EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1A. Basiri, A. Enge, J.-C. Faugère, N. Gürel.

    The Arithmetic of Jacobian Groups of Superelliptic Cubics, in: Math. Comp., 2005, vol. 74, p. 389–410.

    http://hal.inria.fr/inria-00071967
  • 2J. Belding, R. Bröker, A. Enge, K. Lauter.

    Computing Hilbert class polynomials, in: Algorithmic number theory, Berlin, Lecture Notes in Comput. Sci., Springer, 2008, vol. 5011, p. 282–295.
  • 3A. Bostan, F. Morain, B. Salvy, É. Schost.

    Fast algorithms for computing isogenies between elliptic curves, in: Math. Comp., 2008, vol. 77, no 263, p. 1755–1778.

    http://dx.doi.org/10.1090/S0025-5718-08-02066-8
  • 4L. De Feo, É. Schost.

    Fast Arithmetics in Artin-Schreier towers, in: ISSAC 2009, 2009, p. 121-134.
  • 5A. Enge.

    The complexity of class polynomial computation via floating point approximations, in: Mathematics of Computation, 2008, vol. 78, p. 1089-1107.

    http://hal.inria.fr/inria-00001040/PDF/class.pdf
  • 6A. Enge, P. Gaudry.

    A general framework for subexponential discrete logarithm algorithms, in: Acta Arith., 2002, vol. CII, no 1, p. 83–103.
  • 7A. Enge, P. Gaudry.

    An L(1/3+ε) algorithm for the discrete logarithm problem for low degree curves, in: Advances in Cryptology — Eurocrypt 2007, Berlin, M. Naor (editor), Lecture Notes in Comput. Sci., Springer-Verlag, 2007, vol. 4515, p. 379–393.

    http://hal.inria.fr/inria-00135324
  • 8A. Enge, F. Morain.

    Comparing Invariants for Class Fields of Imaginary Quadratic Fields, in: Algorithmic Number Theory, C. Fieker, D. Kohel (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2002, vol. 2369, p. 252–266, 5th International Symposium, ANTS-V, Sydney, Australia, July 2002, Proceedings.
  • 9A. Enge, R. Schertz.

    Constructing elliptic curves over finite fields using double eta-quotients, in: Journal de Théorie des Nombres de Bordeaux, 2004, vol. 16, p. 555–568.

    http://jtnb.cedram.org/jtnb-bin/fitem?id=JTNB_2004__16_3_555_0
  • 10P. Mihăilescu, F. Morain, É. Schost.

    Computing the eigenvalue in the Schoof-Elkies-Atkin algorithm using Abelian lifts, in: ISSAC '07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation, New York, NY, USA, ACM Press, 2007, p. 285–292.

    http://hal.inria.fr/inria-00130142
  • 11F. Morain.

    La primalité en temps polynomial [d'après Adleman, Huang; Agrawal, Kayal, Saxena], in: Astérisque, 2004, no 294, p. Exp. No. 917, 205–230, Séminaire Bourbaki. Vol. 2002/2003.
  • 12F. Morain.

    Computing the cardinality of CM elliptic curves using torsion points, in: Journal de Théorie des Nombres de Bordeaux, 2007, vol. 19, no 3, p. 663–681.

    http://arxiv.org/ps/math.NT/0210173
  • 13F. Morain.

    Implementing the asymptotically fast version of the elliptic curve primality proving algorithm, in: Math. Comp., 2007, vol. 76, p. 493–505.
  • 14B. Smith.

    Isogenies and the discrete logarithm problem in Jacobians of genus 3 hyperelliptic curves, in: J. of Cryptology, 2009, vol. 22, no 4, p. 505-529.
Publications of the year

Articles in International Peer-Reviewed Journal

  • 15A. Couvreur.

    Construction of rational surfaces yielding good codes, in: Finite Fields and Their Applications, September 2011, vol. 17, no 5, p. 424-441. [ DOI : 10.1016/j.ffa.2011.02.007 ]

    http://hal.inria.fr/inria-00547454/en
  • 16A. Couvreur.

    Differential Approach for the Study of Duals of Algebraic-Geometric Codes on Surfaces, in: Journal de Théorie des Nombres de Bordeaux, January 2011, vol. 23, no 1, p. 95-120.

    http://hal.inria.fr/inria-00541894/en
  • 17A. Couvreur.

