EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1P. Besnard, M.-O. Cordier, Y. Moinard.

    Ontology-based inference for causal explanation, in: Integrated Computer-Aided Engineering, 2008, vol. 15, no 4, p. 351-367.

    http://hal.inria.fr/inria-00476906/en/
  • 2C. Gascuel-Odoux, P. Aurousseau, M.-O. Cordier, P. Durand, F. Garcia, V. Masson, J. Salmon-Monviola, F. Tortrat, R. Trépos.

    A decision-oriented model to evaluate the effect of land use and agricultural management on herbicide contamination in stream water, in: Environmental modelling & software, 2009, vol. 24, p. 1433-1446.

    http://hal.inria.fr/hal-00544122/en
  • 3T. Guyet, R. Quiniou.

    Extracting temporal patterns from interval-based sequences, in: International Joint Conference on Artificial Intelligence (IJCAI), Barcelone, Spain, July 2011.

    http://hal.inria.fr/inria-00618444
  • 4Y. Pencolé, M.-O. Cordier.

    A formal framework for the decentralised diagnosis of large scale discrete event systems and its application to telecommunication networks, in: Artificial Intelligence Journal, 2005, vol. 164, no 1-2, p. 121-170.

    http://hal.inria.fr/inria-00511104/en/
Publications of the year

Articles in International Peer-Reviewed Journals

  • 5D. Leenhardt, O. Therond, M.-O. Cordier, C. Gascuel-Odoux, A. Reynaud, P. Durand, J.-E. Bergez, L. Clavel, V. Masson, P. Moreau.

    A generic framework for scenario exercises using models applied to water-resource management, in: Environmental Modelling and Software, 2012, vol. 37, p. 125-133. [ DOI : 10.1016/j.envsoft.2012.03.010 ]

    http://hal.inria.fr/hal-00767926
  • 6P. Moreau, L. Ruiz, T. Raimbault, F. Vertès, M.-O. Cordier, C. Gascuel-Odoux, V. Masson, J. Salmon-Monviola, P. Durand.

    Modeling the potential benefits of catch-crop introduction in fodder crop rotations in a Western Europe landscape, in: Science of the Total Environment, 2012, vol. 437, p. 276-284. [ DOI : 10.1016/j.scitotenv.2012.07.091 ]

    http://hal.inria.fr/hal-00767910
  • 7K. Sedki, V. Delcroix.

    A model based on influence diagrams for multi-criteria decision making, in: International Journal on Artificial Intelligence Tools, August 2012, vol. 21, no 4, 1250018. [ DOI : 10.1142/S0218213012500182 ]

    http://hal.inria.fr/hal-00757174
  • 8R. Trépos, V. Masson, M.-O. Cordier, C. Gascuel-Odoux, J. Salmon-Monviola.

    Mining simulation data by rule induction to determine critical source areas of stream water pollution by herbicides, in: Computers and Electronics in Agriculture, 2012, vol. 86, p. 75-88. [ DOI : 10.1016/j.compag.2012.01.006 ]

    http://hal.inria.fr/hal-00767865

International Conferences with Proceedings

  • 9T. Bouadi, M.-O. Cordier, R. Quiniou.

    Incremental Computation of Skyline Queries with Dynamic Preferences, in: Database and Expert Systems Applications (DEXA), Vienne, Austria, S. W. Liddle, K.-D. Schewe, A. M. Tjoa, X. Zhou (editors), Springer, 2012, vol. 1, p. 219-233. [ DOI : 10.1007/978-3-642-32600-4_17 ]

    http://hal.inria.fr/hal-00757838
  • 10P. Rannou, F. Lamarche, M.-O. Cordier.

    Enhancing the behavior of virtual characters with long term planning, failure anticipation and opportunism, in: Motion In Games, Rennes, France, Springer, November 2012.

    http://hal.inria.fr/hal-00763694
  • 11K. Sedki, L. Bonneau De Beaufort.

    Cognitive Maps and Bayesian Networks for Knowledge Representation and Reasoning, in: 24th International Conference on Tools with Artificial Intelligence, Greece, 2012, p. 1035-1040. [ DOI : 10.1109/ICTAI.2012.175 ]

    http://hal.inria.fr/hal-00757189

National Conferences with Proceeding

  • 12T. Guyet, H. Nicolas, A. Diouck.

