EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1U. Boscain, G. Charlot, M. Sigalotti.

    Stability of planar nonlinear switched systems, in: Discrete Contin. Dyn. Syst., 2006, vol. 15, no 2, p. 415–432.
  • 2C. Hazard, K. Ramdani.

    Selective acoustic focusing using time-harmonic reversal mirrors, in: SIAM J. Appl. Math., 2004, vol. 64, no 3, p. 1057–1076.
  • 3A. Henrot.

    Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006, x+202 p.
  • 4A. Munnier, E. Zuazua.

    Large time behavior for a simplified N-dimensional model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2005, vol. 30, no 1-3, p. 377–417.
  • 5K. Ramdani, T. Takahashi, G. Tenenbaum, M. Tucsnak.

    A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator, in: J. Funct. Anal., 2005, vol. 226, no 1, p. 193–229.
  • 6J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.

    Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system, in: SIAM J. Numer. Anal., 2005, vol. 43, no 4, p. 1536–1571 (electronic).
  • 7J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.

    An initial and boundary value problem modeling of fish-like swimming, in: Arch. Ration. Mech. Anal., 2008, vol. 188, no 3, p. 429–455.

    http://dx.doi.org/10.1007/s00205-007-0092-2
  • 8J. San Martín, V. Starovoitov, M. Tucsnak.

    Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid, in: Archive for Rational Mechanics and Analysis, 2002, vol. 161, p. 113-147.
  • 9T. Takahashi.

    Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, in: Adv. Differential Equations, 2003, vol. 8, no 12, p. 1499–1532.
  • 10M. Tucsnak, G. Weiss.

    Simultaneous exact controllability and some applications, in: SIAM J. Control Optim., 2000, vol. 38, no 5, p. 1408–1427.
Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 11G. Haine.

    Observateurs en dimension infinie. Application à l'étude de quelques problèmes inverse, Université de Lorraine, 2012.

Articles in International Peer-Reviewed Journals

  • 12F. Abdallah, S. Nicaise, J. Valein, A. Wehbe.

    Stability results for the approximation of weakly coupled wave equations, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, 2012, vol. 350, no 1-2, p. 29-34.
  • 13F. Abdallah, S. Nicaise, J. Valein, A. Wehbe.

    Uniformly exponentially or polynomially stable approximations for second order evolution equations and some applications, in: ESAIM - Control Optimisation and Calculus of Variations, 2012.
  • 14F. Alabau-Boussouira.

    Controllability of cascade coupled systems of multi-dimensional PDEs by a reduced number of controls, in: C.R. Math. Acad. Sci. Par, 2012, vol. 350, p. 577–582.
  • 15F. Alabau-Boussouira, P. Cannarsa.

    A constructive proof of Gibson's stability theorem, in: Discret and Continuous Dynamical Systems S, 2013, vol. 6.
  • 16F. Alabau-Boussouira, M. Léautaud.

    Indirect controllability of locally coupled wave-type systems and applications, in: Journal de Mathématiques Pures et Appliquées, 2012, vol. A paraître.
  • 17K. Ammari, D. Mercier, V. Régnier, J. Valein.

    Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings, in: Communications on Pure and Applied Analysis, 2012, vol. 11, no 2, p. 785–807.
  • 18X. Antoine, C. Besse, P. Klein.

    Absorbing Boundary Conditions for the Two-Dimensional Schrödinger Equation with an Exterior Potential. Part I: Construction and a priori Estimates, in: Mathematical Models and Methods in Applied Sciences, 2012, vol. 22, no 10, 1250025 p. [ DOI : 10.1142/S021820251250025X ]

    http://hal.archives-ouvertes.fr/hal-00755639
  • 19X. Antoine, K. Ramdani, B. Thierry.

    Wide Frequency Band Numerical Approaches for Multiple Scattering Problems by Disks, in: Journal of Algorithms & Computational Technology, 2012, vol. 6, no 2, p. 241-259.

    http://hal.inria.fr/hal-00644373
  • 20X. Antoine, B. Thierry.

    Spectral and Condition Number Estimates of the Acoustic Single-Layer Operator for Low-Frequency Multiple Scattering in Dilute Media, in: Computer Methods in Applied Mechanics and Engineering, 2012, 1111 p. [ DOI : 10.1016/j.cma.2012.04.017 ]

    http://hal.archives-ouvertes.fr/hal-00755645
  • 21X. Antoine, B. Thierry.

    Spectral and Condition Number Estimates of the Acoustic Single-Layer Operator for Low-Frequency Multiple Scattering in Dense Media, in: Journal of Computational and Applied Mathematics, 2013, vol. 239, p. 380-395.

    http://hal.archives-ouvertes.fr/hal-00755676
  • 22A. Bacciotti, J.-C. Vivalda.

