Bibliography
Major publications by the team in recent years
-
1G. Aubert, P. Kornprobst.
Mathematical problems in image processing: partial differential equations and the calculus of variations (Second edition), Applied Mathematical Sciences, Springer-Verlag, 2006, vol. 147. -
2B. Cessac.
A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics, in: J. Math. Biol., 2008, vol. 56, no 3, p. 311-345.
http://lanl. arxiv. org/ abs/ 0706. 0077 -
3B. Cessac.
A discrete time neural network model with spiking neurons II. Dynamics with noise., in: Journal of Mathematical Biology, 2011, vol. 62, no 6, p. 863-900. [ DOI : 10.1007/s00285-010-0358-4 ]
http://lanl. arxiv. org/ pdf/ 1002. 3275 -
4B. Cessac, H. Rostro-Gonzalez, J.-C. Vasquez, T. Viéville.
How Gibbs distribution may naturally arise from synaptic adaptation mechanisms: a model based argumentation, in: J. Stat. Phys,, 2009, vol. 136, no 3, p. 565-602. [ DOI : 10.1007/s10955-009-9786-1 ]
http://lanl. arxiv. org/ abs/ 0812. 3899 -
5E. Tlapale, G. S. Masson, P. Kornprobst.
Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism, in: Vision Research, August 2010, vol. 50, no 17, p. 1676–1692.
http://dx. doi. org/ 10. 1016/ j. visres. 2010. 05. 022 -
6A. Wohrer, P. Kornprobst.
Virtual Retina : A biological retina model and simulator, with contrast gain control, in: Journal of Computational Neuroscience, 2009, vol. 26, no 2, 219 p, DOI 10.1007/s10827-008-0108-4.
Doctoral Dissertations and Habilitation Theses
-
7G. Faye.
Symmetry breaking and pattern formation in some neural field equations, EDSFA, 2012. -
8G. Hermann.
Some mean field equations in neuroscience, Ecole Polytechnique, January 2012.
ftp://ftp-sop. inria. fr/ neuromathcomp/ publications/ phds/ hermann:12. pdf -
9K. Masmoudi.
Retina-inspired image coding schemes, Université de Nice Sophia Antipolis, 2012.
Articles in International Peer-Reviewed Journals
-
10J. Baladron, D. Fasoli, O. Faugeras.
Three applications of GPU computing in neuroscience, in: Computing in Science and Engineering, 2012. -
11J. Baladron, D. Fasoli, O. Faugeras, J. Touboul.
Mean-field description and propagation of chaos in networks of Hodgkin-Huxley neurons, in: The Journal of Mathematical Neuroscience, 2012, vol. 2, no 1.
http://www. mathematical-neuroscience. com/ content/ 2/ 1/ 10 -
12B. Cessac, R. Cofré.
Spike train statistics and Gibbs distributions, in: J. Physiol. Paris, 2012, submitted. -
13R. Cofré, B. Cessac.
Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses, in: Chaos, Solitons and Fractals, 2012, submitted. -
14M.-J. Escobar, P. Kornprobst.
Action recognition via bio-inspired features: The richness of center–surround interaction, in: Computer Vision and Image Understanding, 2012, vol. 116, no 5, 593—605 p.
http://dx. doi. org/ 10. 1016/ j. cviu. 2012. 01. 002 -
15G. Faye.
Reduction method for studying localized solutions of neural field equations on the Poincaré disk, in: Comptes Rendus de l'Académie des Sciences, Mathématique, February 2012, vol. 350, no 3-4, p. 161–166.
http://www. sciencedirect. com/ science/ article/ pii/ S1631073X12000337 -
16G. Faye, J. Rankin, P. Chossat.
Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysis, in: Journal of Mathematical Biology, 2012. -
17G. Faye, J. Rankin, D. J. B. Lloyd.
Localized radial bumps of a neural field equation on the Euclidean plane and the Poincaré disk, in: Nonlinearity, 2012, vol. (accepted). -
18M. Galtier, O. Faugeras, P. Bressloff.
Hebbian Learning of Recurrent Connections: A Geometrical Perspective, in: Neural Computation, September 2012, vol. 24, no 9, p. 2346–2383. -
19M. Galtier, G. Wainrib.
Multiscale analysis of slow-fast neuronal learning models with noise, in: Journal of Mathematical Neuroscience, 2012. -
20K. Masmoudi, M. Antonini, P. Kornprobst.
Frames for Exact Inversion of the Rank Order Coder, in: IEEE Transactions on Neural Networks and Learning Systems, 2012, vol. 23, no 2, p. 353–359.
http://dx. doi. org/ 10. 1109/ TNNLS. 2011. 2179557 -
21K. Masmoudi, M. Antonini, P. Kornprobst.
