EN FR
EN FR


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 1A. Rousseau.

    Modélisation mathématique et numérique de quelques problèmes issus des sciences de l’environnement, Université de Montpellier, December 2015, Habilitation à diriger des recherches.

    https://hal.inria.fr/tel-01238702

Articles in International Peer-Reviewed Journals

  • 2S. Barbier, A. Rapaport, A. Rousseau.

    Modelling of biological decontamination of a water resource in natural environment and related feedback strategies, in: Journal of Scientific Computing, 2016.

    https://hal.inria.fr/hal-01138335
  • 3J.-P. Bernard, E. Frenod, A. Rousseau.

    Paralic confinement computations in coastal environment with interlocked areas, in: Discrete and Continuous Dynamical Systems - Series S, February 2015, vol. 8, no 1, pp. 45-54. [ DOI : 10.3934/dcdss.2015.8.45 ]

    https://hal.archives-ouvertes.fr/hal-00833340
  • 4E. Blayo, D. Cherel, A. Rousseau.

    Towards optimized Schwarz methods for the Navier-Stokes equations, in: Journal of Scientific Computing, 2015, 22 p.

    https://hal.inria.fr/hal-00982087
  • 5E. Blayo, A. Rousseau.

    About Interface Conditions for Coupling Hydrostatic and Nonhydrostatic Navier-Stokes Flows, in: Discrete and Continuous Dynamical Systems - Series S, 2015, 10 p.

    https://hal.inria.fr/hal-01185255
  • 6F. Campillo, M. Joannides, I. Larramendy-Valverde.

    Analysis and approximation of a stochastic growth model with extinction, in: Methodology and Computing in Applied Probability, January 2015, pp. 1-17.

    https://hal.inria.fr/hal-01111641
  • 7A. Duran.

    A robust and well-balanced scheme for the 2D Saint-Venant system on unstructured meshes with friction source term, in: International Journal for Numerical Methods in Fluids, 2015. [ DOI : 10.1002/fld.4011 ]

    https://hal.archives-ouvertes.fr/hal-01121264
  • 8C. Fritsch, J. Harmand, F. Campillo.

    A modeling approach of the chemostat, in: Ecological Modelling, March 2015, pp. 1-13. [ DOI : 10.1016/j.ecolmodel.2014.11.021 ]

    https://hal.inria.fr/hal-01090651
  • 9V. Guinot, M. Savéan, H. Jourde, L. Neppel.

    Conceptual rainfall-runoff model with a two-parameter, infinite characteristic time transfer function, in: Hydrological Processes, 2015, forthcoming. [ DOI : 10.1002/hyp.10523 ]

    https://hal.archives-ouvertes.fr/hal-01143608
  • 10B. Kim, B. F. Sanders, J. Famiglietti, V. Guinot.

    Urban flood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity, in: Journal of Environmental Hydrology, April 2015, vol. 523, pp. 680-692. [ DOI : 10.1016/j.jhydrol.2015.01.059 ]

    https://hal.archives-ouvertes.fr/hal-01118743
  • 11D. Lannes, F. Marche.

    Nonlinear wave-current interactions in shallow water, in: Studies in Applied Mathematics, November 2015.

    https://hal.archives-ouvertes.fr/hal-01184204
  • 12S. Leroy, R. Pedreros, C. André, F. Paris, S. Lecacheux, F. Marche, C. Vinchon.

    Coastal flooding of urban areas by overtopping: dynamic modelling application to the Johanna storm (2008) in Gâvres (France), in: Natural Hazards and Earth System Science, November 2015, vol. 15, no 11, pp. 2497-2510. [ DOI : 10.5194/nhess-15-2497-2015 ]

    https://hal-brgm.archives-ouvertes.fr/hal-01251642
  • 13S. Majdalani, J.-P. Chazarin, C. Delenne, V. Guinot.

    Solute tranport in periodical heterogeneous porous media: importance of observation scale and experimental sampling, in: Journal of Hydrology, January 2015, vol. 520, pp. 52-60. [ DOI : 10.1016/j.jhydrol.2014.10.065 ]

    https://hal.archives-ouvertes.fr/hal-01101494
  • 14A. Ogilvie, G. Belaud, C. Delenne, J.-S. Bailly, J.-C. Bader, A. Oleksiak, L. Ferry, D. Martin.

    Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS optical data, in: Journal of Hydrology, April 2015, vol. 523, pp. 368-383. [ DOI : 10.1016/j.jhydrol.2015.01.036 ]

    https://hal.archives-ouvertes.fr/hal-01196991

Conferences without Proceedings

  • 15N. Aïssiouene, T. Amtout, M. Brachet, E. Frénod, R. Hild, A. Rousseau, S. Salmon.

    Hydromorpho: A coupled model for unsteady Stokes/Exner equations and numerical results with Feel++ library, in: CEMRACS 2015, Marseille, France, July 2015.

    https://hal.archives-ouvertes.fr/hal-01223427
  • 16F. Campillo.

    Stochastic differential equations in population dynamics, between discrete and deterministic models, in: 2015 Joint Meeting AMS/EMS/SPM, Porto, Portugal, June 2015.

    https://hal.inria.fr/hal-01254710

Scientific Popularization

Other Publications

  • 19F. CHAVE, D. A. Di Pietro, F. Marche, F. Pigeonneau.

    A Hybrid High-Order method for the Cahn-Hilliard problem in mixed form, September 2015, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01203733
  • 20F. Campillo, N. Champagnat, C. Fritsch.

    Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models, September 2015, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01205467
  • 21F. Campillo, N. Champagnat, C. Fritsch.

    On the variations of the principal eigenvalue and the probability of survival with respect to a parameter in growth-fragmentation-death models, February 2016, working paper or preprint.

    https://hal.inria.fr/hal-01254053
  • 22S. Le Roy, R. Pedreros, C. André, F. Paris, S. Lecacheux, F. Marche, C. Vinchon.

    Simulating overtopping and coastal flooding in urban areas: Perspectives to quantify sea level rise effects, June 2015, Workshop Global and Regional Sea Level variability and change, Poster.

    https://hal-brgm.archives-ouvertes.fr/hal-01140885
  • 23C. Lucas, J. C. Mcwilliams, A. Rousseau.

    On nontraditional quasi-geostrophic equations, November 2015, working paper or preprint.

    https://hal.inria.fr/hal-01232740
  • 24C. Lucas, J. C. Mcwilliams, A. Rousseau.

    On the quasi-hydrostatic quasi-geostrophic model, March 2015, working paper or preprint.

    https://hal.inria.fr/inria-00564819
References in notes
  • 25J. Auriault.

    Heterogeneous medium. Is an equivalent macroscopic description possible?, in: International journal of engineering science, 1991.
  • 26J. Auriault, P. Adler.

    Taylor dispersion in porous media: Analysis by multiple scale expansions, in: Adv. Wat. Res., 1995, vol. 18, pp. 217–226.
  • 27E. Barthélemy.

    Nonlinear shallow water theories for coastal waves, in: Surv Geophys, 2004, vol. 25, pp. 315–337.
  • 28E. Blayo, L. Debreu.

    Revisiting open boundary conditions from the point of view of characteristic variables, in: Ocean Model, 2005, vol. 9, no 3, pp. 231–252.
  • 29P. Bonneton, F. Chazel, D. Lannes, F. Marche, M. Tissier.

    A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, in: Journal of Computational Physics, 2011, vol. 230, no 4, pp. 1479 - 1498.
  • 30M. Brocchini, N. Dodd.

    Nonlinear Shallow Water Equation Modeling for Coastal Engineering, in: Journal of Waterway, 2008.
  • 31A. Chen, B. Evans, S. Djordjevic, D. Savic.

    A coarse-grid approach to representing building blockage effects in 2D urban flood modelling, in: J. Hydrol, March 2012, vol. 426, pp. 1–16.
  • 32A. Chen, B. Evans, S. Djordjevic, D. Savic.

    Multi-layer coarse-grid modelling in 2D urban flood simulations, in: J. Hydrol, March 2012, vol. 470, pp. 1-11.
  • 33R. Cienfuegos, E. Barthélemy, P. Bonneton.

    A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. I. Model development and analysis, in: Internat. J. Numer. Methods Fluids, 2006, vol. 51, no 11, pp. 1217–1253.
  • 34B. Cushman-Roisin.

    Introduction to Geophysical Fluid Dynamics, 1st, Prentice Hall, April 1994.
  • 35A. Defina, L. D'alpaos.

    A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models, in: Modelling Flood Propagation over Initially Dry Areas, 1994, pp. 82–101.
  • 36V. Dougalis, D. Mitsotakis, J.-C. Saut.

