EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1P. Besnard, M.-O. Cordier, Y. Moinard.

    Ontology-based inference for causal explanation, in: Integrated Computer-Aided Engineering, 2008, vol. 15, no 4, pp. 351-367.

    http://hal.inria.fr/inria-00476906/en/
  • 2C. Gascuel-Odoux, P. Aurousseau, M.-O. Cordier, P. Durand, F. Garcia, V. Masson, J. Salmon-Monviola, F. Tortrat, R. Trépos.

    A decision-oriented model to evaluate the effect of land use and agricultural management on herbicide contamination in stream water, in: Environmental modelling & software, 2009, vol. 24, pp. 1433-1446.

    http://hal.inria.fr/hal-00544122/en
  • 3T. Guyet, R. Quiniou.

    Extracting temporal patterns from interval-based sequences, in: International Joint Conference on Artificial Intelligence (IJCAI), Barcelone, Spain, July 2011.

    http://hal.inria.fr/inria-00618444
  • 4Y. Pencolé, M.-O. Cordier.

    A formal framework for the decentralised diagnosis of large scale discrete event systems and its application to telecommunication networks, in: Artificial Intelligence Journal, 2005, vol. 164, no 1-2, pp. 121-170.

    http://hal.inria.fr/inria-00511104/en/
Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 5T. Bouadi.

    Analyse multidimensionnelle interactive de résultats de simulation. Aide à la décision dans le domaine de l'agroécologie, Université Rennes 1, November 2013.

    http://hal.inria.fr/tel-00933375
  • 6Y. Zhao.

    Modélisation qualitative des agro-écosystèmes et aide à leur gestion par utilisation d'outils de model-checking, Université Rennes 1, January 2014.

    http://hal.inria.fr/tel-00933443

Articles in International Peer-Reviewed Journals

  • 7A. Aubert, R. Tavenard, R. Emonet, A. De Lavenne, S. Malinowski, T. Guyet, R. Quiniou, J.-M. Odobez, P. Mérot, C. Gascuel-Odoux.

    Clustering flood events from water quality time-series using Latent Dirichlet Allocation model, in: Water Resources Research, 2013, 1 p. [ DOI : 10.1002/2013WR014086 ]

    http://hal.inria.fr/halshs-00906292
  • 8T. Bouadi, M.-O. Cordier, R. Quiniou.

    Computing Skyline Incrementally in Response to Online Preference Modification, in: Transactions on Large-Scale Data- and Knowledge- Centered Systems, 2013, vol. 10, pp. 34-59. [ DOI : 10.1007/978-3-642-41221-9_2 ]

    http://hal.inria.fr/hal-00920548
  • 9R. Trépos, A. Salleb-Aouissi, M.-O. Cordier, V. Masson, C. Gascuel-Odoux.

    Building Actions From Classification Rules, in: Knowledge and Information Systems (KAIS) journal, 2013, vol. 34, no 2, pp. 267-298. [ DOI : 10.1007/s10115-011-0466-5 ]

    http://hal.inria.fr/hal-00649388

Articles in National Peer-Reviewed Journals

  • 10V. Masson, F. Ployette, M.-O. Cordier, C. Gascuel-Odoux, R. Trépos.

    Sacadeau-Software, un logiciel d'aide à la décision pour améliorer la qualité de l'eau, in: Revue d'Intelligence Artificielle, September 2013, vol. 27, no 4-5, pp. 443-469. [ DOI : 10.3166/RIA.27.443-469 ]

    http://hal.inria.fr/hal-00881658

International Conferences with Proceedings

  • 11S. Benabderrahmane.

    Biomedical Knowledge Extraction Using Fuzzy Differential Profiles and Semantic Ranking, in: 14th Conference on Artificial Intelligence in Medicine, AIME 2013, Murcia, Spain, N. Peek (editor), June 2013, vol. 7885, pp. 84-93. [ DOI : 10.1007/978-3-642-38326-7_13 ]

    http://hal.inria.fr/hal-00934265
  • 12S. Benabderrahmane.

    Enhancing Transcriptomic Data Mining with Semantic Ranking: Towards a new Functional Spectral Representation, in: International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2013, Granada, Spain, ISBN 978-84-15814-13-9, March 2013, vol. 15814, pp. 978-84.

    http://hal.inria.fr/hal-00934279
  • 13S. Benabderrahmane.

