Bibliography
Major publications by the team in recent years
-
1P. Besnard, M.-O. Cordier, Y. Moinard.
Ontology-based inference for causal explanation, in: Integrated Computer-Aided Engineering, 2008, vol. 15, no 4, p. 351-367.
http://hal. inria. fr/ inria-00476906/ en/ -
2C. Gascuel-Odoux, P. Aurousseau, M.-O. Cordier, P. Durand, F. Garcia, V. Masson, J. Salmon-Monviola, F. Tortrat, R. Trépos.
A decision-oriented model to evaluate the effect of land use and agricultural management on herbicide contamination in stream water, in: Environmental modelling & software, 2009, vol. 24, p. 1433-1446.
http://hal. inria. fr/ hal-00544122/ en -
3T. Guyet, R. Quiniou.
Extracting temporal patterns from interval-based sequences, in: International Joint Conference on Artificial Intelligence (IJCAI), Barcelone, Spain, July 2011.
http://hal. inria. fr/ inria-00618444 -
4Y. Pencolé, M.-O. Cordier.
A formal framework for the decentralised diagnosis of large scale discrete event systems and its application to telecommunication networks, in: Artificial Intelligence Journal, 2005, vol. 164, no 1-2, p. 121-170.
http://hal. inria. fr/ inria-00511104/ en/
Articles in International Peer-Reviewed Journals
-
5D. Leenhardt, O. Therond, M.-O. Cordier, C. Gascuel-Odoux, A. Reynaud, P. Durand, J.-E. Bergez, L. Clavel, V. Masson, P. Moreau.
A generic framework for scenario exercises using models applied to water-resource management, in: Environmental Modelling and Software, 2012, vol. 37, p. 125-133. [ DOI : 10.1016/j.envsoft.2012.03.010 ]
http://hal. inria. fr/ hal-00767926 -
6P. Moreau, L. Ruiz, T. Raimbault, F. Vertès, M.-O. Cordier, C. Gascuel-Odoux, V. Masson, J. Salmon-Monviola, P. Durand.
Modeling the potential benefits of catch-crop introduction in fodder crop rotations in a Western Europe landscape, in: Science of the Total Environment, 2012, vol. 437, p. 276-284. [ DOI : 10.1016/j.scitotenv.2012.07.091 ]
http://hal. inria. fr/ hal-00767910 -
7K. Sedki, V. Delcroix.
A model based on influence diagrams for multi-criteria decision making, in: International Journal on Artificial Intelligence Tools, August 2012, vol. 21, no 4, 1250018. [ DOI : 10.1142/S0218213012500182 ]
http://hal. inria. fr/ hal-00757174 -
8R. Trépos, V. Masson, M.-O. Cordier, C. Gascuel-Odoux, J. Salmon-Monviola.
Mining simulation data by rule induction to determine critical source areas of stream water pollution by herbicides, in: Computers and Electronics in Agriculture, 2012, vol. 86, p. 75-88. [ DOI : 10.1016/j.compag.2012.01.006 ]
http://hal. inria. fr/ hal-00767865
International Conferences with Proceedings
-
9T. Bouadi, M.-O. Cordier, R. Quiniou.
Incremental Computation of Skyline Queries with Dynamic Preferences, in: Database and Expert Systems Applications (DEXA), Vienne, Austria, S. W. Liddle, K.-D. Schewe, A. M. Tjoa, X. Zhou (editors), Springer, 2012, vol. 1, p. 219-233. [ DOI : 10.1007/978-3-642-32600-4_17 ]
http://hal. inria. fr/ hal-00757838 -
10P. Rannou, F. Lamarche, M.-O. Cordier.
Enhancing the behavior of virtual characters with long term planning, failure anticipation and opportunism, in: Motion In Games, Rennes, France, Springer, November 2012.
http://hal. inria. fr/ hal-00763694 -
11K. Sedki, L. Bonneau De Beaufort.
