EN FR
EN FR


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 1A. Arbelaez.

    Learning During Search, Université Paris-Sud XI, Orsay - France, May 2011.
  • 2F. Teytaud.

    Introduction of Statistics in Optimization, Universite Paris-Sud XI, Orsay - France, December 2011.
  • 3O. Teytaud.

    Artificial Intelligence and Optimization with parallelism, Univeristé Paris-Sud, April 2011, Habilitation à Diriger des Recherches.

Articles in International Peer-Reviewed Journal

  • 4A. Auger, J. Bader, D. Brockhoff, E. Zitzler.

    Hypervolume-based Multiobjective Optimization: Theoretical Foundations and Practical Implications, in: Theoretical Computer Science, December 2011. [ DOI : 10.1016/j.tcs.2011.03.012 ]

    http://hal.inria.fr/inria-00638989/en
  • 5D. Auger, O. Teytaud.

    The Frontier of Decidability in Partially Observable Recursive Games, in: International Journal on Fundations of Computer Science, 2012, Accepted.
  • 6Z. Bouzarkouna, D. Y. Ding, A. Auger.

    Well Placement Optimization with the Covariance Matrix Adaptation Evolution Strategy and Meta-Models, in: Computational Geosciences, September 2011, p. 1-18.

    http://hal.inria.fr/hal-00628126/en
  • 7N. Bredeche, J.-M. Montanier, W. Liu, A. Winfield.

    Environment-driven Distributed Evolutionary Adaptation in a Population of Autonomous Robotic Agents, in: Mathematical and Computer Modelling of Dynamical Systems, 2011.

    http://hal.inria.fr/inria-00531450/en
  • 8A. Devert, N. Bredeche, M. Schoenauer.

    Robustness and the Halting Problem for Multi-Cellular Artificial Ontogeny, in: IEEE Transactions on Evolutionary Computation, 2011.

    http://hal.inria.fr/inria-00566879/en
  • 9T. Elteto, C. Germain-Renaud, P. Bondon, M. Sebag.

    Towards Non-Stationary Grid Models, in: Journal of Grid Computing, December 2011. [ DOI : 10.1007/s10723-011-9194-z ]

    http://hal.inria.fr/inria-00616279/en
  • 10G. Fouquier, J. Atif, I. Bloch.

    Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations, in: Computer Vision and Image Understanding, 2011, accepted, toappear.
  • 11N. Hansen, R. Ros, N. Mauny, M. Schoenauer, A. Auger.

    Impacts of Invariance in Search: When CMA-ES and PSO Face Ill-Conditioned and Non-Separable Problems, in: Applied Soft Computing, 2011, vol. 11, p. 5755-5769. [ DOI : 10.1016/j.asoc.2011.03.001 ]

    http://hal.inria.fr/inria-00583669/en

International Conferences with Proceedings

  • 12R. Akrour, M. Schoenauer, M. Sebag.

    Preference-Based Policy Learning, in: Machine Learning and Knowledge Discovery in Databases, D. Gunopulos, T. Hofmann, D. Malerba, M. Vazirgiannis (editors), LNCS, Springer Verlag, 2011, vol. 6911, p. 12-27.

    http://hal.inria.fr/inria-00625001/en
  • 13A. Arbelaez, Y. Hamadi.

    Improving Parallel Local Search for SAT, in: Learning and Intelligent Optimization, Fifth International Conference, LION 2011, Coello Coelle, Carlos A. (editor), LNCS 6683, Springer Verlag, 2011, p. 46-60.
  • 14J. Atif, C. Hudelot, I. Bloch.

    Abduction in Description Logics using Formal Concept Analysis and Mathematical Morphology: application to image interpretation, in: Concept Lattices and Applications (CLA2011), Nancy, Paris, October 2011, p. 405-408.
  • 15I. Atsonios, O. Beaumont, N. Hanusse, Y. Kim.

    On Power-Law Distributed Balls in Bins and its Applications to View Size Estimation, in: ISAAC, Yokohama, Japan, December 2011.

    http://hal.inria.fr/inria-00618785/en
  • 16A. Auger, D. Brockhoff, N. Hansen.

    Analyzing the Impact of Mirrored Sampling and Sequential Selection in Elitist Evolution Strategies, in: Foundations of Genetic Algorithms (FOGA 2011), Schwarzenberg, Austria, April 2011, p. 127-138. [ DOI : 10.1145/1967654.1967666 ]

    http://hal.inria.fr/inria-00587507/en
  • 17A. Auger, D. Brockhoff, N. Hansen.

