Bibliography
Major publications by the team in recent years
-
1F. Assous, P. Ciarlet, S. Labrunie, J. Segré.
Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method, in: J. Comput. Phys., 2003, vol. 191, no 1, p. 147–176.
http://dx. doi. org/ 10. 1016/ S0021-9991(03)00309-7 -
2N. Besse, M. Mehrenberger.
Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov Poisson system, in: Math. Comp., 2005, vol. 77, p. 93–123.
http://www. ams. org/ journals/ mcom/ 2008-77-261/ S0025-5718-07-01912-6/ home. html -
3M. Campos Pinto, M. Mehrenberger.
Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system, in: Numer. Math., 2008, vol. 108, no 3, p. 407-444.
http://hal. archives-ouvertes. fr/ inria-00070487/ en/ -
4J. A. Carrillo, S. Labrunie.
Global Solutions for the One-Dimensional Vlasov-Maxwell System for Laser-Plasma Interaction, in: Math. Models Methodes Appl. Sci., 2006, vol. 16, p. 19–57.
http://dx. doi. org/ 10. 1142/ S0218202506001042 -
5N. Crouseilles, M. Mehrenberger, E. Sonnendrücker.
Conservative semi-Lagrangian schemes for the Vlasov equation, in: J. Comput. Phys., 2010, vol. 229, p. 1927-1953.
http://dx. doi. org/ 10. 1006/ jcph. 2001. 6818 -
6F. Filbet, E. Sonnendrücker, P. Bertrand.
Conservative numerical schemes for the Vlasov equation, in: J. Comput. Phys., 2001, vol. 172, no 1, p. 166–187.
http://dx. doi. org/ 10. 1006/ jcph. 2001. 6818 -
7F. Filbet, E. Sonnendrücker.
Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, in: Math. Models Methods Appl. Sci., 2006, vol. 16, no 5, p. 763–791.
http://hal. archives-ouvertes. fr/ inria-00070460/ en/ -
8E. Frénod, E. Sonnendrücker.
The finite Larmor radius approximation, in: SIAM J. Math. Anal., 2001, vol. 32, no 6, p. 1227–1247.
http://hal. archives-ouvertes. fr/ inria-00072809/ en/ -
9V. Grandgirard, Y. Sarazin, P. Angelino, A. Bottino, N. Crouseilles, G. Darmet, G. Dif-Pradalier, X. Garbet, P. Ghendrih, S. Jolliet, G. Latu, E. Sonnendrücker, L. Villard.
Global full-f gyrokinetic simulations of plasma turbulence, in: Plasma Physics and Controlled Fusion, 2007, vol. 49, no 12B, p. B173-B182.
http://stacks. iop. org/ 0741-3335/ 49/ B173 -
10E. Sonnendrücker, J. R. Roche, P. Bertrand, A. Ghizzo.
The semi-Lagrangian method for the numerical resolution of the Vlasov equation, in: J. Comput. Phys., 1999, vol. 149, no 2, p. 201–220.
http://hal. archives-ouvertes. fr/ inria-00073296/ en/
Doctoral Dissertations and Habilitation Theses
-
11A. Crestetto.
Optimisation de méthodes numériques pour la physique des plasmas. Application aux faisceaux de particules chargées., Université de Strasbourg, October 2012.
http://hal. inria. fr/ tel-00735569 -
12M. Mehrenberger.
Inegalites d'Ingham et schemas semi-lagrangiens pour l'equation de Vlasov, Université de Strasbourg, October 2012, Habilitation à Diriger des Recherches.
http://hal. inria. fr/ tel-00735678
Articles in International Peer-Reviewed Journals
-
13R. Abdelkhalek, H. Calandra, O. Coulaud, G. Latu, J. Roman.
Fast seismic modeling and reverse time migration on a graphics processing unit cluster, in: Concurrency and Computation: Practice and Experience, 2012, vol. 24, no 7, p. 739-750. [ DOI : 10.1002/cpe.1875 ]
http://hal. inria. fr/ hal-00653499 -
14M. Bergot, M. Durufle.
Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra, in: Communications in Computational Physics, 2012, submitted p, submitted.
http://hal. inria. fr/ hal-00723472 -
15N. Besse.
Global weak solutions for the relativistic waterbag continuum, in: Mathematical Models and Methods in Applied Sciences, 2012, vol. 22, 1150001 p, 43 pages.
http://hal. inria. fr/ hal-00594881 -
16M. Bostan, C. Caldini Queiros.
Approximation de rayon de Larmor fini pour les plasmas magnétisés collisionnels. Finite Larmor radius approximation for collisional magnetized plasmas, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, October 2012.
http://hal. inria. fr/ hal-00759816 -
17J.-P. Braeunig, N. Crouseilles, M. Mehrenberger, E. Sonnendrücker.
