EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1R. Becker, M. Braack.

    A Finite Element Pressure Gradient Stabilization for the Stokes Equations Based on Local Projections, in: Calcolo, 2001, vol. 38, no 4, p. 173–199.
  • 2R. Becker, R. Rannacher.

    An Optimal Control Approach to A-Posteriori Error Estimation, in: Acta Numerica 2001, A. Iserles (editor), Cambridege University Press, 2001, p. 1–102.
  • 3R. Becker, R. Rannacher.

    A feed-back approach to error control in finite element methods: Basic analysis and examples, in: East-West J. Numer. Math., 1996, vol. 4, p. 237–264.
  • 4R. Becker, B. Vexler.

    Mesh Refinement and Numerical Sensitivity Analysis for Parameter Calibration of Partial Differential Equations, in: J. Comput. Phys., 2005, vol. 206, no 1, p. 95-110.
  • 5R. Becker, S. Mao, Z.-C. Shi.

    A convergent adaptive finite element method with optimal complexity, in: Electronic Transactions on Numerical Analysis, 2008.

    http://hal.inria.fr/inria-00343020/en/
  • 6D. Braess, R. Hoppe, J. Schoberl.

    A A posteriori estimators for obstacle problems by the hypercircle method, in: Comput. Vis. Sci., 2008, vol. 11, no 4-6, p. 351-362.
  • 7R. Luce, B. Wohlmuth.

    A local a posteriori error estimator based on equilibrated fluxes., in: SIAM J. Numer. Anal., 2004, vol. 42, no 4, p. 1394-1414.
  • 8D. Papaghiuc, J.-M. Thomas.

    Nonconforming finite element methods without numerical locking., in: Numer. Math., 1998, vol. 81, no 2, p. 163-186.
  • 9E. Schall, C. Viozat, B. Koobus, A. Dervieux.

    Computation of low Mach thermical flows with implicit upwind methods., in: Int. J. Heat Mass Transfer, 2003, vol. 46, no 20, p. 3909-3926.
  • 10J.-M. Thomas, D. Trujillo.

    Mixed finite volume methods., in: Int. J. Numer. Methods Engrg., 1999, vol. 46, no 9, p. 1351-1366.
Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 11D. Capatina.

    Analyse de méthodes mixtes d'éléments finis en mécanique, Université de Pau et des Pays de l'Adour, November 2011, Habilitation à Diriger des Recherches.

    http://hal.inria.fr/tel-00647026/en

Articles in International Peer-Reviewed Journal

  • 12R. Becker, E. Burman, P. Hansbo.

    A finite element time relaxation method, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, 2011, vol. 349, no 5-6, p. 353-356.

    http://hal.inria.fr/hal-00645159/en
  • 13R. Becker, E. Burman, P. Hansbo.

    A hierarchical NXFEM for fictitious domain simulations, in: International Journal for Numerical Methods in Engineering, 2011, vol. 4-5, p. 549-559.

    http://hal.inria.fr/hal-00645157/en
  • 14R. Becker, D. Capatina, D. Graebling, J. Joie.

    Nonconforming finite element approximation of the Giesekus model for polymer flows, in: Computers and Fluids, 2011, vol. 46, p. 142 - 147.

    http://hal.inria.fr/hal-00645152/en
  • 15R. Becker, D. Capatina, J. Joie.

    Connections between discontinuous Galerkin and nonconforming finite element methods for the Stokes equations, in: Numerical Methods for Partial Differential Equations / Numerical Methods for Partial Differential Equations An International Journal, March 2011, no DOI: 10.1002/num.20671. [ DOI : 10.1002/num.20671 ]

    http://hal.inria.fr/inria-00537872/en
  • 16R. Becker, S. Mao.

    Quasi-optimality of adaptive non-conforming finite element methods for the Stokes equations, in: SIAM Journal on Numerical Analysis, 2011, vol. 49, no 3, p. 970-991.

    http://hal.inria.fr/hal-00645150/en
  • 17R. Becker, D. Trujillo.

    A remark on the optimality of adaptive finite element methods, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, 2011, vol. 349, p. 225-228.

    http://hal.inria.fr/hal-00645158/en
  • 18R. Becker, D. Trujillo.

    Concepts of the finite element library Concha, in: Monografias Matematicas Garcia de Galdeano, December 2011, vol. 35, p. 59-67.

    http://hal.inria.fr/hal-00649001/en
  • 19R. Becker, D. Trujillo, E. Estecahandy.