    Formal Concept Analysis and Knowledge Integration for Highlighting Statistically Enriched Functions from Microarrays Data, in: International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2014, Granada, Spain, April 2014, 1 p.

    http://hal.inria.fr/hal-00935378
  • 14P. Besnard, M.-O. Cordier, Y. Moinard.

    Arguments using ontological and causal knowledge, in: FoIKS, Bordeaux, France, C. Beierle, C. Meghini (editors), LNCS, Springer, March 2014, vol. 8367, pp. 79–96.

    http://hal.inria.fr/hal-00931679
  • 15M.-O. Cordier, R. Micalizio, S. Robin, L. Rozé.

    Adapting Web Services to Maintain QoS Even When Faults Occur, in: ICWS - IEEE 20th International Conference on Web Services, Santa Clara - CA, United States, 2013, pp. 403-410. [ DOI : 10.1109/ICWS.2013.61 ]

    http://hal.inria.fr/hal-00920474
  • 16T. Guyet.

    Visualisation de données relationnelles, in: Conférence Internationale de Géomatique et d'Analyse Spatiale (SAGEO), Brest, France, September 2013.

    http://hal.inria.fr/hal-00916923
  • 17T. Guyet, F. Le Ber, S. Da Silva, C. Lavigne.

    Comparaison des chemins de Hilbert adaptatif et des graphes de voisinage pour la caractérisation d'un parcellaire agricole, in: Conférence Extraction et Gestion de Connaissances, Rennes, France, January 2014.

    http://hal.inria.fr/hal-00916964
  • 18T. Guyet, H. Nicolas, B. Ghedamsi, E. Athane.

    Fouille d'images géoréférencées avec RapidMiner, in: Conférence Internationale de Géomatique et d'Analyse Spatiale (SAGEO), Brest, France, September 2013.

    http://hal.inria.fr/hal-00916921
  • 19S. Malinowski, T. Guyet, R. Quiniou, R. Tavenard.

    1d-SAX: A Novel Symbolic Representation for Time Series, in: International Symposium on Intelligent Data Analysis, United Kingdom, 2013, pp. 273-284. [ DOI : 10.1007/978-3-642-41398-8_24 ]

    http://hal.inria.fr/halshs-00912512
  • 20S. Malinowski, T. Guyet, R. Quiniou, R. Tavenard.

    1d-SAX : une nouvelle représentation symbolique pour les séries temporelles, in: Conférence Extraction et Gestion de Connaissances, Rennes, France, January 2014.

    http://hal.inria.fr/hal-00916970

National Conferences with Proceedings

  • 21J. Bourbeillon, L. Piel, R. El Ayeb, D. Rousselière, T. Guyet.

    Construction semi-automatique d'une ontologie de la perception des paysages, in: Conférence Ingénierie des Connaissances 2013, Lille, France, May 2013, pp. 1-10.

    http://hal.inria.fr/hal-00920722

Conferences without Proceedings

  • 22P. Besnard, M.-O. Cordier, Y. Moinard.

    Arguments using ontological and causal knowledge, in: JIAF 2013 (Septièmes Journées de l'Intelligence Artificielle Fondamentale), Aix-en-Provence, France, S. Konieczny, N. Maudet (editors), April 2013, pp. 41-48.

    http://hal.inria.fr/hal-00932294

Scientific Books (or Scientific Book chapters)

  • 23L. Amgoud, P. Besnard, C. Cayrol, P. Chatalic, M.-C. Lagasquie-Schiex.

    Argumentation et raisonnement en présence de contradictions, in: Panorama de l'intelligence artificielle Ses bases méthodologiques, ses développements, P. Marquis, O. Papini, H. Prade (editors), Cépaduès, January 2013, vol. 2.

    http://hal.inria.fr/hal-00770580
  • 24M.-O. Cordier, P. Dague, Y. Pencolé, L. Travé-Massuyès.

    Diagnostic et supervision : approches à base de modèles, in: Panorama de l'intelligence artificielle : Ses bases méthodologiques, ses développements, P. Marquis, O. Papini, H. Prade (editors), Cépaduès, January 2013, vol. 2.

    http://hal.inria.fr/hal-00769636
  • 25T. Guyet, F. Le Ber, M. Teisseire.

