EN FR
EN FR


Section: Overall Objectives

Overall Objectives

The goal of the Larsen team is to move robots outside of the research laboratories and manufacturing industries: current robots are far from being the fully autonomous, reliable, and interactive robots that could co-exist with us in our society and run for days, weeks, or months. While there is undoubtedly progress to be made on the hardware side, robotics platforms are quickly maturing and we believe the main challenges to achieve our goal are now on the software side. We want our software to be able to run on low-cost mobile robots that are therefore not equipped with high-performance sensors or actuators, so that our techniques can realistically be deployed and evaluated in real settings, such as in service and assistive robotic applications. We envision that these robots will be able to cooperate with each other but also with intelligent spaces or apartments which can also be seen as robots spread in the environments. Like robots, intelligent spaces are equipped with sensors that make them sensitive to human needs, habits, gestures, etc. and actuators to be adaptive and responsive to environment changes and human needs. These intelligent spaces can give robots improved skills, with less expensive sensors and actuators enlarging their field of view of human activities, making them able to behave more intelligently, with better awareness of people evolving in their environment. As robots and intelligent spaces share common characteristics, we will use, for the sake of simplicity, the term robot for both mobile robots and intelligent spaces.

Among the particular issues we want to address, we aim at designing robots having the ability to:

  • handle dynamic environment and unforeseen situations;

  • cope with physical damages;

  • interact physically and socially with humans;

  • collaborate with each other;

  • exploit the multitude of sensors measurements from their surrounding;

  • enhance their acceptability and usability by end-users without robotics background.

All these abilities can be summarized by the following two objectives:

  • life-long autonomy: continuously perform tasks while adapting to sudden or gradual changes in both the environment and the morphology of the robot;

  • natural interaction with robotics systems: interact with both other robots and humans for long periods of time, taking into account that people and robots learn from each other when they live together.