    Incidence structures from the blown-up plane and LDPC codes, in: IEEE Transactions on Information Theory, July 2011, vol. 57, no 7, p. 4401 - 4416, Ce travail a été partiellement financé par l'ANR-08-EMER-003, Projet COCQ. [ DOI : 10.1109/TIT.2011.2146490 ]

    http://hal.inria.fr/inria-00540023/en
  • 18L. De Feo.

    Fast algorithms for computing isogenies between ordinary elliptic curves in small characteristic, in: Journal of Number Theory, May 2011, vol. 131, no 5, p. 873-893. [ DOI : 10.1016/j.jnt.2010.07.003 ]

    http://hal.inria.fr/hal-00505798/en
  • 19C. Munuera, M. Barbier.

    Wet paper codes and the dual distance in steganography, in: Advances in mathematics of communications, November 2011.

    http://hal.inria.fr/inria-00584877/en
  • 20B. Smith.

    Families of explicitly isogenous Jacobians of variable-separated curves, in: LMS Journal of Computation and Mathematics, August 2011, vol. 14, p. 179-199. [ DOI : 10.1112/S1461157010000410 ]

    http://hal.inria.fr/inria-00516038/en
  • 21A. Zeh, C. Gentner, D. Augot.

    An Interpolation Procedure for List Decoding Reed–Solomon codes Based on Generalized Key Equations, in: IEEE Transactions on Information Theory, September 2011. [ DOI : 10.1109/TIT.2011.2162160 ]

    http://hal.inria.fr/inria-00633205/en

International Conferences with Proceedings

  • 22F. Armknecht, D. Augot, L. Perret, A.-R. Sadeghi.

    On constructing homomorphic encryption schemes from coding theory, in: IMA International Conference on Cryptography and Coding, Oxford, Royaume-Uni, L. Chen (editor), Springer, December 2011.

    http://hal.inria.fr/hal-00643774/en/
  • 23D. Augot, M. Barbier, A. Couvreur.

    List-Decoding of Binary Goppa Codes up to the Binary Johnson Bound, in: IEEE Information Theory Workshop, Paraty, Brésil, S. Amin, V. C. da Rocha Jr., S. I. R. Costa (editors), IEEE, October 2011.

    http://hal.inria.fr/hal-00643794/en/
  • 24D. Augot, M. Barbier, C. Fontaine.

    Ensuring message embedding in wet paper steganography, in: IMACC 2011, Oxford, United Kingdom, L. Chen (editor), Lecture Notes in Computer Science, November 2011.

    http://hal.inria.fr/hal-00639551/en
  • 25M. Barbier, P. S. L. M. Barreto.

    Key Reduction of McEliece's Cryptosystem Using List Decoding, in: International Symposium of Information Theory (ISIT), Saint-Peterburg, Russian Federation, A. Kuleshov, V. M. Blinovsky, A. Ephremides (editors), IEEE, August 2011, p. 2657-2661.

    http://hal.inria.fr/inria-00565343/en

Scientific Books (or Scientific Book chapters)

  • 27A. Guillevic, N. El Mrabet, S. Ionica.

    Efficient multiplication in finite field extensions of degree 5, in: Progress in Cryptology-Africacrypt 2011, Springer, June 2011, no 6737, p. 188-205.

    http://hal.inria.fr/inria-00609920/en

Internal Reports

Other Publications

  • 29M. Barbier, C. Chabot, G. Quintin.

    On Quasi-Cyclic Codes as a Generalization of Cyclic Codes, 2011, under submission.

    http://hal.inria.fr/inria-00615276/en
  • 30J. Berthomieu, G. Lecerf, G. Quintin.

    Polynomial root finding over local rings and application to error correcting codes, This work has been partly supported by the French ANR-09-JCJC-0098-01 MaGiX project, and by the Digiteo 2009-36HD grant of the Région Île-de-France..

    http://hal.inria.fr/hal-00642075/en/
  • 31B. Smith.

    Computing low-degree isogenies in genus 2 with the Dolgachev-Lehavi method.

    http://hal.inria.fr/inria-00632118/en
References in notes
  • 32L. M. Adleman, J. DeMarrais, M.-D. Huang.

    A Subexponential Algorithm for Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus Hyperelliptic Curves over Finite Fields, in: Algorithmic Number Theory, Berlin, L. M. Adleman, M.-D. Huang (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 1994, vol. 877, p. 28–40.
  • 33D. Bernstein.