    Intelligence artificielle et agronomie, Revue d'Intelligence Artificielle, July 2013, vol. 27, 273 p.

    http://hal.inria.fr/hal-00916980
  • 26A. Herzig, P. Besnard.

    Représentation des connaissances : modalités, conditionnels et raisonnement non monotone, in: Panorama de l'intelligence artificielle Ses bases méthodologiques, ses développements, P. Marquis, O. Papini, H. Prade (editors), Cépaduès, January 2013, vol. 2.

    http://hal.inria.fr/hal-00770563
  • 27A. Lallouet, Y. Moinard, P. Nicolas, I. Stéphan.

    Programmation logique, in: Panorama de l'intelligence artificielle Ses bases méthodologiques, ses développements, P. Marquis, O. Papini, H. Prade (editors), Cépaduès, January 2013, vol. 2.

    http://hal.inria.fr/hal-00758896

Internal Reports

  • 28F. Gourmelon, D. Le Guyader, G. Fontenelle, H. Levrel, C. Tissot, L. Bonneau De Beaufort, M. Rouan.

    Modélisation et scénarisation des activités humaines en rade de Brest, February 2013, 93 p.

    http://hal.inria.fr/hal-00797154
References in notes
  • 29B. Dubuisson (editor)

    Diagnostic, intelligence artificielle et reconnaissance des formes, Traité IC2 : Information - Commande - Communication, Hermes, 2001.
  • 30S. Dzeroski, N. Lavrač (editors)

    Relational Data Mining, Springer, Berlin, 2001.
  • 31W. Hamscher, L. Console, J. de Kleer (editors)

    Readings in Model-Based Diagnosis, Morgan Kaufmann, San Meteo, CA, Etats-Unis, 1992.
  • 32C. Aggarwal.

    Data Streams: Models and Algorithms, Advances in Database Systems, Springer, 2007.
  • 33R. Agrawal, T. Imielinski, A. N. Swami.

    Mining Association Rules between Sets of Items in Large Databases, in: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., P. Buneman, S. Jajodia (editors), 26–28  1993, pp. 207–216.
  • 34R. Agrawal, R. Srikant.

    Mining sequential patterns, in: Eleventh International Conference on Data Engineering, Taipei, Taiwan, P. S. Yu, A. S. P. Chen (editors), IEEE Computer Society Press, 1995, pp. 3–14.
  • 35G. Alarme.

    Monitoring and alarm interpretation in industrial environments, in: AI Communications, 1998, vol. 11, 3-4, pp. 139-173, S. Cauvin, Marie-Odile Cordier, Christophe Dousson, P. Laborie, F. Lévy, J. Montmain, M. Porcheron, I. Servet, L. Travé-Massuyès.
  • 36M. L. Angheloiu.

    Incremental and adaptive learning for online monitoring of embedded software, Master 2 recherche informatique, Université de Rennes 1, June 2012.

    http://dumas.ccsd.cnrs.fr/dumas-00725171
  • 37M. Basseville, M.-O. Cordier.

    Surveillance et diagnostic de systèmes dynamiques : approches complémentaires du traitement de signal et de l'intelligence artificielle, Irisa, 1996, no 1004.

    ftp://ftp.irisa.fr/techreports/1996/PI-1004.ps.gz
  • 38P. Besnard, M.-O. Cordier.

    Inferring causal explanations, in: Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU'99), A. Hunter, S. Parsons (editors), Lecture Notes in Artificial Intelligence, Springer-Verlag, 1999, vol. 1638, pp. 55-67.
  • 39P. Besnard, M.-O. Cordier, Y. Moinard.

    Configurations for Inference between Causal Statements, in: KSEM 2006 (First Int. Conf. on Knowledge Science, Engineering and Management), J. Lang, F. Lin, J. Wang (editors), LNAI, Springer, aug 2006, no 4092, pp. 292–304.

    http://www.irisa.fr/dream/dataFiles/moinard/causeksempub.pdf
  • 40P. Besnard, M.-O. Cordier, Y. Moinard.

