Bibliography
Major publications by the team in recent years
-
1F. Assous, P. Ciarlet, S. Labrunie, J. Segré.
Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method, in: J. Comput. Phys., 2003, vol. 191, no 1, pp. 147–176.
http://dx.doi.org/10.1016/S0021-9991(03)00309-7 -
2N. Besse, M. Mehrenberger.
Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov Poisson system, in: Math. Comp., 2005, vol. 77, pp. 93–123.
http://www.ams.org/journals/mcom/2008-77-261/S0025-5718-07-01912-6/home.html -
3M. Campos Pinto, M. Mehrenberger.
Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system, in: Numer. Math., 2008, vol. 108, no 3, pp. 407-444.
http://hal.archives-ouvertes.fr/inria-00070487/en/ -
4J. A. Carrillo, S. Labrunie.
Global Solutions for the One-Dimensional Vlasov-Maxwell System for Laser-Plasma Interaction, in: Math. Models Methodes Appl. Sci., 2006, vol. 16, pp. 19–57.
http://dx.doi.org/10.1142/S0218202506001042 -
5N. Crouseilles, M. Mehrenberger, E. Sonnendrücker.
Conservative semi-Lagrangian schemes for the Vlasov equation, in: J. Comput. Phys., 2010, vol. 229, pp. 1927-1953.
http://dx.doi.org/10.1006/jcph.2001.6818 -
6F. Filbet, E. Sonnendrücker, P. Bertrand.
Conservative numerical schemes for the Vlasov equation, in: J. Comput. Phys., 2001, vol. 172, no 1, pp. 166–187.
http://dx.doi.org/10.1006/jcph.2001.6818 -
7F. Filbet, E. Sonnendrücker.
Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, in: Math. Models Methods Appl. Sci., 2006, vol. 16, no 5, pp. 763–791.
http://hal.archives-ouvertes.fr/inria-00070460/en/ -
8E. Frénod, E. Sonnendrücker.
The finite Larmor radius approximation, in: SIAM J. Math. Anal., 2001, vol. 32, no 6, pp. 1227–1247.
http://hal.archives-ouvertes.fr/inria-00072809/en/ -
9V. Grandgirard, Y. Sarazin, P. Angelino, A. Bottino, N. Crouseilles, G. Darmet, G. Dif-Pradalier, X. Garbet, P. Ghendrih, S. Jolliet, G. Latu, E. Sonnendrücker, L. Villard.
Global full-f gyrokinetic simulations of plasma turbulence, in: Plasma Physics and Controlled Fusion, 2007, vol. 49, no 12B, B173 p.
http://stacks.iop.org/0741-3335/49/B173 -
10E. Sonnendrücker, J. R. Roche, P. Bertrand, A. Ghizzo.
The semi-Lagrangian method for the numerical resolution of the Vlasov equation, in: J. Comput. Phys., 1999, vol. 149, no 2, pp. 201–220.
http://hal.archives-ouvertes.fr/inria-00073296/en/
Doctoral Dissertations and Habilitation Theses
-
11P. Glanc.
Approximation numérique de l'équation de Vlasov par des méthodes de type remapping conservatif, Université de Strasbourg, January 2014.
http://hal.inria.fr/tel-00904887 -
12M. Lutz.
Etude mathematique et numerique d'un modèle gyrocinetique incluant des effets electromagnetiques pour la simulation d'un plasma de Tokamak, Université de Strasbourg, October 2013.
http://hal.inria.fr/tel-00875703
Articles in International Peer-Reviewed Journals
-
13C. Bardos, N. Besse.
The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits, in: Kinetic and related models, 2013, vol. 6, pp. 893-917. [ DOI : 10.3934/krm.2013.6.893 ]
http://hal.inria.fr/hal-00925109 -
14M. Bergot, M. Duruflé.
Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra, in: Communications in Computational Physics, 2013, vol. 14, no 5, pp. 1372-1414.
http://hal.inria.fr/hal-00723472 -
15M. Bergot, M. Duruflé.
High-Order Optimal Edge Elements for Pyramids, Prisms and Hexahedra, in: Journal of Computational Physics, January 2013, vol. 232, no 1, pp. 189-213. [ DOI : 10.1016/j.jcp.2012.08.005 ]
http://hal.inria.fr/hal-00605963 -
16J.-P. Bernard, E. Frénod, A. Rousseau.