    Proving primality in essentially quartic expected time, in: Math. Comp., 2007, vol. 76, p. 389–403.
  • 34A. Bostan, P. Gaudry, É. Schost.

    Linear recurrences with polynomial coefficients and computation of the Cartier-Manin operator on hyperelliptic curves, in: Finite Fields and Applications, 7th International Conference, Fq7, G. Mullen, A. Poli, H. Stichtenoth (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2004, vol. 2948, p. 40–58.

    http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/cartierFq7.ps.gz
  • 35S. Contini.

    Factoring integers with the self-initializing quadratic sieve, 1997.

    http://www.crypto-world.com/documents/contini_siqs.pdf
  • 36J.-M. Couveignes.

    Algebraic Groups and Discrete Logarithm, in: Public-Key Cryptography and Computational Number Theory, Berlin, K. Alster, J. Urbanowicz, H. C. Williams (editors), De Gruyter, 2001, p. 17–27.
  • 37J.-M. Couveignes.

    Quelques calculs en théorie des nombres, Université de Bordeaux I, July 1994.
  • 38J.-M. Couveignes.

    Computing l-isogenies using the p-torsion, in: Algorithmic Number Theory, H. Cohen (editor), Lecture Notes in Comput. Sci., Springer Verlag, 1996, vol. 1122, p. 59–65, Second International Symposium, ANTS-II, Talence, France, May 1996, Proceedings.
  • 39C. Diem.

    An Index Calculus Algorithm for Plane Curves of Small Degree, in: Algorithmic Number Theory — ANTS-VII, Berlin, F. Hess, S. Pauli, M. Pohst (editors), Lecture Notes in Computer Science, Springer-Verlag, 2006, vol. 4076, p. 543–557.
  • 40R. Dupont.

    Moyenne arithmético-géométrique, suites de Borchardt et applications, École polytechnique, 2006.
  • 41R. Dupont, A. Enge, F. Morain.

    Building curves with arbitrary small MOV degree over finite prime fields, in: J. of Cryptology, 2005, vol. 18, no 2, p. 79–89.

    http://hal.inria.fr/inria-00386299
  • 42A. Enge.

    A General Framework for Subexponential Discrete Logarithm Algorithms in Groups of Unknown Order, in: Finite Geometries, Dordrecht, A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel, J. A. Thas (editors), Developments in Mathematics, Kluwer Academic Publishers, 2001, vol. 3, p. 133–146.
  • 43A. Enge.

    Computing Discrete Logarithms in High-Genus Hyperelliptic Jacobians in Provably Subexponential Time, in: Math. Comp., 2002, vol. 71, no 238, p. 729–742.
  • 44A. Enge, F. Morain.

    Fast decomposition of polynomials with known Galois group, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, M. Fossorier, T. Høholdt, A. Poli (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2003, vol. 2643, p. 254–264, 15th International Symposium, AAECC-15, Toulouse, France, May 2003, Proceedings.
  • 45J. Franke, T. Kleinjung, F. Morain, T. Wirth.

    Proving the primality of very large numbers with fastECPP, in: Algorithmic Number Theory, D. Buell (editor), Lecture Notes in Comput. Sci., Springer-Verlag, 2004, vol. 3076, p. 194–207, 6th International Symposium, ANTS-VI, Burlington, VT, USA, June 2004, Proceedings.
  • 46P. Gaudry, N. Gürel.

    Counting points in medium characteristic using Kedlaya's algorithm, in: Experiment. Math., 2003, vol. 12, no 4, p. 395–402.

    http://www.expmath.org/expmath/volumes/12/12.html
  • 47P. Gaudry.

    An Algorithm for Solving the Discrete Log Problem on Hyperelliptic Curves, in: Advances in Cryptology — EUROCRYPT 2000, Berlin, B. Preneel (editor), Lecture Notes in Comput. Sci., Springer-Verlag, 2000, vol. 1807, p. 19–34.
  • 48P. Gaudry.

    A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2, in: Advances in Cryptology – ASIACRYPT 2002, Y. Zheng (editor), Lecture Notes in Comput. Sci., Springer–Verlag, 2002, vol. 2501, p. 311–327.
  • 49P. Gaudry, F. Morain.