    Mirrored Sampling in Evolution Strategies With Weighted Recombination, in: Genetic and Evolutionary Computation Conference (GECCO 2011), Dublin, Ireland, ACM, July 2011, p. 861-868. [ DOI : 10.1145/2001576.2001694 ]

    http://hal.inria.fr/inria-00612522/en
  • 18J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl.

    Algorithms for Hyper-Parameter Optimization, in: 25th Annual Conference on Neural Information Processing Systems (NIPS 2011), Granada, Spain, November 2011.

    http://hal.inria.fr/hal-00642998/en
  • 20Z. Bouzarkouna, D. Y. Ding, A. Auger.

    Partially Separated Meta-models with Evolution Strategies for Well Placement Optimization, in: 73rd EAGE Conference & Exhibition incorporating SPE EUROPEC, Vienne, Austria, May 2011.

    http://hal.inria.fr/hal-00588983/en
  • 21R. Busa-Fekete, B. Kégl, T. Elteto, G. Szarvas.

    A Robust Ranking Methodology based on Diverse Calibration of AdaBoost, in: European Conference on Machine Learning (ECML 2011), Athens, Greece, November 2011.

    http://hal.inria.fr/hal-00643000/en
  • 22R. Busa-Fekete, B. Kégl, T. Elteto, G. Szarvas.

    Ranking by calibrated AdaBoost, in: Yahoo! Learning to Rank Challenge, Haifa, Israel, June 2011.

    http://hal.inria.fr/hal-00643001/en
  • 23S. Chevallier, N. Bredeche, H. Paugam-Moisy, M. Sebag.

    Emergence of Temporal and Spatial Synchronous Behaviors in a Foraging Swarm, in: ECAL 2011, Paris, France, T. Lenaerts, M. Giacobini, H. Bersini, P. Bourgine, M. Dorigo, R. Doursat (editors), LCNS, Springer, August 2011, p. 125-132.
  • 24C.-W. Chou, P.-C. Chou, H. Doghmen, C.-S. Lee, T.-C. Su, F. Teytaud, O. Teytaud.

    Towards a solution of 7x7 Go with Meta-MCTS, in: Proc. Advances in Computer Games, 2011, Accepted.
  • 25P.-C. Chou, H. Doghmen, C.-S. Lee, F. Teytaud, O. Teytaud, H.-C. Wang, M.-H. Wang, S.-J. Yen, W.-L. Wu.

    Computational and Human Intelligence in Blind Go, in: Computational Intelligence and Games, Seoul, Korea, Democratic People'S Republic Of, September 2011.

    http://hal.inria.fr/inria-00625849/en
  • 26C.-W. Chou, O. Teytaud, S.-J. Yen.

    Revisiting Monte-Carlo Tree Search on a Normal Form Game: NoGo, in: EvoGames 2011, Turino, Italy, Lecture Notes in Computer Science, Springer-Verlag, April 2011, vol. 6624, p. 73-82. [ DOI : 10.1007/978-3-642-20525-5 ]

    http://hal.inria.fr/inria-00593154/en
  • 27R. Coulom, P. Rolet, N. Sokolovska, O. Teytaud.

    Handling Expensive Optimization with Large Noise, in: Foundations of Genetic Algorithms, Austria, ACM, January 2011, p. 61-68.

    http://hal.inria.fr/hal-00517157/en
  • 28A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, N. Bonnard.

    Continuous Upper Confidence Trees, in: LION'11: Proc. 5th International Conference on Learning and Intelligent OptimizatioN, Italy, LNCS 6683, Springer Verlag, January 2011, p. 433-445.

    http://hal.inria.fr/hal-00542673/en
  • 29A. Couëtoux, M. Milone, M. Brendel, H. Doghmen, M. Sebag, O. Teytaud.

    Continuous Rapid Action Value Estimates, in: The 3rd Asian Conference on Machine Learning (ACML2011), Taoyuan, Taiwan, Province Of China, C.-N. Hsu, W. S. Lee (editors), Workshop and Conference Proceedings, JMLR, 2011, vol. 20, p. 19-31.

    http://hal.inria.fr/hal-00642459/en
  • 30A. Couëtoux, M. Milone, O. Teytaud.

    Consistent Belief State Estimation, with Application to Mines, in: Proc. TAAI 2011, 2011.
  • 31A. Couëtoux, O. Teytaud, H. Doghmen.