Modeling confinement in Etang de Thau: numerical simulations and multi-scale aspects, in: Dynamical Systems and Differential Equations, DCDS Supplement, November 2013, vol. 2013, pp. 69-76.
http://hal.inria.fr/hal-00776060 -
17J.-P. Bernard, E. Frénod, A. Rousseau.
Paralic confinement computations in coastal environment with interlocked areas, in: Discrete and Continuous Dynamical Systems - Series S, May 2014, 10 p.
http://hal.inria.fr/hal-00833340 -
18H. Berninger, E. Frénod, M. Gander, M. Liebendorfer, J. Michaud.
Derivation of the Isotropic Diffusion Source Approximation (IDSA) for Supernova Neutrino Transport by Asymptotic Expansions, in: SIAM Journal on Mathematical Analysis, December 2013, vol. 45, no 6, pp. 3229-3265.
http://hal.inria.fr/hal-00762621 -
19A. Canelas, J. R. Roche.
Topology optimization in electromagnetic casting via quadratic programming, in: Inverse Problems in Science and Engineering, April 2013. [ DOI : 10.1080/17415977.2013.788173 ]
http://hal.inria.fr/hal-00909126, http://dx.doi.org/10.1080/17415977.2013.788173 -
20D. Coulette, N. Besse.
Multi-water-bag models of ion temperature gradient instability in cylindrical geometry, in: Phys. Plasmas, 2013, vol. 20. [ DOI : 10.1063/1.4804272 ]
http://hal.inria.fr/hal-00925100 -
21D. Coulette, N. Besse.
Numerical comparisons of gyrokinetic multi-water-bag models, in: Journal of Computational Physics, 2013, vol. 248, pp. 1-32. [ DOI : 10.1016/j.jcp.2013.03.065 ]
http://hal.inria.fr/hal-00925099 -
22A. Crestetto, P. Helluy, J. Jung.
Numerical resolution of conservation laws with OpenCL, in: ESAIM: Proceedings, July 2013, vol. 40, pp. 51-62. [ DOI : 10.1051/proc/201340004 ]
http://hal.inria.fr/hal-00759131 -
23N. Crouseilles, E. Frénod, S. Hirstoaga, A. Mouton.
Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field, in: Mathematical Models and Methods in Applied Sciences, 2013, vol. 23, no 08, pp. 1527–1559. [ DOI : 10.1142/S0218202513500152. ]
http://hal.inria.fr/hal-00638617 -
24E. Frénod.
Un exemple d'application des mathématiques à l'environnement littoral : La dynamique à long terme des dunes marines dans les zones soumises à la marée. Modélisation, Analyse, Homogénéisation et Simulation, in: Matapli, March 2013, pp. 129 –140.
http://hal.inria.fr/hal-00816149 -
25E. Frénod, A. Rousseau.
Paralic confinement: models and simulations, in: Acta Applicandae Mathematicae, February 2013, vol. 123, no 1, pp. 1-19. [ DOI : 10.1007/s10440-012-9706-2 ]
http://hal.inria.fr/hal-00644686 -
26M. Ghattassi.
Higher Order Continuous and Discontinuous Galerkin Methods for solving combined Conductive and Radiative Heat Transfer, in: International Journal for Numerical Methods in Engineering, 2013, preprint.
http://hal.inria.fr/hal-00835731 -
27P. Helluy, J. Jung.
OpenCL numerical simulations of two-fluid compressible flows with a 2D random choice method, in: International Journal on Finite Volumes, July 2013, vol. 10, pp. 1-38.
http://hal.inria.fr/hal-00759135 -
28P. Helluy, N. Pham, A. Crestetto.
Space-only hyperbolic approximation of the Vlasov equation, in: ESAIM: Proceedings, December 2013, vol. 43, pp. 17-36. [ DOI : 10.1051/proc/201343002 ]
http://hal.inria.fr/hal-00797974 -
29D. Moulton, W. Fundamenski, G. Manfredi, S. A. Hirstoaga, D. Tskhakaya.
Comparison of free-streaming ELM formulae to a Vlasov simulation, in: Journal of Nuclear Materials, 2013, vol. 438, Supplement, pp. S633-S637.
http://hal.inria.fr/hal-00918414
International Conferences with Proceedings
-
30A. Crestetto, P. Helluy.
Resolution of the Vlasov-Maxwell system by PIC Discontinuous Galerkin method on GPU with OpenCL, in: CEMRACS'11, France, 2013, vol. 38, pp. 257–274. [ DOI : 10.1051/proc/201238014 ]
http://hal.inria.fr/hal-00731021
Conferences without Proceedings
-
31T. Hattori, S. Labrunie, J. R. Roche, P. Bertrand.