    On radial and directional controllability of bilinear systems, in: Systems & Control Lettesr, 2012, To appear.
  • 23C. Besse, J. Coatleven, S. Fliss, I. Lacroix-Violet, K. Ramdani.

    Transparent boundary conditions for locally perturbed infinite hexagonal periodic media., in: Commun. Math. Sci., 2012, to appear.
  • 24C. Bianchini, A. Henrot.

    Optimal sets for a class of minimization problems with convex constraints, in: Journal Convex Analysis, 2012, vol. 19, no3, p. 725-758.
  • 25M. Boulakia, E. Schwindt, T. Takahashi.

    Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid, in: Interfaces Free Bound., 2012, vol. 14, no 3, p. 273–306.

    http://dx.doi.org/10.4171/IFB/282
  • 26T. Chambrion.

    Periodic excitations of bilinear quantum systems, in: Automatica, 2012, vol. 48, no 9, p. 2040-2046. [ DOI : 10.1016/j.automatica.2012.03.031 ]

    http://hal.inria.fr/hal-00594895
  • 27C. Conca, E. L. Schwindt, T. Takahashi.

    On the identifiability of a rigid body moving in a stationary viscous fluid, in: Inverse Problems, 2012, vol. 28, no 1, 015005, 22 p.

    http://dx.doi.org/10.1088/0266-5611/28/1/015005
  • 28G. Croce, A. Henrot, G. Pisante.

    An isoperimetric inequality for a nonlinear eigenvalue problem, in: Annales de l'IHP, Analyse non linéaire, 2012, vol. 29, Issue 1, p. 21-34.
  • 29G. Croce, A. Henrot, G. Pisante.

    An isoperimetric inequality for a nonlinear eigenvalue problem, in: Annales de l'Institut Henri Poincaré Analyse non linéaire, 2012, p. 21–34, 15 pages.

    http://hal.inria.fr/hal-00581455
  • 30O. Glass, F. Sueur, T. Takahashi.

    Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, in: Ann. Sci. Éc. Norm. Supér. (4), 2012, vol. 45, no 1, p. 1–51.
  • 31O. Glass, F. Sueur, T. Takahashi.

    Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, in: Annales Scientifiques de l'École Normale Supérieure, 2012, vol. 45, no 1, p. 1–51.

    http://hal.inria.fr/hal-00466265
  • 32G. Haine, K. Ramdani.

    Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations, in: Numerische Mathematik, 2012, vol. 120, no 2, p. 307-343. [ DOI : 10.1007/s00211-011-0408-x ]

    http://hal.inria.fr/hal-00730512
  • 33A. Henrot, E. H. Laamri, D. Schmitt.

    On some spectral problems arising in dynamic populations, in: Communications in Pure and Applied Analysis, 2012, vol. 11, Issue 6, p. 2429-2443.
  • 34Y. Liu, T. Takahashi, M. Tucsnak.

    Strong solutions for a phase field Navier-Stokes vesicle-fluid interaction model, in: Journal of Mathematical Fluid Mechanics, 2012, vol. 14, no 1, p. 177-195. [ DOI : 10.1007/s00021-011-0059-9 ]

    http://hal.inria.fr/hal-00590656
  • 35J. Lohéac, J.-F. Scheid, M. Tucsnak.

    Controllability and Time Optimal Control for Low Reynolds Numbers Swimmers, in: Acta Applicandae Mathematicae, 2012, p. 1-26.

    http://dx.doi.org/10.1007/s10440-012-9760-9
  • 36S. Micu, M. Tucsnak, I. Roventa.

    Time optimal boundary controls for the heat equation, in: Journal of Functional Analysis, July 2012, vol. 263, no 1, p. 25-49.

    http://hal.archives-ouvertes.fr/hal-00759570
  • 37S. Nicaise, J. Valein.

    Stabilization of non-homogeneous elastic materials with voids, in: Journal of Mathematical Analysis and applications, 2012, vol. 387, no 2, p. 1061-1087.
  • 38J. San Martín, J.-F. Scheid, L. Smaranda.

    A modified Lagrange–Galerkin method for a fluid-rigid system with discontinuous density, in: Numer. Math., 2012, vol. 122, no 2, p. 341–382.

    http://dx.doi.org/10.1007/s00211-012-0460-1
  • 39A. L. Silvestre, T. Takahashi.

    On the motion of a rigid body with a cavity filled with a viscous liquid, in: Proc. Roy. Soc. Edinburgh Sect. A, 2012, vol. 142, no 2, p. 391–423.

    http://dx.doi.org/10.1017/S0308210510001034
  • 40T. Takahashi.