    Segmentation multi-échelle de séries temporelles d'images satellite : Application à l'étude d'une période de sécheresse au Sénégal., in: Reconnaissance de Forme et Intelligence Artificielle (RFIA), Lyon, France, January 2012.

    http://hal.inria.fr/hal-00646158
  • 13T. Guyet, R. Quiniou.

    Extraction incrémentale de séquences fréquentes dans un flux d'itemsets, in: Extraction et Gestion de Connaissances (EGC'2012), Bordeaux, France, B. Pinaud, G. Melançon, Y. Lechevallier (editors), RNTI, Hermann, February 2012.

    http://hal.inria.fr/hal-00648893
  • 14T. Guyet, R. Quiniou.

    Incremental mining of frequent sequences from a window sliding over a stream of itemsets, in: Journées Intelligence Artificielle Fondamentale, France, May 2012, p. 153-162.

    http://hal.inria.fr/hal-00757120
  • 15V. Masson, F. Ployette.

    Logiciel SACADEAU - Outil d'aide à la gestion de la qualité des eaux d'un bassin versant: simulation, apprentissage de règles de caractérisation et recommandation d'actions, in: RFIA 2012 (Reconnaissance des Formes et Intelligence Artificielle), Lyon, France, January 2012, Session "Démo", 978-2-9539515-2-3.

    http://hal.inria.fr/hal-00660959
  • 16Y. Moinard.

    Utiliser la programmation par ensembles réponses pour de petits problèmes, in: RFIA 2012 (Reconnaissance des Formes et Intelligence Artificielle), Lyon, France, January 2012, Session "Posters", 978-2-9539515-2-3.

    http://hal.inria.fr/hal-00656561
  • 17Y. Zhao, M.-O. Cordier, C. Largouët.

    Répondre aux questions "Que faire pour" par synthèse de contrôleur sur des automates temporisés - Application à la gestion de la pêche, in: RFIA 2012 (Reconnaissance des Formes et Intelligence Artificielle), Lyon, France, January 2012, Session "Posters", 978-2-9539515-2-3.

    http://hal.inria.fr/hal-00656543

Scientific Books (or Scientific Book chapters)

  • 18M.-O. Cordier, P. Dague, Y. Pencolé, L. Travé-Massuyès.

    Diagnostic et supervision : approches à base de modèles, in: Panorama de l'intelligence artificielle : Ses bases méthodologiques, ses développements, P. Marquis, O. Papini, H. Prade (editors), Cépaduès, January 2013, vol. 2.

    http://hal.inria.fr/hal-00769636
  • 19Y. Moinard, A. Lallouet, P. Nicolas, I. Stéphan.

    Programmation logique, in: Panorama de l'intelligence artificielle Ses bases méthodologiques, ses développements, P. Marquis, O. Papini, H. Prade (editors), Cépaduès, January 2013, vol. 2.

    http://hal.inria.fr/hal-00758896

Other Publications

  • 20M. L. Angheloiu.

    Incremental and adaptive learning for online monitoring of embedded software, Master 2 recherche informatique, Université de Rennes 1, June 2012.

    http://dumas.ccsd.cnrs.fr/dumas-00725171
References in notes
  • 21B. Dubuisson (editor)

    Diagnostic, intelligence artificielle et reconnaissance des formes, Traité IC2 : Information - Commande - Communication, Hermes, 2001.
  • 22S. Dzeroski, N. Lavrač (editors)

    Relational Data Mining, Springer, Berlin, 2001.
  • 23W. Hamscher, L. Console, J. de Kleer (editors)

    Readings in Model-Based Diagnosis, Morgan Kaufmann, San Meteo, CA, Etats-Unis, 1992.
  • 24C. Aggarwal.

    Data Streams: Models and Algorithms, Advances in Database Systems, Springer, 2007.
  • 25R. Agrawal, T. Imielinski, A. N. Swami.