    Improving exploration in Upper Confidence Trees, in: Proc. LION'6, Y. Hamadi, M. Schoenauer (editors), LNCS, Springer Verlag, 2012.
  • 32S. Cussat-Blanc, N. Bredeche, H. Luga, Y. Duthen, M. Schoenauer.

    Artificial Gene Regulatory Network and Spatial Computation: A Case Study, in: European Conference on Artificial Life, Paris, France, 2011.

    http://hal.inria.fr/inria-00601778/en
  • 33S. Cussat-Blanc, N. Bredeche, H. Luga, Y. Duthen, M. Schoenauer.

    Artificial Gene Regulatory Networks and Spatial Computation: A Case Study, in: ECAL, Paris, France, August 2011.

    http://hal.inria.fr/inria-00601816/en
  • 34Á. Fialho, Y. Hamadi, M. Schoenauer.

    Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency, in: GECCO 2011 Workshop on GreenIT Evolutionary Computation, Dublin, Ireland, July 2011.

    http://hal.inria.fr/inria-00591930/en
  • 35C. Furtlehner, Y. Han, J.-M. Lasgouttes, V. Martin, F. Moutarde.

    Propagation of information on undirected dependency graphs for road traffic inference, in: Chaos, Complexity and Transport, CCT'11, Marseille, France, 2011.

    http://hal.inria.fr/hal-00648681/en/
  • 36C. Furtlehner, J.-M. Lasgouttes, M. Samsonov.

    The Fundamental Diagram on the Ring Geometry for Particle Processes with Acceleration/Braking Asymmetry, in: Traffic and Granular Flow 2011, Moscou, Russie, Fédération De, 2011.

    http://hal.inria.fr/hal-00646988/en/
  • 37C. Germain-Renaud, A. Cady, P. Gauron, M. Jouvin, C. Loomis, J. Martyniak, J. Nauroy, G. Philippon, M. Sebag.

    The Grid Observatory, in: IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, Newport Beach, United States, IEEE Computer Society Press, May 2011.

    http://hal.inria.fr/inria-00586502/en
  • 38C. Germain-Renaud, F. Fürst, M. Jouvin, G. Kassel, J. Nauroy, G. Philippon.

    The Green Computing Observatory: a data curation approach for green IT, in: International Conference on Cloud and Green Computing, Sydney, Australia, December 2011.

    http://hal.inria.fr/inria-00632423/en
  • 39V. Heidrich-Meisner, C. Igel.

    Non-linearly increasing resampling in racing algorithms, in: European Symposium on Artificial Neural Networks, Bruges, Belgium, M. Verleysen (editor), Evere, Belgium: d-side publications, April 2011, p. 465-470.

    http://hal.inria.fr/inria-00633006/en
  • 40B. Helmstetter, C.-S. Lee, F. Teytaud, O. Teytaud, M.-H. Wang, S.-J. Yen.

    Random positions in Go, in: Computational Intelligence and Games, Seoul, Korea, Democratic People'S Republic Of, September 2011.

    http://hal.inria.fr/inria-00625815/en
  • 41J.-B. Hoock, O. Teytaud.

    Progress Rate in Noisy Genetic Programming for Choosing λ, in: Artificial Evolution, Angers, France, J.-K. Hao, et al. (editors), 2011.

    http://hal.inria.fr/inria-00622150/en
  • 42Y. Kim, C. Germain-Renaud.

    Characterizing E-Science File Access Behavior via Latent Dirichlet Allocation, in: 4th IEEE International Conference on Utility and Cloud Computing (UCC 2011), Melbourne, Australia, IEEE, December 2011.

    http://hal.inria.fr/inria-00617914/en
  • 43A. Kuno, J.-M. Montanier, S. Takano, N. Bredeche, M. Schoenauer, M. Sebag, E. Suzuki.

    On-board Evolutionary Algorithm and Off-line Rule Discovery for Column Formation in Swarm Robotics, in: IEEE/ACM/WIC International Conference on Intelligent Agent Technology, Lyon, France, 2011.

    http://hal.inria.fr/inria-00601785/en
  • 44Z. Lewkovicz, S. Thiriot, P. Caillou.

    How detailed should social networks be for labor market's models ?, in: SNAMAS@AISB 2011, York, United Kingdom, April 2011.

    http://hal.inria.fr/inria-00579620/en
  • 45I. Loshchilov, M. Schoenauer, M. Sebag.