    Strong solutions for a phase field Navier-Stokes vesicle-fluid interaction model, in: Journal of Mathematical Fluid Mechanics, February 2012, vol. 14, no 1, p. 177-195.

    http://hal.archives-ouvertes.fr/hal-00759571
  • 41F. A.-B. andM. Léautaud.

    Indirect stabilization of locally coupled wave-type systems, in: ESAIM COCV, 2012, vol. 18, p. 548–582.

International Conferences with Proceedings

  • 42N. Boussaid, M. Caponigro, T. Chambrion.

    Periodic control laws for bilinear quantum systems with discrete spectrum, in: American Control Conference 2012, Montreal, Canada, 2012, p. 5619-5824.

    http://hal.inria.fr/hal-00637116
  • 43N. Boussaid, M. Caponigro, T. Chambrion.

    Small time reachable set of bilinear quantum systems, in: Proceedings of 51st CDC, Maui Hawaii, 2012, p. 1083–1087.

    http://hal.inria.fr/hal-00710040
  • 44J. Daafouz, M. Tucsnak, J. Valein.

    Wellposedness and stabilization of a class of infinite dimensional bilinear control systems, in: 51st IEEE Conference on Decision and Control, CDC 2012, Maui, Hawaii, États-Unis, December 2012, p. 1560–1565, ACOS ACOS.

Scientific Books (or Scientific Book chapters)

  • 46F. Alabau-Boussouira.

    On some recent advances on stabilization for hyperbolic equations, Springer-Verlag, 2012, p. 1–100.

Other Publications

References in notes
  • 53A. Agrachev, A. V. Sarychev.

    Navier-Stokes equations: controllability by means of low modes forcing, in: J. Math. Fluid Mech., 2005, vol. 7, no 1, p. 108–152.
  • 54V. Barbu.

    Feedback stabilization of Navier-Stokes equations, in: ESAIM Control Optim. Calc. Var., 2003, vol. 9, p. 197–206 (electronic).
  • 55C. Bardos, G. Lebeau, J. Rauch.

    Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, in: SIAM J. Control Optim., 1992, vol. 30, no 5, p. 1024–1065.
  • 56M. Fink.

    Time-reversal in acoustics, in: Contemporary Physics, 1996, vol. 37, p. 95–109.
  • 57M. Fink, C. Prada.

    Eigenmodes of the time reversal operator: a solution to selective focusing in multiple-target media, in: Wave Motion, 1994, vol. 20, no 2, p. 151–163.
  • 58M. Hautus.

    Controllability and observability conditions of linear autonomous systems, in: Nederl. Akad. Wet., Proc., Ser. A, 1969, vol. 72, p. 443-448.
  • 59O. Y. Imanuvilov.

    Remarks on exact controllability for the Navier-Stokes equations, in: ESAIM Control Optim. Calc. Var., 2001, vol. 6, p. 39–72 (electronic).
  • 60P. Lanzer, C. Barta, E. H. Botvinick, H. U. Wiesendanger, G. Modin, C. B. Higgins.

    ECG-synchronized cardiac MR imaging: method and evaluation, in: Radiology, Jun 1985, vol. 155, no 3, p. 681–686.
  • 61J.-L. Lions.

    Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Recherches en Mathématiques Appliquées, Masson, Paris, 1988, vol. 8, x+541 p.
  • 62J.-L. Lions.

    Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 2, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1988, vol. 9, xiv+273 p.
  • 63K. Liu.

    Locally distributed control and damping for the conservative systems, in: SIAM J. Control Optim., 1997, vol. 35, no 5, p. 1574–1590.
  • 64L. Miller.

    Controllability cost of conservative systems: resolvent condition and transmutation, in: J. Funct. Anal., 2005, vol. 218, no 2, p. 425–444.
  • 65D. L. Russell.

    Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, in: SIAM Rev., 1978, vol. 20, no 4, p. 639–739.
  • 66T. I. Seidman.

    How violent are fast controls?, in: Math. Control Signals Systems, 1988, vol. 1, no 1, p. 89–95.
  • 67L. Tcheougoué Tebou, E. Zuazua.

    Uniform exponential long time decay for the space semi-discretization of a localy damped wave equation via an artificial numerical viscosity, in: Numerische Mathematik, 2003, vol. 95, p. 563-598.
  • 68E. B. Welch, J. P. Felmlee, R. L. Ehman, A. Manduca.

    Motion correction using the k-space phase difference of orthogonal acquisitions, in: Magn Reson Med, 2002, vol. 48, no 1, p. 147–56.