Domain decomposition for Full-Waves Simulation in Cold Plasma, in: WAVES 2013, Tunis, Tunisia, June 2013.
http://hal.inria.fr/hal-00909191
Internal Reports
-
32A. Hamiaz, M. Mehrenberger.
Guiding center simulations on curvilinear grids, November 2013.
http://hal.inria.fr/hal-00908500 -
33E. Madaule, S. A. Hirstoaga, M. Mehrenberger, J. Pétri.
Semi-Lagrangian simulations of the diocotron instability, July 2013.
http://hal.inria.fr/hal-00841504
Other Publications
-
34A. Back, E. Frénod.
Geometric two-scale convergence on manifold and applications to the Vlasov equation, 2013.
http://hal.inria.fr/hal-00833192 -
35A. Back, E. Sonnendrücker.
Finite Element Hodge for Spline Discrete Differential Forms. Application to the Vlasov-Poisson Equations, 2013.
http://hal.inria.fr/hal-00822160 -
36A. Back, E. Sonnendrücker.
Spline discrete differential forms and a new finite difference discrete hodge operator, June 2013.
http://hal.inria.fr/hal-00822164 -
37E. Frénod, I. Faye, D. Seck.
Two-Scale numerical simulation of sand transport problems, October 2013.
http://hal.inria.fr/hal-00873012 -
38E. Frénod.
A PDE-like Toy-Model of Territory Working, 2013.
http://hal.inria.fr/hal-00817522 -
39E. Frénod.
An Attempt at Classifying Homogenization-Based Numerical Methods, 2013.
http://hal.inria.fr/hal-00872394 -
40E. Frénod, J.-P. Gouigoux, L. Touré.
Modeling and Solving Alternative Financial Solutions Seeking, 2013.
http://hal.inria.fr/hal-00833327 -
41E. Frénod, S. A. Hirstoaga, E. Sonnendrücker.
An exponential integrator for a highly oscillatory Vlasov equation, June 2013.
http://hal.inria.fr/hal-00833479 -
42E. Frénod, M. Lutz.
On the Geometrical Gyro-Kinetic Theory, 2013.
http://hal.inria.fr/hal-00837591 -
43P. Helluy, N. Pham, L. Navoret.
Hyperbolic approximation of the Fourier transformed Vlasov equation, 2013.
http://hal.inria.fr/hal-00872972 -
44P. Helluy, T. Strub.
Multi-GPU numerical simulation of electromagnetic waves, 2013.
http://hal.inria.fr/hal-00919702 -
45M. Lutz.
Application of Lie Transform Techniques for simulation of a charged particle beam, 2013.
http://hal.inria.fr/hal-00843640 -
46L. Marradi, B. Afeyan, M. Mehrenberger, N. Crouseilles, C. Steiner, E. Sonnendrücker.
Vlasov on GPU (VOG Project), 2013, 20 p, ESAIM Proceedings 2013.
http://hal.inria.fr/hal-00908498 -
47M. Massaro, P. Helluy, V. Loechner.
Numerical simulation for the MHD system in 2D using OpenCL, 2013.
http://hal.inria.fr/hal-00919751 -
48C. Steiner, M. Mehrenberger, D. Bouche.
A semi-Lagrangian discontinuous Galerkin convergence, 2013.
http://hal.inria.fr/hal-00852411
-
49M. Aroztegui, J. Herskovits, J. R. Roche.
A feasible direction interior point algorithm for nonlinear semidefinite programming, November 2012.
http://hal.archives-ouvertes.fr/hal-00758803 -
50F. Assous, P. Ciarlet, S. Labrunie.
Theoretical tools to solve the axisymmetric Maxwell equations, in: Math. Meth. Appl. Sci., 2002, vol. 25, pp. 49–78. -
51F. Assous, P. Ciarlet, S. Labrunie.
Solution of axisymmetric Maxwell equations, in: Math. Meth. Appl. Sci., 2003, vol. 26, pp. 861–896. -
52F. Assous, P. Ciarlet, S. Labrunie, J. Segré.
Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The Singular Complement Method, in: J. Comp. Phys., 2003, vol. 191, pp. 147–176. -
53F. Assous, P. Ciarlet, J. Segré.
Numerical solution to the time dependent Maxwell equations in two dimensional singular domains: the Singular Complement Method, in: J. Comput. Phys., 2000, vol. 161, pp. 218–249. -
54F. Assous, P. Ciarlet, E. Sonnendrücker.