    Ontology-based inference for causal explanation, in: KSEM07 (Second International Conference on Knowledge Science, Engineering and Management), Z. Zhang, J. Siekmann (editors), LNAI, Springer, nov 2007, no 4798, pp. 153-164.

    http://www.irisa.fr/dream/dataFiles/moinard/ksem07bcausesonto.pdf
  • 41P. Besnard, M.-O. Cordier, Y. Moinard.

    Deriving explanations from causal information, in: ECAI 2008 (18th European Conference on Artificial Intelligence), Patras, Greece, M. Ghallab, C. D. Spytopoulos, N. Fakotakis, N. Avouris (editors), IOS Press, jul 2008, pp. 723–724.
  • 42P. Besnard, M.-O. Cordier, Y. Moinard.

    Ontology-based inference for causal explanation, in: Integrated Computer-Aided Engineering, 2008, vol. 15, no 4, pp. 351-367.
  • 43P. Besnard, A. Hunter.

    Elements of Argumentation, The MIT Press, june 2008.

    http://www.mitpress.mit.edu/
  • 44C. Biernacki, G. Celeux, G. Govaert, F. Langrognet.

    Model-Based Cluster and Discriminant Analysis with the MIXMOD Software, in: Computational Statistics and Data Analysis, 2006, vol. 51, no 2, pp. 587-600.
  • 45A. Bochman.

    A Causal Theory of Abduction, in: 7th Int. Symposium on Logical Formalizations of Common Sense Reasoning, S. McIlraith, P. Peppas, M. Thielscher (editors), 2005, pp. 33–38.
  • 46T. Bouadi, M.-O. Cordier, R. Quiniou.

    Incremental Computation of Skyline Queries with Dynamic Preferences, in: Database and Expert Systems Applications (DEXA), Vienne, Austria, S. W. Liddle, K.-D. Schewe, A. M. Tjoa, X. Zhou (editors), Springer, 2012, vol. 1, pp. 219-233. [ DOI : 10.1007/978-3-642-32600-4_17 ]

    http://hal.inria.fr/hal-00757838
  • 47Y. Chi, S. Nijssen, R. R. Muntz, J. N. Kok.

    Frequent Subtree Mining–An Overview, in: Fundamenta Informaticae, IOS Press, 2005, vol. 66, pp. 161–198.
  • 48A. Cornuéjols, L. Miclet.

    Apprentissage artificiel : concepts et algorithmes, Eyrolles, 2002.
  • 49L. De Raedt.

    A perspective on inductive databases, in: SIGKDD Explor. Newsl., 2002, vol. 4, no 2, pp. 69–77.

    http://doi.acm.org/10.1145/772862.772871
  • 50C. Dousson.

    Chronicle Recognition System, 1994.
  • 51C. Dousson.

    Suivi d'évolutions et reconnaissance de chroniques, Université Paul Sabatier de Toulouse, LAAS-CNRS, Toulouse, 1994.
  • 52C. Dousson, T. V. Duong.

    Discovering Chronicles with Numerical Time Constraints from Alarm Logs for Monitoring Dynamic Systems, in: IJCAI, T. Dean (editor), Morgan Kaufmann, 1999, pp. 620-626.
  • 53C. Dousson, P. Gaborit, M. Ghallab.

    Situation recognition: representation and algorithms, in: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Chambéry, France, 1993, pp. 166-172.
  • 54S. Dzeroski, L. Todorovski.

    Discovering dynamics: from inductive logic programming to machine discovery, in: Journal of Intelligent Information Systems, 1995, vol. 4, pp. 89-108.
  • 55J. Gao, B. Ding, W. Fan, J. Han, P. S. Yu.

    Classifying Data Streams with Skewed Class Distributions and Concept Drifts, in: IEEE Internet Computing, 2008, vol. 12, no 6, pp. 37-49.
  • 56M. Garofalakis, J. Gehrke, R. Rastogi.

    Querying and Mining Data Streams: You Only Get One Look. Tutorial notes, in: ACM Int. Conf. on Management of Data, 2002.
  • 57E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, H. Turner.

    Nonmonotonic causal theories, in: Artificial Intelligence Journal, March 2004, vol. 153, no 1–2, pp. 49–104.
  • 58T. Guyet, H. Nicolas, A. Diouck.