Streaming an image through the eye: The retina seen as a dithered scalable image coder, in: Signal Processing-Image Communication, 2012.
http://dx. doi. org/ 10. 1016/ j. image. 2012. 07. 005 -
22H. Nasser, O. Marre, B. Cessac.
Spike trains analysis using Gibbs distributions and Monte-Carlo method, in: Journal of Statistical Mechanics, 2012, to appear.
http://lanl. arxiv. org/ abs/ 1209. 3886 -
23J. Rankin, E. Tlapale, R. Veltz, O. Faugeras, P. Kornprobst.
Bifurcation analysis applied to a model of motion integration with a multistable stimulus, in: Journal of Computational Neuroscience, 2012, p. 1-22, 10.1007/s10827-012-0409-5.
http://dx. doi. org/ 10. 1007/ s10827-012-0409-5 -
24H. Rostro-Gonzalez, B. Cessac, T. Viéville.
Parameters estimation in spiking neural networks: a reverse-engineering approach, in: J. Neural. Eng., 2012, vol. 9, no 026024. [ DOI : 10.1088/1741-2560/9/2/026024 ]
http://iopscience. iop. org/ 1741-2552/ 9/ 2/ 026024/ -
25J. Touboul, G. Hermann, O. Faugeras.
Noise-induced behaviors in neural mean field dynamics, in: SIAM Journal on Applied dynamical Systems, 2012, vol. 11, no 1, p. 49–81.
ftp://ftp-sop. inria. fr/ neuromathcomp/ publications/ 2012/ touboul-hermann-etal:12. pdf -
26J.-C. Vasquez, A. Palacios, O. Marre, M. J. Berry II, B. Cessac.
Gibbs distribution analysis of temporal correlation structure on multicell spike trains from retina ganglion cells, in: J. Physiol. Paris, May 2012, vol. 106, no 3-4, p. 120-127.
http://arxiv. org/ abs/ 1112. 2464 -
27R. Veltz, O. Faugeras.
A center manifold result for delayed neural fields equations, in: SIAM Journal on Applied Mathematics, July 2012, under revision.
http://hal. inria. fr/ hal-00719794
Invited Conferences
-
28B. Cessac.
Gibbs distributions and statistics of action potentials in neural networks., in: CHAOS, COMPLEXITY and DYNAMICS in BIOLOGICAL NETWORKS, Cargèse May 2012, 2012. -
29B. Cessac.
Lecture on spike train statistics: beyond the maximal entropy models, in: Neural Coding and Natural Image Statistics 9-13 January 2012, Valparaiso, Chile, 2012. -
30B. Cessac.
Spike train statistics in neural network: exact results, in: Neural Coding and Natural Image Statistics 9-13 January 2012, Valparaiso, Chile, 2012. -
31B. Cessac.
Spike trains statistics and Gibbs distributions, in: Probabilistic structures of the brain, Cergy, December 13-14, 2012, 2012. -
32O. Faugeras.
Neural fields in Action: Mathematical Results and Models of Visual Perception., in: Workshop on "Cognitive Dynamics in Neural Systems: Mathematical and Computational Modeling", March 2012. -
33O. Faugeras.
Neural fields in action: mathematical results and models of visual perception, in: Progress in Neural Field Theory 2012, April 2012. -
34O. Faugeras.
Neural fields models of visual areas: principles, successes, and caveats, in: Workshop on Biological and Computer Vision Interfaces, October 2012.
http://www-sop. inria. fr/ manifestations/ wbcvi2012/ program. shtml -
35O. Faugeras.
Some of the upcoming challenges in computational and mathematical neuroscience, in: IC Colloquium, EPFL, November 2012. -
36J.-M. Gambaudo, B. Cessac.
Multi-scale analysis of neuronal dynamical systems: the legacy of Poincaré, in: The NeuroComp/KEOpS’12 workshop, "Beyond the retina: from computational models to outcomes in bioengineering. Focus on architecture and dynamics sustaining information flows in the visuomotor system.", Bordeaux, October 10-11 2012., 2012.
International Conferences with Proceedings
-
37K. Masmoudi, M. Antonini, P. Kornprobst.
A perfectly invertible rank order coder, in: International Joint Conference on Biomedical Engineering Systems and Technologies (Biosignals), 2012. -
38A. Meso, J. Rankin, O. Faugeras, P. Kornprobst, G. S. Masson.
Motion direction integration following the onset of multistable stimuli (I): dynamic shifts in both perception and eye movements depend on signal strength, in: European Conference on Visual Perception, 2012. -
39A. Meso, J. Rankin, P. Kornprobst, O. Faugeras, G. S. Masson.
Perceptual transition dynamics of a multi-stable visual motion stimulus I: experiments, in: Vision Sciences Society 12th Annual Meeting, 2012. -
40G. Portelli, O. Marre, M. J. Berry II, M. Antonini, P. Kornprobst.