    Weighted marking for goal-oriented adaptive finite element methods, in: SIAM Journal on Numerical Analysis, 2011.

    http://hal.inria.fr/hal-00647356/en
  • 20D. Capatina, N. Barrau.

    Numerical simulation of anisothermal flows of Newtonian fluids, in: Monografias Matematicas Garcia de Galdeano, 2011, vol. 35, p. 37-46.

    http://hal.inria.fr/hal-00646561/en
  • 21M. Li, R. Becker, S. Mao.

    A remark on supercloseness and extrapolation of the quadrilateral han element for the stokes equations, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, 2011, vol. 349, no 17-18, p. 1017 - 1020.

    http://hal.inria.fr/hal-00645148/en
  • 22C. Xiong, Y. Li.

    A posteriori error estimators for optimal distributed control governed by the first-order linear hyperbolic equation: DG method, in: Numerical Methods for Partial Differential Equations, 2011, vol. 27, no 3, p. 491-506.

    http://hal.inria.fr/hal-00646952/en
  • 23C. Xiong, Y. Li.

    Error analysis for optimal control problem governed by convection diffusion equations: DG method, in: Journal of Computational and Applied Mathematics, 2011, vol. 235, no 10, p. 3163-3177.

    http://hal.inria.fr/hal-00646954/en

Invited Conferences

  • 24D. Capatina.

    A positivity preserving discontinuous Galerkin method with applications in polymer flows, in: Int. Conf. " Mathematical Fluid Mechanics and Biomedical Applications", Ponta Delgada, Portugal, November 2011.

    http://hal.inria.fr/hal-00646529/en
  • 25D. Capatina.

    Numerical analysis of a Riccati type matrix transport equation, in: 7th Workshop "Variational Multiscale Methods", Glasgow, United Kingdom, November 2011.

    http://hal.inria.fr/hal-00646527/en

International Conferences with Proceedings

  • 26R. Becker, D. Capatina, R. Luce.

    A posteriori error estimators based on H(div)- reconstruction for diffusion-convection-reaction equation, in: 9th Enumath, Leicester, United Kingdom, November 2011.

    http://hal.inria.fr/hal-00646537/en
  • 27R. Becker, K. Gokpi, É. Schall, D. Trujillo.

    A posteriori error estimators for grid adaptation with Galerkin discontinuous finite element method, in: 8th Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT), Pointe Aux Piments, Mauritius, November 2011.

    http://hal.inria.fr/hal-00646856/en
  • 28R. Becker, K. Gokpi, É. Schall, D. Trujillo.

    Comparison of two types of a posteriori error estimators on mesh adaptation in discontinuous Galerkin finite elements methods, in: 4th European Conference for Aerospace Sciences (EUCASS), St. Petersburg, Russian Federation, November 2011.

    http://hal.inria.fr/hal-00646853/en

Conferences without Proceedings

  • 29R. Becker.

    Adaptive Finite Element Methods for incompressible flow problems, in: 16th Int. Conf. on Finite Elements for Flow Problems, München, Germany, November 2011.

    http://hal.inria.fr/hal-00646745/en
  • 30R. Becker.

    Adaptive Finite Elements for sensitivity computations, in: Workshop on Discretization methods for fluid flows, Marseille, France, September 2011.

    http://hal.inria.fr/hal-00646746/en
  • 31R. Becker, D. Capatina.

    Numerical analysis of a matrix-valued transport equation with applications in non-Newtonian flows, in: 7th ICIAM, Vancouver, Canada, November 2011.

    http://hal.inria.fr/hal-00646530/en
  • 32R. Becker, D. Capatina, D. Graebling, J. Joie.

    Robust approximation of Giesekus flow by nonconforming finite elements, in: 16th Int. Conf. on Finite Elements for Flow Problems, Münich, Germany, November 2011.

    http://hal.inria.fr/hal-00646535/en
  • 33R. Becker, D. Capatina, R. Luce, D. Trujillo.

    A posteriori error estimation for sensitivity analysis in finite element methods, in: 11th US National Congress on Computational Mechanics, Minneapolis, United States, November 2011.

    http://hal.inria.fr/hal-00646533/en

Other Publications

References in notes
  • 36D. Arnold.

    An interior penalty finite element method with discontinuous elements, in: SIAM J. Numer. Anal., 1982, vol. 19, p. 742-760.
  • 37G. Baker.