Cognitive Maps and Bayesian Networks for Knowledge Representation and Reasoning, in: 24th International Conference on Tools with Artificial Intelligence, Greece, 2012, p. 1035-1040. [ DOI : 10.1109/ICTAI.2012.175 ]
http://hal. inria. fr/ hal-00757189
National Conferences with Proceeding
-
12T. Guyet, H. Nicolas, A. Diouck.
Segmentation multi-échelle de séries temporelles d'images satellite : Application à l'étude d'une période de sécheresse au Sénégal., in: Reconnaissance de Forme et Intelligence Artificielle (RFIA), Lyon, France, January 2012.
http://hal. inria. fr/ hal-00646158 -
13T. Guyet, R. Quiniou.
Extraction incrémentale de séquences fréquentes dans un flux d'itemsets, in: Extraction et Gestion de Connaissances (EGC'2012), Bordeaux, France, B. Pinaud, G. Melançon, Y. Lechevallier (editors), RNTI, Hermann, February 2012.
http://hal. inria. fr/ hal-00648893 -
14T. Guyet, R. Quiniou.
Incremental mining of frequent sequences from a window sliding over a stream of itemsets, in: Journées Intelligence Artificielle Fondamentale, France, May 2012, p. 153-162.
http://hal. inria. fr/ hal-00757120 -
15V. Masson, F. Ployette.
Logiciel SACADEAU - Outil d'aide à la gestion de la qualité des eaux d'un bassin versant: simulation, apprentissage de règles de caractérisation et recommandation d'actions, in: RFIA 2012 (Reconnaissance des Formes et Intelligence Artificielle), Lyon, France, January 2012, Session "Démo", 978-2-9539515-2-3.
http://hal. inria. fr/ hal-00660959 -
16Y. Moinard.
Utiliser la programmation par ensembles réponses pour de petits problèmes, in: RFIA 2012 (Reconnaissance des Formes et Intelligence Artificielle), Lyon, France, January 2012, Session "Posters", 978-2-9539515-2-3.
http://hal. inria. fr/ hal-00656561 -
17Y. Zhao, M.-O. Cordier, C. Largouët.
Répondre aux questions "Que faire pour" par synthèse de contrôleur sur des automates temporisés - Application à la gestion de la pêche, in: RFIA 2012 (Reconnaissance des Formes et Intelligence Artificielle), Lyon, France, January 2012, Session "Posters", 978-2-9539515-2-3.
http://hal. inria. fr/ hal-00656543
Scientific Books (or Scientific Book chapters)
-
18M.-O. Cordier, P. Dague, Y. Pencolé, L. Travé-Massuyès.
Diagnostic et supervision : approches à base de modèles, in: Panorama de l'intelligence artificielle : Ses bases méthodologiques, ses développements, P. Marquis, O. Papini, H. Prade (editors), Cépaduès, January 2013, vol. 2.
http://hal. inria. fr/ hal-00769636 -
19Y. Moinard, A. Lallouet, P. Nicolas, I. Stéphan.
Programmation logique, in: Panorama de l'intelligence artificielle Ses bases méthodologiques, ses développements, P. Marquis, O. Papini, H. Prade (editors), Cépaduès, January 2013, vol. 2.
http://hal. inria. fr/ hal-00758896
Other Publications
-
20M. L. Angheloiu.
Incremental and adaptive learning for online monitoring of embedded software, Master 2 recherche informatique, Université de Rennes 1, June 2012.
http://dumas. ccsd. cnrs. fr/ dumas-00725171
-
21B. Dubuisson (editor)
Diagnostic, intelligence artificielle et reconnaissance des formes, Traité IC2 : Information - Commande - Communication, Hermes, 2001. -
22S. Dzeroski, N. Lavrač (editors)
Relational Data Mining, Springer, Berlin, 2001. -
23W. Hamscher, L. Console, J. de Kleer (editors)
Readings in Model-Based Diagnosis, Morgan Kaufmann, San Meteo, CA, Etats-Unis, 1992. -
24C. Aggarwal.
Data Streams: Models and Algorithms, Advances in Database Systems, Springer, 2007. -
25R. Agrawal, T. Imielinski, A. N. Swami.