Rate and latency coding for natural image identification, in: Sensory Coding and Natural Environment 2012, 2012. -
41J. Rankin, A. Meso, G. S. Masson, O. Faugeras, P. Kornprobst.
Motion direction integration following the onset of multistable stimuli (II): stability properties explain dynamic shifts in the dominant perceived direction, in: European Conference on Visual Perception, September 2012. -
42J. Rankin, A. Meso, G. S. Masson, O. Faugeras, P. Kornprobst.
Perceptual transition dynamics of a multi-stable visual motion stimulus II: modelling, in: Vision Sciences Society 12th Annual Meeting, 2012.
ftp://ftp-sop. inria. fr/ neuromathcomp/ publications/ 2012/ rankin-meso-etal:12. pdf
Conferences without Proceedings
-
43B. Cessac, R. Cofré, H. Nasser.
On the ubiquity of Gibbs distributions in spike train statistics, in: 3rd annual meeting of the GDR 2904 "Multi-electroides systems and signal processing to study neural networks", Marseille, October 2012. -
44B. Cessac, R. Salas, T. Viéville.
Using event-based metric for event-based neural network weight adjustment, in: ESANN12-82, 2012. -
45R. Cofré, B. Cessac.
Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses, in: AREADNE 2012. Santorini, Greece, July, 2012. Encoding And Decoding of Neural Ensembles, 2012. -
46R. Cofré, B. Cessac.
Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses, in: SCNE 2012. Wien, Austria, September 2012. Sensory Coding and Natural Environment., 2012. -
47R. Cofré, B. Cessac.
Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses, in: NEUROCOMP 2012. Bordeaux, France, October, 2012. The NeuroComp/KEOpS 12 workshop, 2012. -
48R. Cofré, B. Cessac.
Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses, in: GDR MEA 2012. Marseille, France, October, 2012. Encoding And Decoding of Neural Ensembles, 2012. -
49O. Faugeras.
Biological and Computer Visual Perception, in: Computer Vision and Video Analysis: An international workshop in honor of Prof. Shmuel Peleg, October 2012. -
50O. Faugeras.
Mean-field methods for networks of rate and spiking neurons, in: Edmond and Lily Safra Center for Brain Sciences seminar, The Hebrew University of Jerusalem, October 2012. -
51H. Nasser, O. Marre, B. Cessac.
Analyzing large-scale spike trains data with spatio-temporal constraints, in: SCNE 2012. Wien, Austria, September 2012. Sensory Coding and Natural Environment., September 2012. -
52H. Nasser, O. Marre, B. Cessac.
Analyzing large-scale spike trains data with spatio-temporal constraints, in: NEUROCOMP 2012. Bordeaux, France, October, 2012. The NeuroComp/KEOpS 12 workshop, September 2012. -
53H. Nasser, O. Marre, B. Cessac.
Spatio-Temporal modeling of large-scale retinal networks using Montecarlo principle, in: Inauguration INT. Marseille, France, Septembre, 2012., September 2012. -
54H. Nasser, O. Marre, M. J. Berry II, B. Cessac.
Spatio temporal Gibbs distribution analysis of spike trains using Monte Carlo method, in: AREADNE 2012 Research in Encoding And Decoding of Neural Ensembles, 2012.
Scientific Books (or Scientific Book chapters)
-
55B. Cessac, A. Palacios.
Spike train statistics from empirical facts to theory: the case of the retina, in: Modeling in Computational Biology and Biomedicine: A Multidisciplinary Endeavor, F. Cazals, P. Kornprobst (editors), Lectures Notes in Mathematical and Computational Biology (LNMCB), Springer-Verlag, 2012.
Books or Proceedings Editing
-
56F. Cazals, P. Kornprobst (editors)
Modeling in Computational Biology and Medicine: A Multidisciplinary Endeavor, Springer, 2012, To appear in 2013.
Internal Reports
-
57G. Faye, J. Rankin, P. Chossat.
Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysis, Inria Research Report, 2012, no RR-7872. -
58K. Masmoudi, M. Antonini, P. Kornprobst.
Streaming an image through the eye: The retina seen as a dithered scalable image coder, Inria, February 2012, no 7877.
http://hal. inria. fr/ hal-00668076 -
59A. Rao, A. Legout, B. Cessac, W. Dabbous.
Floor the Ceil and Ceil the Floor: Revisiting AIMD Evaluation, Inria, September 2012.
http://hal. inria. fr/ hal-00733890
Other Publications
-
60O. Faugeras, J. Maclaurin.
Mean-field equations for networks of rate neurons with correlated synaptic weights, 2012, Soon to appear on ArXiV. -
61G. Faye, P. Chossat.
A spatialized model of textures perception using structure tensor formalism, 2012, 49 p, Submitted.