    Finite element methods for elliptic equations using nonconforming elements, in: Math. Comp., 1977, vol. 31, p. 45-59.
  • 38N. Barrau, D. Capatina.

    Numerical simulation of anisothermal flows of Newtonian fluids, in: 11th International Conference Zaragoza-Pau on Applied Mathematics and Statistics, Espagne Jaca, 2010.

    http://hal.inria.fr/inria-00539640/en
  • 39F. Bassi, S. Rebay.

    High-order accurate discontinuous finite element solution of the 2D Euler equations, in: J. Comput. Phys., 1997, vol. 138, no 2, p. 251–285.
  • 40R. Becker, E. Burman, P. Hansbo.

    A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity, in: Comput. Methods Appl. Mech. Engrg., 2009, vol. 198, no 41-44, p. 3352-3360.

    http://hal.inria.fr/inria-00437190/en/
  • 41R. Becker, E. Burman, P. Hansbo.

    A hierarchical nxfem for fictitious domain simulations, in: Int. J. Numer. Meth. Engng, 2010, to appear.

    http://hal.inria.fr/inria-00539171/en
  • 42R. Becker, D. Capatina, D. Graebling, J. Joie.

    Nonconforming finite element discretization for the numerical simulation of polymer flows, in: Tenth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, Espagne Jaca, 2009.

    http://hal.inria.fr/inria-00438546/en/
  • 43R. Becker, P. Hansbo.

    A simple pressure stabilization method for the Stokes equation, in: Comm. Numer. Methods Eng., 2008, vol. 24, no 11, p. 1421-1430.
  • 44R. Becker, C. Johnson, R. Rannacher.

    Adaptive Error Control for Multigrid Finite Element Methods, in: Computing, 1995, vol. 55, p. 271-288.
  • 45R. Becker, S. Mao.

    An optimally convergent adaptive mixed finite element method, in: Numer. Math., 2008, vol. 111, no 1, p. 35-54.
  • 46R. Becker, S. Mao.

    Convergence and quasi-optimal complexity of a simple adaptive finite element method, in: M2AN, 2009, vol. 43, p. 1203–1219.

    http://dx.doi.org/10.1051/m2an/2009036
  • 47R. Becker, R. Rannacher.

    An optimal control approach to a posteriori error estimation in finite element methods, in: Acta Numer., 2001, vol. 10, p. 1–102.

    http://dx.doi.org/10.1017/S0962492901000010
  • 48R. Becker, R. Rannacher.

    Weighted a posteriori error control in FE methods, in: ENUMATH'97, H. G. Bock, et al. (editors), World Sci. Publ., Singapore, 1995.
  • 49R. Becker, S. Mao, Z. Shi.

    A convergent nonconforming adaptive finite element method with optimal complexity, in: SIAM Journal on Numerical Analysis, 2010, vol. 47, p. 4639–4659.

    http://hal.inria.fr/inria-00438541/en/
  • 50P. Binev, W. Dahmen, R. DeVore.

    Adaptive finite element methods with convergence rates., in: Numer. Math., 2004, vol. 97, no 2, p. 219-268.
  • 51S. Boyaval, T. Lelièvre, C. Mangoubi.

    Free-energy-dissipative schemes for the Oldroyd-B model, INRIA, 2008, no RR-6413.
  • 52M. Braack, E. Burman.

    Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method, in: SIAM J. Numer. Anal., 2006, vol. 43, no 6, p. 2544-2566.
  • 53D. Braess, R. Hoppe, J. Schoberl.

    A A posteriori estimators for obstacle problems by the hypercircle method, in: Comput. Vis. Sci., 2008, vol. 11, no 4-6, p. 351-362.
  • 54A. Brooks, T. Hughes.

    Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations., in: Comput. Methods Appl. Mech. Comput. Methods Appl. Mech. Engrg., 1982, vol. 32, p. 199-259.
  • 55E. Burman, M. A. Fernández.

    Galerkin finite element methods with symmetric pressure stabilization for the transient Stokes equations: stability and convergence analysis, in: SIAM J. Numer. Anal., 2008, vol. 47, no 1, p. 409–439.

    http://dx.doi.org/10.1137/070707403
  • 56E. Burman, P. Hansbo.

    Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems., in: Comput. Methods Appl. Mech. Engrg., 2004, vol. 193, no 15-16, p. 1437-1453.
  • 57H. Damanik, J. Hron, A. Ouazzi, S. Turek.

    A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems, in: Journal of Non-Newtonian Fluid Mechanics, 2010, vol. 165, 1105 p.
  • 58H.-S. Dou, N. Phan-Thien.

