical modelling of liver regeneration after intoxication with CC14, in: Chemico-Biological Interaction, 2007, vol. 168, p. 74–93.
  • 81S. Höhme.

    Agent-based modeling of growing cell populations and the regenerating liver based on image processing, Doctoral School, Faculty of Mathematics and Computer Science, University of Leipzig, April 2010.
  • 82F. James, N. Vauchelet.

    On the hydrodynamical limit for a one dimensional kinetic model of cell aggregation by chemotaxis, in: Rivista di Matematica dell' Università di Parma, Special Issue, 2010, accepted.

    http://hal.archives-ouvertes.fr/hal-00527338/fr/
  • 83A. Krinner, M. Hoffmann, M. Loeffler, D. Drasdo, J. Galle.

    Individual fates of mesenchymal stem cells in vitro, in: BMC Systems Biology, May 2010, vol. 4, no 73.

    http://dx.doi.org/10.1186/1752-0509-4-73
  • 84A. Krinner.

    Multi-scale individual-based models, Doctoral School, Faculty of Mathematics and Computer Science, University of Leipzig, June 2010.
  • 85A. Krinner, M. Zscharnack, A. Bader, D. Drasdo, J. Galle.

    The impact of the oxygen environment on mesenchyma stem cell expansion and chondrogenic differentiation, in: Cell Proliferation, 2009.
  • 86F. Lévi, A. Okyar, S. Dulong, P. Innominato, J. Clairambault.

    Circadian Timing in Cancer Treatments., in: Annual Review of Pharmacology and Toxicology, 2010, vol. 50, p. 377–421.
  • 87K. Missal, M. Cross, D. Drasdo.

    Reverse engineering of gene regulatory networks for incomplete expression data: Transciptional control of haemopoietic commitment, in: Bioinformatics, 2006, vol. 22, p. 731–738.
  • 88B. Perthame, J. Zubelli.

    On the inverse problem for a size-structured population model, in: Inverse Problems, 2007, vol. 23, no 3, p. 1037–1052.
  • 89M. Radszuweit, M. Block, J. Hengstler, E. Schöll, D. Drasdo.

    Comparing the growth kinetics of cell populations in two and three dimensions, in: Phys. Rev. E, 2009, vol. 79, no 051907.
  • 90I. Ramis-Conde, M.A.J. Chaplain, A.R.A. Anderson, D. Drasdo.

    Modelling the influence of E-cadherin-β-catenin pathway in cancer cell invasion: A multi-scale approach, in: Biophys., 2008, vol. 95, p. 155-165.
  • 91I. Ramis-Conde, M. Chaplain, A. Anderson, D. Drasdo.

    Multi-scale modelling of cell intravasation: role of cadherins in metastasis, in: Phys. Biol., 2009, vol. 6, no 1, p. 16008-16020.
  • 92M. Rohrschneider, G. Scheuermann, S. Höhme, D. Drasdo.

    Shape Characterization of Extracted and Simulated Tumor Samples using Topological and Geometric Measures, in: IEEE Engineering in Medicine and Biology Conference 2007, 2007, p. 6271–6277.
  • 93N. Vauchelet.

    Numerical simulation of a kinetic model for chemotaxis, in: Kin. Rel. Models, 2010, vol. 3, no 3, p. 501–528.