-
62J. Bouecke, E. Tlapale, P. Kornprobst, H. Neumann.
Neural Mechanisms of Motion Detection, Integration, and Segregation: From Biology to Artificial Image Processing Systems, in: EURASIP Journal on Advances in Signal Processing, 2011, vol. 2011, special issue on Biologically inspired signal processing: Analysis, algorithms, and applications. [ DOI : 10.1155/2011/781561 ]
http://asp. eurasipjournals. com/ content/ 2011/ 1/ 781561/ -
63B. Cessac.
Statistics of spike trains in conductance-based neural networks: Rigorous results, in: The Journal of Mathematical Neuroscience, 2011, vol. 1, no 8, p. 1-42. [ DOI : 10.1186/2190-8567-1-8 ]
http://www. mathematical-neuroscience. com/ content/ 1/ 1/ 8 -
64B. Cessac, T. Viéville.
On Dynamics of Integrate-and-Fire Neural Networks with Adaptive Conductances, in: Frontiers in neuroscience, July 2008, vol. 2, no 2.
http://www. frontiersin. org/ computational_neuroscience/ 10. 3389/ neuro. 10/ 002. 2008/ abstract -
65R. Cofré, B. Cessac.
Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses, in: Chaos, Solitons and Fractals, 2012, submitted. -
66M.-J. Escobar, G. S. Masson, T. Viéville, P. Kornprobst.
Action Recognition Using a Bio-Inspired Feedforward Spiking Network, in: International Journal of Computer Vision, 2009, vol. 82, no 3, 284 p.
ftp://ftp-sop. inria. fr/ neuromathcomp/ publications/ 2009/ escobar-masson-etal:09. pdf -
67T. Gollisch, M. Meister.
Rapid Neural Coding in the Retina with Relative Spike Latencies, in: Science, 2008, vol. 319, p. 1108–1111, DOI: 10.1126/science.1149639. -
68K. Masmoudi, M. Antonini, P. Kornprobst.
Another look at the retina as an image scalar quantizer, in: Proceedings of the International Symposium on Circuits and Systems (ISCAS), 2010.
ftp://ftp-sop. inria. fr/ neuromathcomp/ publications/ 2010/ masmoudi-antonini-etal:10c. pdf -
69K. Masmoudi, M. Antonini, P. Kornprobst, L. Perrinet.
A novel bio-inspired static image compression scheme for noisy data transmission over low-bandwidth channels, in: Proceedings of the 35th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2010.
ftp://ftp-sop. inria. fr/ neuromathcomp/ publications/ 2010/ masmoudi-antonini-etal:10. pdf -
70T. Masquelier.
Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model, in: Journal of Computational Neuroscience, 2011.
http://dx. doi. org/ 10. 1007/ s10827-011-0361-9 -
71A. Oliva, A. Torralba.
Modeling the shape of the scene: A holistic representation of the spatial envelope, in: International Journal of Computer Vision, 2001, vol. 42, p. 145–175.
http://dx. doi. org/ 10. 1023/ A:1011139631724 -
72G. Schwartz, J. Macke, D. Amodei, H. Tang, M. Berry II.
Low error discrimination using a correlated population code, in: Journal of neurophysiology, August 2012, vol. 108, no 4, p. 1069–1088. -
73B. Siri, H. Berry, B. Cessac, B. Delord, M. Quoy.
Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons., in: Journal of Physiology-Paris, 2007. -
74B. Siri, H. Berry, B. Cessac, B. Delord, M. Quoy.
A Mathematical Analysis of the Effects of Hebbian Learning Rules on the Dynamics and Structure of Discrete-Time Random Recurrent Neural Networks, in: Neural Computation, December 2008, vol. 20, no 12, 12 p. -
75E. Tlapale, P. Kornprobst, G. S. Masson, O. Faugeras.
A Neural Field Model for Motion Estimation, in: Mathematical Image Processing, S. Verlag (editor), Springer Proceedings in Mathematics, 2011, vol. 5, p. 159–180.
http://dx. doi. org/ 10. 1007/ 978-3-642-19604-1 -
76E. Tlapale.
Modelling the dynamics of contextual motion integration in the primate, Université Nice Sophia Antipolis, January 2011. -
77J. Touboul, F. Wendling, P. Chauvel, O. Faugeras.
Neural Mass Activity, Bifurcations, and Epilepsy, in: Neural Computation, December 2011, vol. 23, no 12, p. 3232–3286. -
78A. Wohrer, P. Kornprobst.
Virtual Retina : A biological retina model and simulator, with contrast gain control, in: Journal of Computational Neuroscience, 2009, vol. 26, no 2, 219 p, DOI 10.1007/s10827-008-0108-4. -
79A. Wohrer.
Model and large-scale simulator of a biological retina with contrast gain control, University of Nice Sophia-Antipolis, 2008.