    Adaptive Coordinate Descent, in: Genetic and Evolutionary Computation Conference (GECCO 2011), Dublin, Ireland, April 2011.

    http://hal.inria.fr/inria-00587534/en
  • 46I. Loshchilov, M. Schoenauer, M. Sebag.

    Not all parents are equal for MO-CMA-ES, in: Evolutionary Multi-Criterion Optimization 2011 (EMO 2011), Ouro Preto, Brazil, February 2011.

    http://hal.inria.fr/inria-00565282/en
  • 47D. Lupin Saint-Pierre, Q. Louveaux, O. Teytaud.

    Online Sparse Bandit for Card Games, in: Proc. Advances in Computer Games, 2011, Accepted.
  • 48D. Lupin Saint-Pierre, Q. Louveaux, O. Teytaud.

    Online Sparse Bandits, in: The 3rd Asian Conference on Machine Learning (ACML2011), Taoyuan, Taiwan, Province Of China, 2011.

    http://hal.inria.fr/hal-00642461/en
  • 49B. Matthias, M. Schoenauer.

    Instance-Based Parameter Tuning and Learning for Evolutionary AI Planning, in: Workshop on Planning and Learning at 21st ICAPS, Freiburg, Germany, June 2011.

    http://hal.inria.fr/inria-00632368/en
  • 50B. Matthias, M. Schoenauer.

    Instance-based parameter tuning for evolutionary AI planning, in: Workshops Proc. of Genetic and Evolutionary Computation Conference, Dublin, Ireland, ACM Press, July 2011, p. 591-599.

    http://hal.inria.fr/inria-00632375/en
  • 51B. Matthias, M. Schoenauer.

    Learn-and-Optimize: a Parameter Tuning Framework for Evolutionary AI Planning, in: Artificial Evolution, Angers, France, J.-K. Hao, et al. (editors), October 2011.

    http://hal.inria.fr/inria-00632378/en
  • 52J.-M. Montanier, N. Bredeche.

    Emergence of Altruism in Open-ended Evolution in a Population of Autonomous Agents, in: GECCO, Dublin, Ireland, 2011.

    http://hal.inria.fr/inria-00601791/en
  • 53J.-M. Montanier, N. Bredeche.

    Surviving the Tragedy of Commons: Emergence of Altruism in a Population of Evolving Autonomous Agents, in: European Conference on Artificial Life, Paris, France, 2011.

    http://hal.inria.fr/inria-00601776/en
  • 54J. Perez, B. Kégl, C. Germain-Renaud.

    Non-Markovian Reinforcement Learning for Reactive Grid scheduling, in: Conférence Francophone d'Apprentissage, Chambéry, France, Presses Universitaires des Antilles et de la Guyane (editor), Publibook, May 2011.

    http://hal.inria.fr/inria-00586504/en
  • 55S. Rebecchi, H. Paugam-Moisy, M. Sebag.

    Learning sparse features with an auto-associator, in: DevLeaNN, 2011.
  • 56A. Rimmel, F. Teytaud, T. Cazenave.

    Optimization of the Nested Monte-Carlo Algorithm on the Traveling Salesman Problem with Time Windows, in: Evostar, Turin, Italy, February 2011.

    http://hal.inria.fr/inria-00563668/en
  • 57T. Runarsson, M. Schoenauer, M. Sebag.

    Pilot, Rollout and Monte Carlo Tree Search Methods for Combinatorial Optimization, in: Proc. LION'6, Y. Hamadi, M. Schoenauer (editors), LNCS, Springer Verlag, 2012.
  • 58M. Schoenauer, F. Teytaud, O. Teytaud.

    A Rigorous Runtime Analysis for Quasi-Random Restarts and Decreasing Stepsize, in: Artificial Evolution, Angers, France, J.-K. Hao, et al. (editors), October 2011.

    http://hal.inria.fr/inria-00625855/en
  • 59N. Sokolovska.

    Aspects of Semi-Supervised and Active Learning in Conditional Random Fields, in: ECML PKDD 2011, Greece, September 2011, p. 273-288.

    http://hal.inria.fr/hal-00624831/en
  • 60N. Sokolovska, O. Teytaud, M. Milone.

    Q-Learning with Double Progressive Widening : Application to Robotics, in: ICONIP 2011, China, September 2011, p. 103-112.

    http://hal.inria.fr/hal-00624832/en
  • 61O. Teytaud, S. Flory.