    Fast algorithms for computing the eigenvalue in the Schoof-Elkies-Atkin algorithm, in: ISSAC '06: Proceedings of the 2006 international symposium on Symbolic and algebraic computation, New York, NY, USA, ACM Press, 2006, p. 109–115. [ DOI : 10.1145/1145768.1145791 ]

    http://hal.inria.fr/inria-00001009
  • 50P. Gaudry, É. Schost.

    Construction of Secure Random Curves of Genus 2 over Prime Fields, in: Advances in Cryptology – EUROCRYPT 2004, C. Cachin, J. Camenisch (editors), Lecture Notes in Comput. Sci., Springer-Verlag, 2004, vol. 3027, p. 239–256.

    http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/secureg2.ps.gz
  • 51P. Gaudry, É. Schost.

    Modular equations for hyperelliptic curves, in: Math. Comp., 2005, vol. 74, p. 429–454.

    http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/eqmod2.ps.gz
  • 52P. Gaudry, É. Schost.

    Genus 2 point counting over prime fields, 2011, To appear in J. Symb. Comput..
  • 53P. Gaudry, E. Thomé, N. Thériault, C. Diem.

    A double large prime variation for small genus hyperelliptic index calculus, in: Math. Comp., 2007, vol. 76, p. 475–492.

    http://www.loria.fr/~gaudry/publis/dbleLP.ps.gz
  • 54J. E. Gower, S. S. Wagstaff, Jr..

    Square form factorization, in: Math. Comp., 2008, vol. 77, p. 551–588.
  • 55V. Guruswami, M. Sudan.

    Improved decoding of Reed-Solomon and algebraic-geometry codes, in: IEEE Transactions on Information Theory, 1999, vol. 45, no 6, p. 1757–1767.
  • 56F. Hess.

    Computing Relations in Divisor Class Groups of Algebraic Curves over Finite Fields, 2004, Draft version.

    http://www.math.tu-berlin.de/~hess/personal/dlog.ps.gz
  • 57T. Høholdt, J. H. van Lint, R. Pellikaan.

    Algebraic geometry codes, in: Handbook of Coding Theory, Elsevier, 1998, vol. I, p. 871–961.
  • 58D. Jao, S. D. Miller, R. Venkatesan.

    Do All Elliptic Curves of the Same Order Have the Same Difficulty of Discrete Log?, in: ASIACRYPT, Lecture Notes in Comput. Sci., 2005, p. 21-40.
  • 59H. W. Jr. Lenstra, C. Pomerance.

    Primality testing with Gaussian periods, July 2005, Preliminary version.

    http://www.math.dartmouth.edu/~carlp/PDF/complexity072805.pdf
  • 60R. Lercier.

    Computing isogenies in F 2 n , in: Algorithmic Number Theory, H. Cohen (editor), Lecture Notes in Comput. Sci., Springer Verlag, 1996, vol. 1122, p. 197–212, Second International Symposium, ANTS-II, Talence, France, May 1996, Proceedings.
  • 61R. Lercier, F. Morain.

    Computing isogenies between elliptic curves over F p n using Couveignes's algorithm, in: Math. Comp., January 2000, vol. 69, no 229, p. 351–370.
  • 62J. McKee.

    Speeding Fermat's Factoring Method, in: Math. Comp., October 1999, vol. 68, no 228, p. 1729-1737.
  • 63F. Morain.

    Elliptic curves for primality proving, in: Encyclopedia of cryptography and security, H. C. A. van Tilborg (editor), Springer, 2005.
  • 64M. A. Morrison, J. Brillhart.

    A method of factoring and the factorization of F 7 , in: Math. Comp., January 1975, vol. 29, no 129, p. 183-205.
  • 65A. Rostovtsev, A. Stolbunov.

    Public-key cryptosystem based on isogenies, 2006, Cryptology ePrint Archive, Report 2006/145.

    http://eprint.iacr.org/
  • 66A. Sutherland.

    Computing Hilbert class polynomials with the CRT method, 2008, Talk at the 12th Workshop on Elliptic Curve Cryptography (ECC).

    http://www.hyperelliptic.org/tanja/conf/ECC08/slides/Andrew-V-Sutherland.pdf
  • 67E. Teske.

    An elliptic trapdoor system, in: J. of Cryptology, 2006, vol. 19, no 1, p. 115–133.