    Mining Association Rules between Sets of Items in Large Databases, in: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., P. Buneman, S. Jajodia (editors), 26–28  1993, p. 207–216.
  • 26R. Agrawal, R. Srikant.

    Mining sequential patterns, in: Eleventh International Conference on Data Engineering, Taipei, Taiwan, P. S. Yu, A. S. P. Chen (editors), IEEE Computer Society Press, 1995, p. 3–14.
  • 27G. Alarme.

    Monitoring and alarm interpretation in industrial environments, in: AI Communications, 1998, vol. 11, 3-4, p. 139-173, S. Cauvin, Marie-Odile Cordier, Christophe Dousson, P. Laborie, F. Lévy, J. Montmain, M. Porcheron, I. Servet, L. Travé-Massuyès.
  • 28M. Basseville, M.-O. Cordier.

    Surveillance et diagnostic de systèmes dynamiques : approches complémentaires du traitement de signal et de l'intelligence artificielle, Irisa, 1996, no 1004.

    ftp://ftp.irisa.fr/techreports/1996/PI-1004.ps.gz
  • 29P. Besnard, M.-O. Cordier.

    Inferring causal explanations, in: Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU'99), A. Hunter, S. Parsons (editors), Lecture Notes in Artificial Intelligence, Springer-Verlag, 1999, vol. 1638, p. 55-67.
  • 30P. Besnard, M.-O. Cordier, Y. Moinard.

    Configurations for Inference between Causal Statements, in: KSEM 2006 (First Int. Conf. on Knowledge Science, Engineering and Management), J. Lang, F. Lin, J. Wang (editors), LNAI, Springer, aug 2006, no 4092, p. 292–304.

    http://www.irisa.fr/dream/dataFiles/moinard/causeksempub.pdf
  • 31P. Besnard, M.-O. Cordier, Y. Moinard.

    Ontology-based inference for causal explanation, in: KSEM07 (Second International Conference on Knowledge Science, Engineering and Management), Z. Zhang, J. Siekmann (editors), LNAI, Springer, nov 2007, no 4798, p. 153-164.

    http://www.irisa.fr/dream/dataFiles/moinard/ksem07bcausesonto.pdf
  • 32P. Besnard, M.-O. Cordier, Y. Moinard.

    Deriving explanations from causal information, in: ECAI 2008 (18th European Conference on Artificial Intelligence), Patras, Greece, M. Ghallab, C. D. Spytopoulos, N. Fakotakis, N. Avouris (editors), IOS Press, jul 2008, p. 723–724.
  • 33P. Besnard, M.-O. Cordier, Y. Moinard.

    Ontology-based inference for causal explanation, in: Integrated Computer-Aided Engineering, 2008, vol. 15, no 4, p. 351-367.
  • 34P. Besnard, A. Hunter.

    Elements of Argumentation, The MIT Press, http://www-mitpress.mit.edu/, june 2008.
  • 35C. Biernacki, G. Celeux, G. Govaert, F. Langrognet.

    Model-Based Cluster and Discriminant Analysis with the MIXMOD Software, in: Computational Statistics and Data Analysis, 2006, vol. 51, no 2, p. 587-600.
  • 36A. Bochman.

    A Causal Theory of Abduction, in: 7th Int. Symposium on Logical Formalizations of Common Sense Reasoning, S. McIlraith, P. Peppas, M. Thielscher (editors), 2005, p. 33–38.
  • 37Y. Chi, S. Nijssen, R. R. Muntz, J. N. Kok.

    Frequent Subtree Mining–An Overview, in: Fundamenta Informaticae, IOS Press, 2005, vol. 66, p. 161–198.
  • 38A. Cornuéjols, L. Miclet.

    Apprentissage artificiel : concepts et algorithmes, Eyrolles, 2002.
  • 39L. De Raedt.

    A perspective on inductive databases, in: SIGKDD Explor. Newsl., 2002, vol. 4, no 2, p. 69–77.

    http://doi.acm.org/10.1145/772862.772871
  • 40C. Dousson.

    Chronicle Recognition System, 1994.
  • 41C. Dousson.