    Segmentation multi-échelle de séries temporelles d'images satellite : Application à l'étude d'une période de sécheresse au Sénégal, in: Reconnaissance de Forme et Intelligence Artificielle (RFIA), Lyon, France, January 2012.

    http://hal.inria.fr/hal-00646158
  • 59T. Guyet, R. Quiniou.

    Mining temporal patterns with quantitative intervals, in: 4th International Workshop on Mining Complex Data at ICDM 2008, December 2008.
  • 60T. Guyet, R. Quiniou.

    Extraction incrémentale de séquences fréquentes dans un flux d'itemsets, in: Extraction et Gestion de Connaissances (EGC'2012), Bordeaux, France, B. Pinaud, G. Melançon, Y. Lechevallier (editors), RNTI, Hermann, February 2012.

    http://hal.inria.fr/hal-00648893
  • 61T. Guyet, R. Quiniou.

    Incremental mining of frequent sequences from a window sliding over a stream of itemsets, in: Journées Intelligence Artificielle Fondamentale, France, May 2012, pp. 153-162.

    http://hal.inria.fr/hal-00757120
  • 62D. T. Hau, E. W. Coiera.

    Learning qualitative models of dynamic systems, in: Machine Learning, 1997, vol. 26, pp. 177-211.
  • 63T. Imielinski, H. Mannila.

    A database perspective on knowledge discovery, in: Comm. of The ACM, 1996, vol. 39, pp. 58–64.
  • 64M. Kubat, J. Gama, P. E. Utgoff.

    Incremental learning and concept drift, in: Intell. Data Anal., 2004, vol. 8, no 3.
  • 65C. Largouët, M.-O. Cordier, Y.-M. Bozec, Y. Zhao, G. Fontenelle.

    Use Of Timed Automata And Model-Checking To Explore Scenarios On Ecosystem Models, in: Environmental Modelling and Software, November 2011, no 30, pp. 123-138, On-line publication : 26 November 2011. [ DOI : 10.1016/j.envsoft.2011.08.005 ]

    http://hal.inria.fr/hal-00649275
  • 66E.-G. Lazrak, M. Benoît, J.-F. Mari.

    Time-Space Dependencies in Land-Use Successions at Agricultural Landscape Scales, in: International Conference on Integrative Landscape Modelling, 2010.

    http://hal.inria.fr/inria-00482890
  • 67S. D. Lee, L. De Raedt.

    Constraint Based Mining of First Order Sequences in SeqLog, LNCS, Springer-Verlag, 2004, vol. 2682, pp. 154-173.
  • 68J. Lin, E. Keogh, L. Wei, S. Lonardi.

    Experiencing SAX: a Novel Symbolic Representation of Time Series, in: Data Mining and Knowledge Discovery, 2007, vol. 15, no 2, pp. 107–144.
  • 69H. Mannila, H. Toivonen, A. I. Verkamo.

    Discovery of Frequent Episodes in Event Sequences, in: Data Mining and Knowledge Discovery, 1997, vol. 1, no 3, pp. 259–289.
  • 70A. Marascu, F. Masseglia.

    Mining sequential patterns from data streams: a centroid approach, in: J. Intell. Inf. Syst., 2006, vol. 27, no 3, pp. 291–307.

    http://dx.doi.org/10.1007/s10844-006-9954-6
  • 71F. Masseglia, F. Cathala, P. Poncelet.

    The PSP Approach for Mining Sequential Patterns, in: Proceedings of the Second European Symposium on Principles of Data Mining and Knowledge Discovery, 1998, pp. 176–184.
  • 72Y. Moinard.

    A formalism for causal explanations with an Answer Set Programming translation, in: 4th International Conference on Knowledge Science, Engineering & Management (KSEM 2010), United Kingdom Belfast, B. Scotney, Z. Jin (editors), LNCS, Springer-Verlag, Aug 2010.

    http://hal.inria.fr/inria-00511093/en
  • 73Y. Moinard.

    Using ASP with recent extensions for causal explanations, in: ASPOCP10, Answer Set Programming and Other Computing Paradigms Workshop, associated with ICLP, United Kingdom Edinburgh, M. Balduccini, S. Woltran (editors), Jul 2010.

    http://hal.inria.fr/inria-00542880/en
  • 74D. Page.