Guiding-center simulations on curvilinear meshes, in: Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 2012, vol. 5, no 2, p. 271-282. [ DOI : 10.3934/dcdss.2012.5.271 ]
http://hal. inria. fr/ hal-00687099 -
18A. Canelas, J. R. Roche, J. Herskovits.
Shape optimization for inverse electromagnetic casting problems, in: Inverse Problems in Science and Engineering, 2012, vol. 20, no 7, p. 951-972. [ DOI : 10.1080/17415977.2011.637206 ]
http://hal. inria. fr/ hal-00758801 -
19A. Crestetto, N. Crouseilles, M. Lemou.
Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles, in: Kinetic Related Models, 2013.
http://hal. inria. fr/ hal-00728875 -
20N. Crouseilles, E. Frénod, S. Hirstoaga, A. Mouton.
Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field, in: Mathematical Models and Methods in Applied Sciences, November 2012, vol. 00, no 00, p. 1 –2.
http://hal. inria. fr/ hal-00638617 -
21N. Crouseilles, A. Ratnani, E. Sonnendrücker.
An Isogeometric Analysis Approach for the study of the gyrokinetic quasi-neutrality equation, in: Journal of Computational Physics, January 2012, vol. 231, no 2, p. 373-393. [ DOI : 10.1016/j.jcp.2011.09.004 ]
http://hal. inria. fr/ inria-00584672 -
22E. Havlickova, W. Fundamenski, D. Tskhakaya, G. Manfredi, D. Moulton.
Comparison of fluid and kinetic models of target energy fluxes during edge localized modes, in: Plasma Phys. Control. Fusion, 2012, vol. 54, 045002 p. -
23S. Jund, S. Salmon, E. Sonnendrücker.
High order low dissipation conforming finite-element discretization of the Maxwell equations, in: Commun. Comput. Phys, 2012, vol. 11, no 3. -
24D. Moulton, W. Fundamenski, G. Manfredi, S. Hirstoaga, D. Tskhakaya.
Comparison of Free-Streaming ELM Formulae to a Vlasov Simulation, in: Journal of Nuclear Materials, 2012.
Invited Conferences
-
25M. Mehrenberger, M. Bergot, V. Grandgirard, G. Latu, H. Sellama, E. Sonnendrücker.
Conservative Semi-Lagrangian solvers on mapped meshes, in: ICOPS International Conference on Plasma Science, Edinburgh, United Kingdom, December 2012.
http://hal. inria. fr/ hal-00759823
International Conferences with Proceedings
-
26J.-P. Braeunig, N. Crouseilles, M. Mehrenberger, E. Sonnendrücker.
Guiding-center simulations on curvilinear meshes using semi-Lagrangian conservative methods, in: Numerical Models for Controlled Fusion, Porquerolles, France, April 2012, vol. 5, p. 271-282.
http://hal. inria. fr/ hal-00605870
Internal Reports
-
27G. Latu, M. Becoulet, G. Dif-Pradalier, V. Grandgirard, M. Hoelzl, G. Huysmans, X. Lacoste, E. Nardon, F. Orain, C. Passeron, P. Ramet, A. Ratnani.
Non regression testing for the JOREK code, Inria, November 2012, no RR-8134, 17 p.
http://hal. inria. fr/ hal-00752270 -
28G. Latu, V. Grandgirard, J. Abiteboul, M. Bergot, N. Crouseilles, X. Garbet, P. Ghendrih, M. Mehrenberger, Y. Sarazin, H. Sellama, E. Sonnendrücker, D. Zarzoso.
Accuracy of unperturbed motion of particles in a gyrokinetic semi-Lagrangian code, Inria, September 2012, no RR-8054, 17 p.
http://hal. inria. fr/ hal-00727118
Other Publications
-
29M. Aroztegui, J. Herskovits, J. R. Roche.
A feasible direction interior point algorithm for nonlinear semidefinite programming, 2012.
http://hal. inria. fr/ hal-00758803 -
30H. Berninger, E. Frénod, M. Gander, M. Liebendörfer, J. Michaud.
Derivation of the Isotropic Diffusion Source Approximation (IDSA) for Supernova Neutrino Transport by Asymptotic Expansions, 2012.
http://hal. inria. fr/ hal-00762621 -
31H. Berninger, E. Frénod, M. Gander, M. Liebendörfer, J. Michaud, N. Vasset.
A Mathematical Description of the IDSA for Supernova Neutrino transport, its discretization and a comparison with a finite volume scheme for Boltzmann's Equation, 2012.
http://hal. inria. fr/ hal-00758569 -
32N. Besse.
Lagrangian averaged gyrowaterbag continuum, 2012, preprint, submitted.
http://hal. archives-ouvertes. fr/ hal-00764910 -
33N. Besse, D. Coulette.