Resolution of the Maxwell equations in a domain with reentrant corners, in: M 2 AN, 1998, vol. 32, pp. 359–389. -
55C. Bardos, P. Degond.
Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 1985, vol. 2, no 2, pp. 101–118. -
56S. Benachour, F. Filbet, P. Laurençot, E. Sonnendrücker.
Global existence for the Vlasov-Darwin system in for small initial data, in: Math. Methods Appl. Sci., 2003, vol. 26, no 4, pp. 297–319. -
57C. Bernardi, M. Dauge, Y. Maday.
Spectral methods for axisymmetric domains, Series in Applied Mathematics, Gauthier-Villars, Paris and North Holland, Amsterdam, 1999. -
58C. Birdsall, A. Langdon.
Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985. -
59Y. Brenier.
Convergence of the Vlasov-Poisson system to the incompressible Euler equations, in: Comm. Partial Differential Equations, 2000, vol. 25, no 3-4, pp. 737–754. -
60A. Canelas, J. R. Roche.
Topology Optimization in Electromagnetic Casting via quadratic programming, Nov 2012.
http://hal.archives-ouvertes.fr/hal-00758806 -
61A. Canelas, J. R. Roche, J. Herskovits.
Shape optimization for inverse electromagnetic casting problems, in: Inverse Problems in Science and Engineering, 2012, vol. 20, no 7, pp. 951-972.
http://dx.doi.org/10.1080/17415977.2011.637206 -
62P. Ciarlet, N. Filonov, S. Labrunie.
Un résultat de fermeture pour les équations de Maxwell en géométrie axisymétrique, in: C. R. Acad. Sci. Paris série I, 2000, vol. 331, pp. 293–298. -
63R. DiPerna, P.-L. Lions.
Global weak solutions of the Vlasov-Maxwell systems, in: Comm. Pure. Appl. Math., 1989, vol. XLII, pp. 729–757. -
64F. Filbet, E. Sonnendrücker, P. Bertrand.
Conservative numerical schemes for the Vlasov equation, in: J. Comput. Phys., 2001, vol. 172, no 1, pp. 166–187. -
65I. Foster, C. Kesselman.
The Grid, blueprint for a new computing infrastructure, Morgan Kaufmann Publishers, Inc., 1998. -
66E. Frénod, E. Sonnendrücker.
Long time behavior of the Vlasov equation with a strong external magnetic field, in: Math. Models Methods Appl. Sci., 2000, vol. 10, no 4, pp. 539–553. -
67E. Frénod, E. Sonnendrücker.
The finite Larmor radius approximation, in: SIAM J. Math. Anal., 2001, vol. 32, no 6, pp. 1227–1247. -
68E. Frénod, E. Sonnendrücker.
Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, in: Asymptot. Anal., 1998, vol. 18, no 3-4, pp. 193–213. -
69E. Garcia, S. Labrunie.
Régularité spatio-temporelle de la solution des équations de Maxwell dans des domaines non-convexes, in: C. R. Acad. Sci. Paris, série I, 2002, vol. 334, pp. 293–298. -
70R. T. Glassey.
The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996, xii+241 p. -
71F. Golse, L. Saint-Raymond.
The Vlasov-Poisson system with strong magnetic field in quasineutral regime, in: Math. Models Methods Appl. Sci., 2003, vol. 13, no 5, pp. 661–714. -
72M. Griebel, G. Zumbusch.
Hash based adaptive parallel multilevel methods with space-filling curves, 2000. -
73E. Horst, R. Hunze.
Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, in: Math. Methods Appl. Sci., 1984, vol. 6, no 2, pp. 262–279. -
74M. Parashar, J. C. Browne, C. Edwards, K. Klimkowski.
A common data management infrastructure for adaptive algorithms for PDE solutions, 1997. -
75J. Petri.
Non-linear evolution of the diocotron instability in a pulsar electrosphere: two-dimensional particle-in-cell simulations, in: Astronomy & Astrophysics, 2009, vol. 503, no 1, pp. 1-12. -
76L. Saint-Raymond.
The gyrokinetic approximation for the Vlasov-Poisson system, in: Math. Models Methods Appl. Sci., 2000, vol. 10, no 9, pp. 1305–1332. -
77E. Violard.
A Semantic Framework To Adress Data Locality in Data Parallel Programs, in: Parallel Computing, 2004, vol. 30, no 1, pp. 139–161.