    ILP: Just Do It, in: Proceedings of ILP'2000, J. Cussens, A. Frisch (editors), LNAI, Springer, 2000, vol. 1866, pp. 3-18.
  • 75Y. Pencolé, M.-O. Cordier, L. Rozé.

    Incremental decentralized diagnosis approach for the supervision of a telecommunication network, in: DX'01 (International Workshop on Principles of Diagnosis), Sansicario, Italy, 2001.

    http://www.irisa.fr/dream/dataFiles/ypencole/DX01.pdf
  • 76R. Quiniou, M.-O. Cordier, G. Carrault, F. Wang.

    Application of ILP to cardiac arrhythmia characterization for chronicle recognition, in: ILP'2001, C. Rouveirol, M. Sebag (editors), LNAI, Springer-Verlag, 2001, vol. 2157, pp. 220-227.

    http://www.irisa.fr/dream/dataFiles/quiniou/ilp01.pdf
  • 77N. Ramaux, M. Dojat, D. Fontaine.

    Temporal scenario recognition for intelligent patient monitoring, in: Proc. of the 6th Conference on Artificial Intelligence in Medecine Europe (AIME'97), 1997.
  • 78R. Reiter.

    A theory of diagnosis from first principles, in: Artificial Intelligence, 1987, vol. 32, no 1, pp. 57-96.
  • 79M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis.

    Diagnosability of discrete event systems, in: Proceedings of the International Conference on Analysis and Optimization of Systems, 1995, vol. 40, pp. 1555-1575.
  • 80M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis.

    Active Diagnosis of Discrete-Event Systems, in: IEEE Transactions on Automatic Control, 1998, vol. 43, no 7, pp. 908-929.
  • 81M. Sebag, C. Rouveirol.

    Constraint Inductive Logic Programming, in: Advances in Inductive Logic Programming, L. De Raedt (editor), IOS Press, 1996, pp. 277-294.
  • 82K. Sedki, L. Bonneau De Beaufort.

    Cognitive Maps and Bayesian Networks for Knowledge Representation and Reasoning, in: 24th International Conference on Tools with Artificial Intelligence, Greece, 2012, pp. 1035-1040. [ DOI : 10.1109/ICTAI.2012.175 ]

    http://hal.inria.fr/hal-00757189
  • 83P. Smets, R. Kennes.

    The Transferable Belief Model, in: Classic Works of the Dempster-Shafer Theory of Belief Functions, R. R. Yager, L. Liu (editors), Studies in Fuzziness and Soft Computing, Springer Berlin Heidelberg, 2008, vol. 219, pp. 693-736.
  • 84The WS-Diamond Team.

    2, in: WS-DIAMOND: Web Services DIAgnosability, MONitoring and Diagnosis, J. Mylopoulos, M. Papazoglou (editors), MIT Press Series on Information Systems, 2009.
  • 85A. Vautier, M.-O. Cordier, R. Quiniou.

    An Inductive Database for Mining Temporal Patterns in Event Sequences (short version), in: Proceedings of IJCAI-05 (International Joint Conference on Artificial Intelligence), Edinburgh, L. P. Kaelbling, A. Saffiotti (editors), 2005, pp. 1640-1641, Poster.
  • 86G. Widmer, M. Kubat.

    Learning in the Presence of Concept Drift and Hidden Contexts, in: Machine Learning, 1996, vol. 23, no 1, pp. 69-101.
  • 87X. Yan, J. Han.

    gSpan: Graph-Based Substructure Pattern Mining, in: Proceedings of the 2002 IEEE International Conference on Data Mining, Washington, DC, USA, ICDM '02, IEEE Computer Society, 2002, pp. 721–.
  • 88Y. Zhao, M.-O. Cordier, C. Largouët.

    Répondre aux questions "Que faire pour" par synthèse de contrôleur sur des automates temporisés - Application à la gestion de la pêche, in: RFIA 2012 (Reconnaissance des Formes et Intelligence Artificielle), Lyon, France, January 2012, pp. 978-2-9539515-2-3, Session "Posters".

    http://hal.inria.fr/hal-00656543
  • 89J. de Kleer, A. Mackworth, R. Reiter.

    Characterizing diagnoses and systems, in: Artificial Intelligence, 1992, vol. 56, no 2-3, pp. 197-222.