    Suivi d'évolutions et reconnaissance de chroniques, Université Paul Sabatier de Toulouse, LAAS-CNRS, Toulouse, 1994.
  • 42C. Dousson, T. V. Duong.

    Discovering Chronicles with Numerical Time Constraints from Alarm Logs for Monitoring Dynamic Systems., in: IJCAI, T. Dean (editor), Morgan Kaufmann, 1999, p. 620-626.
  • 43C. Dousson, P. Gaborit, M. Ghallab.

    Situation recognition: representation and algorithms, in: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Chambéry, France, 1993, p. 166-172.
  • 44S. Dzeroski, L. Todorovski.

    Discovering dynamics: from inductive logic programming to machine discovery, in: Journal of Intelligent Information Systems, 1995, vol. 4, p. 89-108.
  • 45J. Gao, B. Ding, W. Fan, J. Han, P. S. Yu.

    Classifying Data Streams with Skewed Class Distributions and Concept Drifts, in: IEEE Internet Computing, 2008, vol. 12, no 6, p. 37-49.
  • 46M. Garofalakis, J. Gehrke, R. Rastogi.

    Querying and Mining Data Streams: You Only Get One Look. Tutorial notes, in: ACM Int. Conf. on Management of Data, 2002.
  • 47E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, H. Turner.

    Nonmonotonic causal theories, in: Artificial Intelligence Journal, March 2004, vol. 153, no 1–2, p. 49–104.
  • 48T. Guyet, R. Quiniou.

    Mining temporal patterns with quantitative intervals, in: 4th International Workshop on Mining Complex Data at ICDM 2008, December 2008.
  • 49D. T. Hau, E. W. Coiera.

    Learning qualitative models of dynamic systems, in: Machine Learning, 1997, vol. 26, p. 177-211.
  • 50T. Imielinski, H. Mannila.

    A database perspective on knowledge discovery, in: Comm. of The ACM, 1996, vol. 39, p. 58–64.
  • 51M. Kubat, J. Gama, P. E. Utgoff.

    Incremental learning and concept drift, in: Intell. Data Anal., 2004, vol. 8, no 3.
  • 52C. Largouët, M.-O. Cordier, Y.-M. Bozec, Y. Zhao, G. Fontenelle.

    Use Of Timed Automata And Model-Checking To Explore Scenarios On Ecosystem Models, in: Environmental Modelling and Software, November 2011, no 30, p. 123-138, On-line publication : 26 November 2011. [ DOI : 10.1016/j.envsoft.2011.08.005 ]

    http://hal.inria.fr/hal-00649275
  • 53S. D. Lee, L. De Raedt.

    Constraint Based Mining of First Order Sequences in SeqLog, LNCS, Springer-Verlag, 2004, vol. 2682, p. 154-173.
  • 54H. Mannila, H. Toivonen, A. I. Verkamo.

    Discovery of Frequent Episodes in Event Sequences, in: Data Mining and Knowledge Discovery, 1997, vol. 1, no 3, p. 259–289.
  • 55A. Marascu, F. Masseglia.

    Mining sequential patterns from data streams: a centroid approach, in: J. Intell. Inf. Syst., 2006, vol. 27, no 3, p. 291–307.

    http://dx.doi.org/10.1007/s10844-006-9954-6
  • 56F. Masseglia, F. Cathala, P. Poncelet.

    The PSP Approach for Mining Sequential Patterns, in: Proceedings of the Second European Symposium on Principles of Data Mining and Knowledge Discovery, 1998, p. 176–184.
  • 57Y. Moinard.

    A formalism for causal explanations with an Answer Set Programming translation, in: 4th International Conference on Knowledge Science, Engineering & Management (KSEM 2010), United Kingdom Belfast, B. Scotney, Z. Jin (editors), LNCS, Springer-Verlag, Aug 2010.

    http://hal.inria.fr/inria-00511093/en
  • 58Y. Moinard.

    Using ASP with recent extensions for causal explanations, in: ASPOCP10, Answer Set Programming and Other Computing Paradigms Workshop, associated with ICLP, United Kingdom Edinburgh, M. Balduccini, S. Woltran (editors), Jul 2010.

    http://hal.inria.fr/inria-00542880/en
  • 59D. Page.