Mining Association Rules between Sets of Items in Large Databases, in: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., P. Buneman, S. Jajodia (editors), 26–28 1993, p. 207–216. -
26R. Agrawal, R. Srikant.
Mining sequential patterns, in: Eleventh International Conference on Data Engineering, Taipei, Taiwan, P. S. Yu, A. S. P. Chen (editors), IEEE Computer Society Press, 1995, p. 3–14. -
27G. Alarme.
Monitoring and alarm interpretation in industrial environments, in: AI Communications, 1998, vol. 11, 3-4, p. 139-173, S. Cauvin, Marie-Odile Cordier, Christophe Dousson, P. Laborie, F. Lévy, J. Montmain, M. Porcheron, I. Servet, L. Travé-Massuyès. -
28M. Basseville, M.-O. Cordier.
Surveillance et diagnostic de systèmes dynamiques : approches complémentaires du traitement de signal et de l'intelligence artificielle, Irisa, 1996, no 1004.
ftp://ftp. irisa. fr/ techreports/ 1996/ PI-1004. ps. gz -
29P. Besnard, M.-O. Cordier.
Inferring causal explanations, in: Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU'99), A. Hunter, S. Parsons (editors), Lecture Notes in Artificial Intelligence, Springer-Verlag, 1999, vol. 1638, p. 55-67. -
30P. Besnard, M.-O. Cordier, Y. Moinard.
Configurations for Inference between Causal Statements, in: KSEM 2006 (First Int. Conf. on Knowledge Science, Engineering and Management), J. Lang, F. Lin, J. Wang (editors), LNAI, Springer, aug 2006, no 4092, p. 292–304.
http://www. irisa. fr/ dream/ dataFiles/ moinard/ causeksempub. pdf -
31P. Besnard, M.-O. Cordier, Y. Moinard.
Ontology-based inference for causal explanation, in: KSEM07 (Second International Conference on Knowledge Science, Engineering and Management), Z. Zhang, J. Siekmann (editors), LNAI, Springer, nov 2007, no 4798, p. 153-164.
http://www. irisa. fr/ dream/ dataFiles/ moinard/ ksem07bcausesonto. pdf -
32P. Besnard, M.-O. Cordier, Y. Moinard.
Deriving explanations from causal information, in: ECAI 2008 (18th European Conference on Artificial Intelligence), Patras, Greece, M. Ghallab, C. D. Spytopoulos, N. Fakotakis, N. Avouris (editors), IOS Press, jul 2008, p. 723–724. -
33P. Besnard, M.-O. Cordier, Y. Moinard.
Ontology-based inference for causal explanation, in: Integrated Computer-Aided Engineering, 2008, vol. 15, no 4, p. 351-367. -
34P. Besnard, A. Hunter.
Elements of Argumentation, The MIT Press, http://www-mitpress.mit.edu/, june 2008. -
35C. Biernacki, G. Celeux, G. Govaert, F. Langrognet.
Model-Based Cluster and Discriminant Analysis with the MIXMOD Software, in: Computational Statistics and Data Analysis, 2006, vol. 51, no 2, p. 587-600. -
36A. Bochman.
A Causal Theory of Abduction, in: 7th Int. Symposium on Logical Formalizations of Common Sense Reasoning, S. McIlraith, P. Peppas, M. Thielscher (editors), 2005, p. 33–38. -
37Y. Chi, S. Nijssen, R. R. Muntz, J. N. Kok.
Frequent Subtree Mining–An Overview, in: Fundamenta Informaticae, IOS Press, 2005, vol. 66, p. 161–198. -
38A. Cornuéjols, L. Miclet.
Apprentissage artificiel : concepts et algorithmes, Eyrolles, 2002. -
39L. De Raedt.
A perspective on inductive databases, in: SIGKDD Explor. Newsl., 2002, vol. 4, no 2, p. 69–77.
http://doi. acm. org/ 10. 1145/ 772862. 772871 -
40C. Dousson.
Chronicle Recognition System, 1994. -
41C. Dousson.