    Upper Confidence Trees with Short Term Partial Information, in: EvoGames 2011, Turino, Italy, Lecture Notes in Computer Science, Springer, 2011, vol. 6624, p. 153-162. [ DOI : 10.1007/978-3-642-20525-5 ]

    http://hal.inria.fr/inria-00585475/en
  • 62O. Teytaud, M. Sebag.

    Combining Myopic Optimization and Tree Search: Application to MineSweeper, in: Proc. LION'6, Y. Hamadi, M. Schoenauer (editors), LNCS, Springer Verlag, 2012.
  • 63F. Teytaud, O. Teytaud.

    Lemmas on Partial Observation, with Application to Phantom Games, in: Computational Intelligence and Games, Seoul, Korea, Democratic People'S Republic Of, September 2011.

    http://hal.inria.fr/inria-00625794/en
  • 64S. Thiriot, Z. Lewkovicz, P. Caillou, J.-D. Kant.

    Referral hiring and labor markets: a computational study, in: Artificial Economics 2011, The Hague, Netherlands, S. Osinga, G. J. Hofstede, T. Verwaart (editors), LNEMS, Springer-Verlag, September 2011, vol. 652, p. 15-25.

    http://hal.inria.fr/inria-00579625/en
  • 65M. Yagoubi, L. Thobois, M. Schoenauer.

    Asynchronous Evolutionary Multi-Objective Algorithms with heterogeneous evaluation costs, in: IEEE Congress on Evolutionary Computation, CEC 2011, New Orleans, LA, United States, June 2011, p. 21-28.

    http://hal.inria.fr/hal-00625318/en

National Conferences with Proceeding

  • 66J. Atif, C. Hudelot, I. Bloch.

    Abduction dans les logiques de description : apport de l'analyse formelle de concepts et de la morphologie mathématique, in: Représentation et Raisonnement sur le Temps et l'Espace (Atelier RTE 2011), Chambery, France, May 2011, p. 405-408.
  • 67N. Galichet, M. Sebag.

    Exploration prudente: une approche par méthode de Monte-Carlo arborescente contrainte, in: Proc. Reconnaissance des Formes et Intelligence Artificielle, January 2012, to appear.
  • 68C. Germain-Renaud.

    Modèles comportementaux de la grille : enjeux et exemples, in: Premières journées scientifiques France-Grilles, Lyon, France, September 2011.

    http://hal.inria.fr/inria-00632438/en

Conferences without Proceedings

  • 69R. Bardenet, B. Kégl, G. Fort.

    Relabelling MCMC Algorithms in Bayesian Mixture Learning, in: Snowbird Learning Workshop, Fort Lauderdale, United States, April 2011.

    http://hal.inria.fr/in2p3-00590956/en
  • 70P. Caillou, E.-P. Gallié, V. Mérindol, T. Weil.

    Caractérisation et typologie du contexte initial des pôles, in: 7e congrés de l'Académie de l'entrepreneuriat et de l'innovation, Paris, France, October 2011.

    http://hal.inria.fr/hal-00653037/en/
  • 71A. Couëtoux, O. Teytaud, N. Bonnard, N. Omont, O. Ratier.

    Monte Carlo Tree Search appliqué à la gestion de stocks, in: ROADEF 2011, France, March 2011, p. N241, p.I-149.

    http://hal.inria.fr/hal-00623668/en
  • 72E.-P. Gallié, V. Mérindol, P. Caillou, T. Weil.

    Les pôles de compétitivité français en fonction de leur contexte initial d'émergence : essai de caractérisation, in: EvoReg 2011, Strasbourg, France, October 2011.

    http://hal.inria.fr/hal-00653036/en/
  • 73X. Zhou, P. Caillou, J. Gil-Quijano.

    Automated observation of complex systems simulations, in: V2CS 2011, Paris, France, November 2011.

    http://hal.inria.fr/hal-00644639/en

Scientific Books (or Scientific Book chapters)

  • 74A. Arbelaez, Y. Hamadi, M. Sebag.

    Continuous Search in Constraint Programming, in: Autonomous Search, Y. Hamadi, E. Monfroy, F. Saubion (editors), Springer-Verlag, 2011.
  • 75S. Doncieux, N. Bredeche, J.-B. Mouret.

    New Horizons in Evolutionary Robotics, Springer, 2011.

    http://hal.inria.fr/inria-00566890/en
  • 76S. Doncieux, J.-B. Mouret, N. Bredeche, V. Padois.