Asymptotic analysis of the eigenvalue problem for the gyrowaterbag operator in toroidal geometry, 2012, preprint, submitted.
http://hal. archives-ouvertes. fr/ hal-00764907 -
34M. Bostan, C. Caldini Queiros.
Finite Larmor radius approximation for the Fokker-Planck-Landau equation, 2012, 62 pages.
http://hal. inria. fr/ hal-00760499 -
35A. Canelas, J. R. Roche.
Topology Optimization in Electromagnetic Casting via quadratic programming, 2012.
http://hal. inria. fr/ hal-00758806 -
36D. Coulette, N. Besse.
Numerical comparisons of gyro-kinetic multi-water-bag models, 2012, preprint, submitted.
http://hal. archives-ouvertes. fr/ hal-00764904 -
37A. Crestetto, P. Helluy.
Resolution of the Vlasov-Maxwell system by PIC Discontinuous Galerkin method on GPU with OpenCL, 2012.
http://hal. inria. fr/ hal-00731021 -
38A. Crestetto, P. Helluy, J. Jung.
Numerical resolution of conservation laws with OpenCL, 2012.
http://hal. inria. fr/ hal-00759131 -
39N. Crouseilles, P. Glanc, M. Mehrenberger, C. Steiner.
Finite Volume Schemes for Vlasov, 2012.
http://hal. inria. fr/ hal-00653038 -
40N. Crouseilles, M. Mehrenberger, F. Vecil.
A Discontinuous Galerkin semi-Lagrangian solver for the guiding-center problem, 2012.
http://hal. inria. fr/ hal-00717155 -
41E. Frénod, M. Gutnic, S. Hirstoaga.
First order Two-Scale Particle-in-Cell numerical method for Vlasov equation, 2012, To appear in ESAIM Proc..
http://hal. inria. fr/ hal-00654928 -
42P. Helluy, J. Jung.
OpenCL numerical simulations of two-fluid compressible flows with a 2D random choice method, 2012.
http://hal. inria. fr/ hal-00759135 -
43F. Karami, S. Labrunie, B. Pinçon.
Singularities of the Stationary Solutions to the Vlasov-Poisson System in a Polygon, 2012.
http://hal. inria. fr/ hal-00501842 -
44E. Madaule.
Résolution numérique du modèle centre guide en coordonnées polaires, October 2012.
http://hal. inria. fr/ hal-00759824
-
45F. Assous, P. Ciarlet, S. Labrunie.
Theoretical tools to solve the axisymmetric Maxwell equations, in: Math. Meth. Appl. Sci., 2002, vol. 25, p. 49–78. -
46F. Assous, P. Ciarlet, S. Labrunie.
Solution of axisymmetric Maxwell equations, in: Math. Meth. Appl. Sci., 2003, vol. 26, p. 861–896. -
47F. Assous, P. Ciarlet, S. Labrunie, J. Segré.
Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The Singular Complement Method, in: J. Comp. Phys., 2003, vol. 191, p. 147–176. -
48F. Assous, P. Ciarlet, J. Segré.
Numerical solution to the time dependent Maxwell equations in two dimensional singular domains: the Singular Complement Method, in: J. Comput. Phys., 2000, vol. 161, p. 218–249. -
49F. Assous, P. Ciarlet, E. Sonnendrücker.
Resolution of the Maxwell equations in a domain with reentrant corners, in: M 2 AN, 1998, vol. 32, p. 359–389. -
50C. Bandle.
Asymptotic behavior of large solutions of elliptic equations, in: Annals of University of Craiova, Math. Comp. Sci. Ser., 2005, vol. 32, p. 1–8. -
51C. Bardos, P. Degond.
Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 1985, vol. 2, no 2, p. 101–118. -
52S. Benachour, F. Filbet, P. Laurençot, E. Sonnendrücker.
Global existence for the Vlasov-Darwin system in for small initial data, in: Math. Methods Appl. Sci., 2003, vol. 26, no 4, p. 297–319. -
53M. Bennoune, M. Lemou, L. Mieussens.
Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics, in: Journal of Computational Physics, 2008, vol. 227, no 8, p. 3781 - 3803. [ DOI : 10.1016/j.jcp.2007.11.032 ]
http://www. sciencedirect. com/ science/ article/ pii/ S0021999107005268 -
54C. Bernardi, M. Dauge, Y. Maday.
Spectral methods for axisymmetric domains, Series in Applied Mathematics, Gauthier-Villars, Paris and North Holland, Amsterdam, 1999. -
55N. Besse, P. Bertrand.
Gyro-water-bag approach in nonlinear gyrokinetic turbulence, in: J. Comput. Phys., 2009, vol. 228, no 11, p. 3973–3995.
http://dx. doi. org/ 10. 1016/ j. jcp. 2009. 02. 025 -
56C. Birdsall, A. Langdon.
Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985. -
57Y. Brenier.
Convergence of the Vlasov-Poisson system to the incompressible Euler equations, in: Comm. Partial Differential Equations, 2000, vol. 25, no 3-4, p. 737–754. -
58P. Ciarlet, N. Filonov, S. Labrunie.
Un résultat de fermeture pour les équations de Maxwell en géométrie axisymétrique, in: C. R. Acad. Sci. Paris série I, 2000, vol. 331, p. 293–298. -
59R. DiPerna, P.-L. Lions.
Global weak solutions of the Vlasov-Maxwell systems, in: Comm. Pure. Appl. Math., 1989, vol. XLII, p. 729–757. -
60B. Eliasson.
Outflow boundary conditions for the Fourier transformed one-dimensional Vlasov-Poisson system, in: Journal of Scientific Computing, 2001, vol. 16, no 1, p. 1–28. -
61B. Eliasson.
Numerical modelling of the two-dimensional fourier transformed vlasov-maxwell system, in: J. Comput. Phys., 2003, vol. 190, no 2, p. 501–522. -
62B. Eliasson.
Numerical simulations of the fourier-transformed vlasov- maxwell system in higher dimensions—theory and applications., in: Transport Theory and Statistical Physics, 2010, vol. 39, p. 387–465. -
63F. Filbet, E. Sonnendrücker, P. Bertrand.
Conservative numerical schemes for the Vlasov equation, in: J. Comput. Phys., 2001, vol. 172, no 1, p. 166–187. -
64I. Foster, C. Kesselman.
The Grid, blueprint for a new computing infrastructure, Morgan Kaufmann Publishers, Inc., 1998. -
65E. Frénod, E. Sonnendrücker.
Long time behavior of the Vlasov equation with a strong external magnetic field, in: Math. Models Methods Appl. Sci., 2000, vol. 10, no 4, p. 539–553. -
66E. Frénod, E. Sonnendrücker.
The finite Larmor radius approximation, in: SIAM J. Math. Anal., 2001, vol. 32, no 6, p. 1227–1247. -
67E. Frénod, E. Sonnendrücker.
Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, in: Asymptot. Anal., 1998, vol. 18, no 3-4, p. 193–213. -
68E. Frénod, F. Salvarani, E. Sonnendrücker.
Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, in: Mathematical Models and Methods in Applied Sciences, 2009, vol. 19, no 2, p. 175-197, ACM 82D10 35B27 76X05.
http://hal. archives-ouvertes. fr/ hal-00180700/ en/ -
69W. Fundamenski, R. A. Pitts, J. E. Contributors.
A model of ELM filament energy evolution due to parallel losses, in: Plasma Phys. Control. Fus., 2006, vol. 48, no 1, 109 p. -
70E. Garcia, S. Labrunie.
Régularité spatio-temporelle de la solution des équations de Maxwell dans des domaines non-convexes, in: C. R. Acad. Sci. Paris, série I, 2002, vol. 334, p. 293–298. -
71R. T. Glassey.
The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996, xii+241 p. -
72F. Golse, L. Saint-Raymond.
The Vlasov-Poisson system with strong magnetic field in quasineutral regime, in: Math. Models Methods Appl. Sci., 2003, vol. 13, no 5, p. 661–714. -
73M. Griebel, G. Zumbusch.
Hash based adaptive parallel multilevel methods with space-filling curves, 2000. -
74E. Horst, R. Hunze.
Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, in: Math. Methods Appl. Sci., 1984, vol. 6, no 2, p. 262–279. -
75R. G. Littlejohn.
A guiding center Hamiltonian: A new approach., in: J. Math. Phys., 1979, vol. 20, no 12, p. 2445–2458. -
76R. G. Littlejohn.
Hamiltonian formulation of guiding center motion, in: Physics of Fluids, 1981, vol. 24, no 9, p. 1730–1749. -
77R. G. Littlejohn.
Hamiltonian perturbation theory in noncanonical coordinates, in: J. Math. Phys., 1982, vol. 23, no 5, p. 742–747. -
78G. Manfredi, S. Hirstoaga, S. Devaux.
Vlasov modelling of parallel transport in a tokamak scrape-off layer, in: Plasma Phys. Control. Fus., 2011, vol. 53, no 1, 015012 p. -
79M. Parashar, J. C. Browne, C. Edwards, K. Klimkowski.
A common data management infrastructure for adaptive algorithms for PDE solutions, 1997. -
80L. Saint-Raymond.
The gyrokinetic approximation for the Vlasov-Poisson system, in: Math. Models Methods Appl. Sci., 2000, vol. 10, no 9, p. 1305–1332. -
81E. Violard.
A Semantic Framework To Adress Data Locality in Data Parallel Programs, in: Parallel Computing, 2004, vol. 30, no 1, p. 139–161.