Suivi d'évolutions et reconnaissance de chroniques, Université Paul Sabatier de Toulouse, LAAS-CNRS, Toulouse, 1994. -
42C. Dousson, T. V. Duong.
Discovering Chronicles with Numerical Time Constraints from Alarm Logs for Monitoring Dynamic Systems., in: IJCAI, T. Dean (editor), Morgan Kaufmann, 1999, p. 620-626. -
43C. Dousson, P. Gaborit, M. Ghallab.
Situation recognition: representation and algorithms, in: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Chambéry, France, 1993, p. 166-172. -
44S. Dzeroski, L. Todorovski.
Discovering dynamics: from inductive logic programming to machine discovery, in: Journal of Intelligent Information Systems, 1995, vol. 4, p. 89-108. -
45J. Gao, B. Ding, W. Fan, J. Han, P. S. Yu.
Classifying Data Streams with Skewed Class Distributions and Concept Drifts, in: IEEE Internet Computing, 2008, vol. 12, no 6, p. 37-49. -
46M. Garofalakis, J. Gehrke, R. Rastogi.
Querying and Mining Data Streams: You Only Get One Look. Tutorial notes, in: ACM Int. Conf. on Management of Data, 2002. -
47E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, H. Turner.
Nonmonotonic causal theories, in: Artificial Intelligence Journal, March 2004, vol. 153, no 1–2, p. 49–104. -
48T. Guyet, R. Quiniou.
Mining temporal patterns with quantitative intervals, in: 4th International Workshop on Mining Complex Data at ICDM 2008, December 2008. -
49D. T. Hau, E. W. Coiera.
Learning qualitative models of dynamic systems, in: Machine Learning, 1997, vol. 26, p. 177-211. -
50T. Imielinski, H. Mannila.
A database perspective on knowledge discovery, in: Comm. of The ACM, 1996, vol. 39, p. 58–64. -
51M. Kubat, J. Gama, P. E. Utgoff.
Incremental learning and concept drift, in: Intell. Data Anal., 2004, vol. 8, no 3. -
52C. Largouët, M.-O. Cordier, Y.-M. Bozec, Y. Zhao, G. Fontenelle.
Use Of Timed Automata And Model-Checking To Explore Scenarios On Ecosystem Models, in: Environmental Modelling and Software, November 2011, no 30, p. 123-138, On-line publication : 26 November 2011. [ DOI : 10.1016/j.envsoft.2011.08.005 ]
http://hal. inria. fr/ hal-00649275 -
53S. D. Lee, L. De Raedt.
Constraint Based Mining of First Order Sequences in SeqLog, LNCS, Springer-Verlag, 2004, vol. 2682, p. 154-173. -
54H. Mannila, H. Toivonen, A. I. Verkamo.
Discovery of Frequent Episodes in Event Sequences, in: Data Mining and Knowledge Discovery, 1997, vol. 1, no 3, p. 259–289. -
55A. Marascu, F. Masseglia.
Mining sequential patterns from data streams: a centroid approach, in: J. Intell. Inf. Syst., 2006, vol. 27, no 3, p. 291–307.
http://dx. doi. org/ 10. 1007/ s10844-006-9954-6 -
56F. Masseglia, F. Cathala, P. Poncelet.
The PSP Approach for Mining Sequential Patterns, in: Proceedings of the Second European Symposium on Principles of Data Mining and Knowledge Discovery, 1998, p. 176–184. -
57Y. Moinard.
A formalism for causal explanations with an Answer Set Programming translation, in: 4th International Conference on Knowledge Science, Engineering & Management (KSEM 2010), United Kingdom Belfast, B. Scotney, Z. Jin (editors), LNCS, Springer-Verlag, Aug 2010.
http://hal. inria. fr/ inria-00511093/ en -
58Y. Moinard.
Using ASP with recent extensions for causal explanations, in: ASPOCP10, Answer Set Programming and Other Computing Paradigms Workshop, associated with ICLP, United Kingdom Edinburgh, M. Balduccini, S. Woltran (editors), Jul 2010.
http://hal. inria. fr/ inria-00542880/ en -
59D. Page.