    The flow of an Oldroyd-B fluid past a cylinder in a channel: adaptive viscosity vorticity (DAVSS-ω) formulation, in: Journal of Non-Newtonian Fluid Mechanics, 1999, vol. 87, 47 p.
  • 59E. Dubach, R. Luce, J. Thomas.

    Pseudo-conform polynomial Lagrange finite elements on quadrilaterals and hexahedra., in: Comm. Pure Appl. Anal., 2009, vol. 8, p. 237-254.

    http://hal.inria.fr/inria-00438537/en/
  • 60E. Dubach, R. Luce, J. Thomas.

    Pseudo-conforming polynomial finite element on quadrilaterals, in: Int. J. Comput. Math., 2009, vol. 80, no 10-11, p. 1798-1816.

    http://hal.inria.fr/inria-00438536/en/
  • 61J.-L. Guermond.

    Stabilization of Galerkin approximations of transport equations by subgrid modeling, in: Modél. Math. Anal. Numér., 1999, vol. 33, no 6, p. 1293-1316.
  • 62A. Hansbo, P. Hansbo.

    An unfitted finite element method, based on Nitsche's method, for elliptic interface problems, in: Comp. Methods Appl. Mech. Engrg. in Applied Mechanics and Engineering, 2002, vol. 191, no 47-48, p. 537-5552.
  • 63A. Hansbo, P. Hansbo.

    A finite element method for the simulation of strong and weak discontinuities in solid mechanics., in: Comput. Methods Appl. Mech. Eng., 2004, vol. 193, no 33-35, p. 3523-3540.
  • 64D. Hu, T. Lelièvre.

    New entropy estimates for Oldroyd-B and related models, in: Commun. Math. Sci., 2007, vol. 5, no 4, p. 909–916.
  • 65M. A. Hulsen, R. Fattal, R. Kupferman.

    Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms, in: Journal of Non-Newtonian Fluid Mechanics, 2005, vol. 127, no 1, p. 27–39.

    http://www.sciencedirect.com/science/article/B6TGV-4G53W93-1/2/fe0f91e467f09e43fa76f6896404184b
  • 66C. Johnson, J. Pitkäranta.

    An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, in: Math. Comp., 1986, vol. 46, p. 1-26.
  • 67C. Johnson, A. Szepessy, P. Hansbo.

    On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws., in: Math. Comp., 1990, vol. 54, no 189, p. 107-129.
  • 68Y.-J. Lee, J. Xu.

    New formulations, positivity preserving discretizations and stability analysis for non-Newtonian flow models, Pennstate, 2004.
  • 69P. Lesaint, P. Raviart.

    On a finite element method for solving the Neutron transport equation, in: Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor (editor), Academic Press, New York, 1974.
  • 70F. J. Lim, W. R. Schowalter.

    Pseudo-spectral analysis of the stability of pressure-driven flow of a Giesekus fluid between parallel planes, in: Journal of Non-Newtonian Fluid Mechanics, 1987, vol. 26, 135 p.
  • 71P. Morin, R. H. Nochetto, K. G. Siebert.

    Data oscillation and convergence of adaptive FEM., in: SIAM J. Numer. Anal., 2000, vol. 38, no 2, p. 466-488.
  • 72R. G. Owens, T. N. Phillips.

    Computational Rheology, Imperial College Press, London, 2002.
  • 73L. M. Quinzani, R. C. Armstrong, R. A. Brown.

    Birefringence and laser-Doppler velocimetry (LDV) studies of viscoelastic flow through a planar contraction, in: Journal of Non-Newtonian Fluid Mechanics, 1994, vol. 52, 1 p.
  • 74M. Schäfer, S. Turek.

    Benchmark computations of laminar flow around a cylinder. (With support by F. Durst, E. Krause and R. Rannacher), in: Flow Simulation with High-Performance Computers II. DFG priority research program results 1993-1995, E. Hirschel (editor), Notes Numer. Fluid Mech., Vieweg, Wiesbaden, 1996, no 52, p. 547-566.
  • 75R. Stevenson.

    Optimality of a standard adaptive finite element method, in: Found. Comput. Math., 2007, vol. 7, no 2, p. 245-269.
  • 76J. Étienne, E. J. Hinch, J. Li.

    A Lagrangian–Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material, in: Journal of Non-Newtonian Fluid Mechanics, 2006, vol. 136, 157 p.