    ILP: Just Do It, in: Proceedings of ILP'2000, J. Cussens, A. Frisch (editors), LNAI, Springer, 2000, vol. 1866, p. 3-18.
  • 60Y. Pencolé, M.-O. Cordier, L. Rozé.

    Incremental decentralized diagnosis approach for the supervision of a telecommunication network, in: DX'01 (International Workshop on Principles of Diagnosis), Sansicario, Italy, 2001.

    http://www.irisa.fr/dream/dataFiles/ypencole/DX01.pdf
  • 61R. Quiniou, M.-O. Cordier, G. Carrault, F. Wang.

    Application of ILP to cardiac arrhythmia characterization for chronicle recognition, in: ILP'2001, C. Rouveirol, M. Sebag (editors), LNAI, Springer-Verlag, 2001, vol. 2157, p. 220-227.

    http://www.irisa.fr/dream/dataFiles/quiniou/ilp01.pdf
  • 62N. Ramaux, M. Dojat, D. Fontaine.

    Temporal scenario recognition for intelligent patient monitoring, in: Proc. of the 6th Conference on Artificial Intelligence in Medecine Europe (AIME'97), 1997.
  • 63R. Reiter.

    A theory of diagnosis from first principles, in: Artificial Intelligence, 1987, vol. 32, no 1, p. 57-96.
  • 64M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis.

    Diagnosability of discrete event systems, in: Proceedings of the International Conference on Analysis and Optimization of Systems, 1995, vol. 40, p. 1555-1575.
  • 65M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis.

    Active Diagnosis of Discrete-Event Systems, in: IEEE Transactions on Automatic Control, 1998, vol. 43, no 7, p. 908-929.
  • 66M. Sebag, C. Rouveirol.

    Constraint Inductive Logic Programming, in: Advances in Inductive Logic Programming, L. De Raedt (editor), IOS Press, 1996, p. 277-294.
  • 67P. Smets, R. Kennes.

    The Transferable Belief Model, in: Classic Works of the Dempster-Shafer Theory of Belief Functions, R. R. Yager, L. Liu (editors), Studies in Fuzziness and Soft Computing, Springer Berlin Heidelberg, 2008, vol. 219, p. 693-736.
  • 68 The WS-Diamond Team.

    2, in: WS-DIAMOND: Web Services DIAgnosability, MONitoring and Diagnosis, J. Mylopoulos, M. Papazoglou (editors), MIT Press Series on Information Systems, 2009.
  • 69A. Vautier, M.-O. Cordier, R. Quiniou.

    An Inductive Database for Mining Temporal Patterns in Event Sequences (short version), in: Proceedings of IJCAI-05 (International Joint Conference on Artificial Intelligence), Edinburgh, L. P. Kaelbling, A. Saffiotti (editors), 2005, p. 1640-1641, Poster.
  • 70Q. Wang, V. Megalooikonomou, C. Faloutsos.

    Time series analysis with multiple resolutions, in: Inf. Syst., 2010, vol. 35, no 1, p. 56-74.
  • 71G. Widmer, M. Kubat.

    Learning in the Presence of Concept Drift and Hidden Contexts, in: Machine Learning, 1996, vol. 23, no 1, p. 69-101.
  • 72J. Wojtusiak, R. Michalski, T. Simanivanh, A. Baranova.

    The Natural Induction System AQ21 and its Application to Data Describing Patients with Metabolic Syndrome: Initial Results, in: Machine Learning and Applications, 2007. ICMLA 2007. Sixth International Conference on, dec. 2007, p. 518 -523.

    http://dx.doi.org/10.1109/ICMLA.2007.98
  • 73X. Yan, J. Han.

    gSpan: Graph-Based Substructure Pattern Mining, in: Proceedings of the 2002 IEEE International Conference on Data Mining, Washington, DC, USA, ICDM '02, IEEE Computer Society, 2002, p. 721–.
  • 74J. de Kleer, A. Mackworth, R. Reiter.

    Characterizing diagnoses and systems, in: Artificial Intelligence, 1992, vol. 56, no 2-3, p. 197-222.