ILP: Just Do It, in: Proceedings of ILP'2000, J. Cussens, A. Frisch (editors), LNAI, Springer, 2000, vol. 1866, p. 3-18. -
60Y. Pencolé, M.-O. Cordier, L. Rozé.
Incremental decentralized diagnosis approach for the supervision of a telecommunication network, in: DX'01 (International Workshop on Principles of Diagnosis), Sansicario, Italy, 2001.
http://www. irisa. fr/ dream/ dataFiles/ ypencole/ DX01. pdf -
61R. Quiniou, M.-O. Cordier, G. Carrault, F. Wang.
Application of ILP to cardiac arrhythmia characterization for chronicle recognition, in: ILP'2001, C. Rouveirol, M. Sebag (editors), LNAI, Springer-Verlag, 2001, vol. 2157, p. 220-227.
http://www. irisa. fr/ dream/ dataFiles/ quiniou/ ilp01. pdf -
62N. Ramaux, M. Dojat, D. Fontaine.
Temporal scenario recognition for intelligent patient monitoring, in: Proc. of the 6th Conference on Artificial Intelligence in Medecine Europe (AIME'97), 1997. -
63R. Reiter.
A theory of diagnosis from first principles, in: Artificial Intelligence, 1987, vol. 32, no 1, p. 57-96. -
64M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis.
Diagnosability of discrete event systems, in: Proceedings of the International Conference on Analysis and Optimization of Systems, 1995, vol. 40, p. 1555-1575. -
65M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis.
Active Diagnosis of Discrete-Event Systems, in: IEEE Transactions on Automatic Control, 1998, vol. 43, no 7, p. 908-929. -
66M. Sebag, C. Rouveirol.
Constraint Inductive Logic Programming, in: Advances in Inductive Logic Programming, L. De Raedt (editor), IOS Press, 1996, p. 277-294. -
67P. Smets, R. Kennes.
The Transferable Belief Model, in: Classic Works of the Dempster-Shafer Theory of Belief Functions, R. R. Yager, L. Liu (editors), Studies in Fuzziness and Soft Computing, Springer Berlin Heidelberg, 2008, vol. 219, p. 693-736. -
68 The WS-Diamond Team.
2, in: WS-DIAMOND: Web Services DIAgnosability, MONitoring and Diagnosis, J. Mylopoulos, M. Papazoglou (editors), MIT Press Series on Information Systems, 2009. -
69A. Vautier, M.-O. Cordier, R. Quiniou.
An Inductive Database for Mining Temporal Patterns in Event Sequences (short version), in: Proceedings of IJCAI-05 (International Joint Conference on Artificial Intelligence), Edinburgh, L. P. Kaelbling, A. Saffiotti (editors), 2005, p. 1640-1641, Poster. -
70Q. Wang, V. Megalooikonomou, C. Faloutsos.
Time series analysis with multiple resolutions, in: Inf. Syst., 2010, vol. 35, no 1, p. 56-74. -
71G. Widmer, M. Kubat.
Learning in the Presence of Concept Drift and Hidden Contexts, in: Machine Learning, 1996, vol. 23, no 1, p. 69-101. -
72J. Wojtusiak, R. Michalski, T. Simanivanh, A. Baranova.
The Natural Induction System AQ21 and its Application to Data Describing Patients with Metabolic Syndrome: Initial Results, in: Machine Learning and Applications, 2007. ICMLA 2007. Sixth International Conference on, dec. 2007, p. 518 -523.
http://dx. doi. org/ 10. 1109/ ICMLA. 2007. 98 -
73X. Yan, J. Han.
gSpan: Graph-Based Substructure Pattern Mining, in: Proceedings of the 2002 IEEE International Conference on Data Mining, Washington, DC, USA, ICDM '02, IEEE Computer Society, 2002, p. 721–. -
74J. de Kleer, A. Mackworth, R. Reiter.
Characterizing diagnoses and systems, in: Artificial Intelligence, 1992, vol. 56, no 2-3, p. 197-222.