EN FR
EN FR
IPSO - 2011


Project Team Ipso


Application Domains
New Results
Contracts and Grants with Industry
Bibliography


Project Team Ipso


Application Domains
New Results
Contracts and Grants with Industry
Bibliography


Bibliography

Major publications by the team in recent years
  • 1G. Andreoiu, E. Faou.

    Complete asymptotics for shallow shells, in: Asymptotic analysis, 2001, vol. 25, p. 239-270.
  • 2A. Aubry, P. Chartier.

    On improving the convergence of Radau IIA methods when applied to index-2 DAEs, in: SIAM Journal on Numerical Analysis, 1998, vol. 35, no 4, p. 1347-1367.
  • 3A. Aubry, P. Chartier.

    Pseudo-symplectic Runge-Kutta methods, in: BIT, 1998, vol. 38, p. 439–461.
  • 4F. Castella.

    From the von Neumann equation to the Quantum Boltzmann equation in a deterministic framework, in: J. Stat. Phys., 2001, vol. 104–1/2, p. 387–447.
  • 5F. Castella.

    Propagation of space moments in the Vlasov-Poisson Equation and further results, in: Ann. I.H.P., Anal. NonLin., 1999, vol. 16–4, p. 503–533.
  • 6R. Chan, P. Chartier, A. Murua.

    Post-projected Runge-Kutta methods for index-2 differential-algebraic equations, in: Applied Numerical Mathematics, 2002, vol. 42, no 1-3, p. 77-94.
  • 7M. Dauge, I. Djurdjevic, E. Faou, A. Roessle.

    Eigenmode asymptotics in thin elastic plates, in: J. Math. Pures Appl., 1999, vol. 78, p. 925-954.
  • 8E. Faou.

    Elasticity on a thin shell: Formal series solution, in: Asymptotic analysis, 2002, vol. 31, p. 317-361.
Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journal

  • 10N. B. Abdallah, Y. Cai, F. Castella, F. Méhats.

    Second order averaging for the nonlinear Schrödinger equation with strong anisotropic potential, in: Kinet. Relat. Models, 2011, vol. 4, p. 831-856.
  • 11S. Albeverio, A. Debussche, L. Xu.

    Exponential mixing of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noises, in: Applied Mathematics and Optimization, 2011, to appear.
  • 12E. Anceaume, F. Castella, R. Ludinard, B. Sericola.

    Markov chains competing for transitions : applications to large-scale distributed systems, in: Methodology and Computing in Applied Probability, 2011, To appear.
  • 13S. Blanes, F. Casas, P. Chartier, A. Murua.

    Splitting methods with complex coefficients for some classes of evolution equations, in: Mathematics of Computation, 2011, To appear.
  • 14G. Caloz, M. Dauge, E. Faou, V. Péron.

    On the influence of the geometry on skin effect in electromagnetism, in: Computer Methods in Applied Mechanics and Engineering, 2011, vol. 200, no 9-12, p. 1053-1068. [ DOI : 10.1016/j.cma.2010.11.011 ]

    http://hal.inria.fr/hal-00503170/en
  • 15M. P. Calvo, P. Chartier, J. M. Sanz-Serna, A. Murua.

    Numerical stroboscopic averaging for ODEs and DAEs, in: Applied Numerical Mathematics, 2011, vol. 61, p. 1077-1095.
  • 16R. Carles, E. Faou.

    Energy cascades for NLS on the torus, in: Discr. Contin. Dyn. Syst., 2011, To appear.

    http://hal.inria.fr/hal-00528792/en
  • 17N. Champagnat, C. Chipot, E. Faou.

    Reconciling alternate methods for the determination of charge distributions: A probabilistic approach to high-dimensional least-squares approximations, in: J. Math. Chem., 2011, vol. 49, 296 p.

    http://hal.inria.fr/inria-00345411/en
  • 18N. Crouseilles, M. Lemou.

    An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, in: Kinetic Related Models, 2011, vol. 4, p. 441-477.
  • 19N. Crouseilles, M. Mehrenberger, F. Vecil.

    Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson, in: ESAIM proceeding, 2011, vol. 32, p. 211-230.

    http://dx.doi.org/10.1051/proc/2011022
  • 20N. Crouseilles, A. Ratnani, E. Sonnendrücker.

    An isogeometric analysis approach for the study of the gyrokinetic quasi-neutrality equation, in: Journal of Computational Physics, 2011, vol. 231, no 2, p. 373-393.
  • 21A. Crudu, A. Debussche, A. Muller, O. Radulescu.

    Convergence of stochastic gene networks to hybrid piecewise deterministic processes, in: Annals of Applied Proba., 2011, to appear.
  • 22A. Debussche.

    Weak approximation of stochastic partial differential equations: the nonlinear case, in: Math. of Comp., 2011, vol. 80, p. 89-117.
  • 23A. Debussche, N. Glatt-Holz, R. Temam.

    Local Martingale and Pathwise Solutions for an Abstract Fluids Model, in: Physica D, 2011, to appear.
  • 24A. Debussche, N. Glatt-Holz, R. Temam, M. Ziane.

    Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, in: Nonlinearity, 2011, to appear.
  • 25A. Debussche, L. Goudenège.

    Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections, in: SIAM Journal on Mathematical Analysis, 2011, vol. 43, 1473 p.
  • 26A. Debussche, M. Hogele, P. Imkeller.

    Asymptotic first exit times of the Chafee-Infante equation with small heavy tailed noise, in: Elect. Comm. Prob., 2011, vol. 16, p. 213-225.
  • 27A. Debussche, Y. Hu, G. Tessitore.

    Ergodic BSDEs under weak dissipative assumptions, in: Stoch. Proc; Appl., 2011, vol. 121, no 3, p. 407-426.
  • 28A. Debussche, Y. Tsustumi.

    1D quintic nonlinear equation with white noise dispersion, in: Journal de Math. Pures et Appl., 2011, vol. 96, p. 363-376.
  • 29A. Debussche, J. Vovelle.

    Diffusion limit for a stochastic kinetic problem, in: Communications on Pure and Applied Analysis, 2011, to appear.
  • 30E. Faou, B. Grébert.

    Hamiltonian interpolation of splitting approximations for nonlinear PDEs, in: Found. Comput. Math., 2011, vol. 11, p. 381–415.
  • 31P. Gérard, F. Méhats.

    The Schrödinger Poisson system on the sphere, in: SIAM J. Math. Anal., 2011, vol. 43, no 3, p. 1232-1268.
  • 32M. Lemou, F. Méhats.

    A boundary matching micro-macro decomposition for kinetic equations, in: C. R. Acad. Sci. Paris, 2011, vol. 349, p. 479-484.
  • 33M. Lemou, F. Méhats, P. Raphaël.

    Orbital stability of spherical galactic models, in: Inventiones Math., 2011, to appear, arXiv:1007.4095.
  • 34F. Méhats, O. Pinaud.

    A problem of moment realizability in quantum statistical physics, in: Kinet. Relat. Models, 2011, vol. 4, p. 1143-1158.

Scientific Books (or Scientific Book chapters)

  • 35M. P. Calvo, P. Chartier, J. M. Sanz-Serna, A. Murua.

    A stroboscopic numerical method for highly oscillatory problems, in: Numerical Analysis and Multiscale Computations, B. Engquist, O. Runborg, R. Tsai (editors), ASM Press, Washington DC, 2011, p. 73-87.
  • 36P. Chartier.

    Symmetric methods, in: Encyclopedia of Applied and Computational Mathematics, B. Engquist (editor), Springer, 2012, To appear.
  • 37E. Faou.

    Geometric numerical integration and Schrödinger equations, European Mathematical Society, 2011, To appear.

Books or Proceedings Editing

Internal Reports

Other Publications

  • 41E. Anceaume, F. Castella, B. Sericola.

    Analysis of a large number of Markov chains competing for transitions.
  • 42P. Chartier, J. M. Sanz-Serna, A. Murua.

    Higher-order averaging, formal series and numerical integration II: the quasi-periodic case.
  • 43N. Crouseilles, E. Faou.

    Approximate travelling wave solutions to the 2D Euler equation on the torus, 2011.

    http://hal.inria.fr/hal-00567426/en
  • 44N. Crouseilles, E. Faou, M. Mehrenberger.

    High order Runge-Kutta-Nyström splitting methods for the Vlasov-Poisson equation.

    http://hal.inria.fr/inria-00633934/en
  • 45N. Crouseilles, E. Frénod, S. Hirstoaga, A. Mouton.

    Two scale macro-micro decomposition of the Vlasov equation with a strong magnetic field, 2011.

    http://hal.inria.fr/hal-00638617_v2/
  • 46A. Debussche.

    Ergodicity results for the stochastic Navier-Stokes equations: an introduction, 2011, to appear.
  • 47A. Debussche, E. Faou.

    Weak backward error analysis for SDEs, 2011, to appear.
  • 48E. Faou, L. Gauckler, C. Lubich.

    Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus.

    http://hal.inria.fr/hal-00622240/en
  • 49E. Faou, B. Grébert.

    A Nekhoroshev type theorem for the nonlinear Schrödinger equation on the d-dimensional torus..

    http://hal.inria.fr/hal-00466803/en
References in notes
  • 50E. Hairer.

    Geometric integration of ordinary differential equations on manifolds, in: BIT, 2001, vol. 41, p. 996–1007.
  • 51E. Hairer, C. Lubich, G. Wanner.

    Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics 31, Springer, Berlin, 2006.
  • 52E. Hairer, G. Wanner.

    Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics 14, 2, Springer-Verlag, Berlin, 1996.
  • 53A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, A. Zanna.

    Lie-group methods, in: Acta Numerica, 2000, p. 215–365.
  • 54C. Lubich.

    A variational splitting integrator for quantum molecular dynamics, in: Appl. Numer. Math., 2004, vol. 48, p. 355–368.
  • 55C. Lubich.

    On variational approximations in quantum molecular dynamics, in: Math.   Comp., 2009, to appear.
  • 56F. A. Potra, W. C. Rheinboldt.

    On the numerical solution of Euler-Lagrange equations, in: Mech. Struct. & Mech., 1991, vol. 19, p. 1–18.
  • 57J. M. Sanz-Serna, M. P. Calvo.

    Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.