    Evolutionary Robotics: Exploring New Horizons, in: New Horizons in Evolutionary Robotics, Studies in Computational Intelligence, Springer, 2011, p. 3-25.

    http://hal.inria.fr/inria-00566896/en
  • 77J.-K. Hao, P. Legrand, P. Collet, N. Monmarché, E. Lutton, M. Schoenauer.

    Artificial Evolution 2011, LNCS, Springer Verlag, 2012, To appear.

    http://hal.inria.fr/hal-00643404/en
  • 78J.-M. Montanier, N. Bredeche.

    Embedded Evolutionary Robotics: The (1+1)-Restart-Online Adaptation Algorithm, in: New Horizons in Evolutionary Robotics, Studies in Computational Intelligence, Springer, 2011, p. 155-169.

    http://hal.inria.fr/inria-00566898/en
  • 79O. Teytaud.

    Lower Bounds for Evolution Strategies, in: Theory of Randomized Search Heuristics, A. Auger, B. Doerr (editors), Series on Theoretical Computer Science, World Scientific, May 2011, vol. 1, p. 327-354.

    http://hal.inria.fr/inria-00593179/en

Internal Reports

Other Publications

  • 84R. Akrour, M. Schoenauer, M. Sebag.

    Preference-based Reinforcement Learning, 2011, NIPS Workshop on Choice Models and Preference Learning.
  • 85L. Arnold, A. Auger, N. Hansen, Y. Ollivier.

    Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles, 2011, submitted.

    http://hal.inria.fr/hal-00601503/en
  • 86D. Auger.

    Multiple Tree for Partially Observable Monte-Carlo Tree Search, 2011, submitted.

    http://hal.inria.fr/hal-00563480/en
  • 87E. Descamps, C. Furtlehner, M. Schoenauer.

    , 2011, Work in progress.
  • 88C. Furtlehner, J.-M. Lasgouttes, M. Samsonov.

    One-dimensional Particle Processes with Acceleration/Braking Asymmetry, 2011, arXiv:1109.1761, submitted to J. Stat. Phys..
  • 89V. Martin, C. Furtlehner, J.-M. Lasgouttes.

    Encoding Dependencies between real-valued observables with a binary latent MRF, 2011, submitted to AISTAT.
References in notes
  • 90C. Candan, J. Dréo, P. Savéant, V. Vidal.

    Parallel Divide-and-Evolve: Experiments with OpenMP on a Multicore Machine, in: Proc. GECCO, N. Kranogor (editor), ACM Press, 2011, p. 1571-1579.
  • 91S. Chevallier, H. Paugam-Moisy, M. Sebag.

    SpikeAnts: a spiking neuron network modelling the emergence of organization in a complex system, in: Advances in Neural Information Processing Systems 23, Vancouver, December 2010, p. 114-119.
  • 92B. Frey, D. Dueck.

    Clustering by passing messages between data points, in: Science, 2007, vol. 315, p. 972–976.
  • 93J.-B. Hoock, C.-S. Lee, A. Rimmel, F. Teytaud, O. Teytaud, M.-H. Wang.

    Intelligent Agents for the Game of Go, in: IEEE Computational Intelligence Magazine, November 2010.

    http://hal.inria.fr/inria-00544758/en/
  • 94J. O. Kephart, D. M. Chess.

    The vision of autonomic computing, in: Computer, 2003, vol. 36, p. 41-50.
  • 95C.-S. Lee, M.-H. Wang, O. Teytaud, Y.-L. Wang.

    The Game of Go @ IEEE WCCI 2010, in: IEEE Computational Intelligence Magazine, 2010, vol. 5, no 4, p. 6-7. [ DOI : 10.1109/MCI.2010.938371 ]

    http://hal.inria.fr/inria-00632302/en/
  • 96K. Li, Á. Fialho, S. Kwong.

    Multi-Objective Differential Evolution with Adaptive Control of Parameters and Operators, in: LION'11: Proceedings of the 5th International Conference on Learning and Intelligent OptimizatioN, C. A. Coello Coello (editor), LNCS 6683, Springer Verlag, January 2011, p. 473-4887.
  • 97G. Moore.

    Crossing the Chasm: Marketing and Selling High-Tech Products to Mainstream Customer, Collins Business Essentials, 1991.
  • 98I. Rechenberg.

    Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution, Fromman-Hozlboog Verlag, 1973.
  • 99I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik, K. Hernandez.

    daptive diagnosis in distributed dystems, in: IEEE Transactions on Neural Networks (special issue on Adaptive Learning Systems in Communication Networks), 2005, vol. 16, p. 1088-1109.