    Boussinesq Systems of Bona-Smith Type on Plane Domains: Theory and Numerical Analysis, in: Journal of Scientific Computing, 2010.
  • 37D. Dutykh, D. Mitsotakis.

    On the relevance of the dam break problem in the context of nonlinear shallow water equations, in: DCDS-B, 2010, vol. 13, pp. 799–818.
  • 38D. Dutykh, R. Poncet, F. Dias.

    The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation, in: Eur J Mech B Fluids, 2011, vol. 30, no 6, pp. 598–615.
  • 39B. Engquist, A. Majda.

    Absorbing boundary conditions for the numerical simulation of waves, in: Math. Comp., 1977, vol. 31, no 139, pp. 629–651.
  • 40S. Frazao, Y. Zech.

    Undular bores and secondary waves–Experiments and hybrid finite-volume modelling, in: Journal of Hydraulic Research, 2002.
  • 41E. Frénod, A. Rousseau.

    Paralic Confinement: Models and Simulations, in: Acta Appl Math, January 2013, vol. 123, no 1, pp. 1–19.
  • 42V. Guinot, S. Soares-Frazão.

    Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids, in: Int. J Numer. Meth. Fluids, 2006, vol. 50, pp. 309–345.
  • 43V. Guinot.

    Multiple porosity shallow water models for macroscopic modelling of urban floods, in: Adv Water Resour, 2012, vol. 37, pp. 40–72.
  • 44L. Halpern.

    Artificial boundary conditions for the linear advection diffusion equation, in: Math. Comp., 1986, vol. 46, no 74, pp. 425–438.
  • 45J.-M. Hervouét, R. Samie, B. Moreau.

    Modelling urban areas in dam-break flood-wave numerical simulations, in: International Seminar and Workshop on Rescue Actions Based on Dambreak Flow Analysis, Seinéjoki, Finland, 2000.
  • 46J. Klafter, A. Blumen, M. Shlesinger.

    Stochastic pathway to anomalous diffusion, in: Physical Review A, 1987, vol. 35, pp. 3081–3085.
  • 47D. Lannes, P. Bonneton.

    Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, in: Phys. Fluids, 2009, vol. 21, no 1, 016601.
  • 48D. Lannes.

    The water waves problem: mathematical analysis and asymptotics, in: Mathematical Surveys and Monographs, 2013.
  • 49O. Le Métayer, S. Gavrilyuk, S. Hank.

    A numerical scheme for the Green–Naghdi model, in: Journal of Computational Physics, 2010, vol. 229, pp. 2034–2045.
  • 50F. Lemarié, L. Debreu, E. Blayo.

    ... an Optimized Global-in-Time Schwarz Algorithm for Diffusion Equations with Discontinuous and Spatially Variable Coefficients, Part 1: The Constant Coefficients ..., in: Electronic Transactions on Numerical Analysis, 2012.
  • 51J. Lhomme.

    Modélisation des inondations en milieu urbain: approches unidimensionnelle, bidimensionnelle et macroscopique, Université Montpellier 2, France, 2006.
  • 52R. Metzler, J. Klafter.

    The random walk's guide to anomalous diffusion: a fractional dynamics approach, in: Phys Rep, 2000, vol. 339, no 1, pp. 1–77.
  • 53G. Papanicolau, A. Bensoussan, J.-L. Lions.

    Asymptotic analysis for periodic structures, in: North-Holland, 1978.
  • 54A. Rousseau, R. Temam, J. Tribbia.

    The 3D primitive equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case, in: J. Math. Pures Appl. (9), 2008, vol. 89, no 3, pp. 297–319.
  • 55B. F. Sanders, J. E. Schubert, H. A. Gallegos.

    Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling, in: J. Hydrol, 2008, vol. 362, pp. 19–38.
  • 56S. Soares-Frazão, J. Lhomme, V. Guinot, Y. Zech.

    Two-dimensional shallow-water model with porosity for urban flood modelling, in: Journal of Hydraulic Research, 2008, vol. 46, no 1, pp. 45–64.
  • 57M. Tissier, P. Bonneton, F. Marche, F. Chazel, D. Lannes.

    A new approach to handle wave breaking in fully non-linear Boussinesq models, in: Coastal Engineering, 2012, vol. 67, pp. 54–66.
  • 58M. Velickovic.

    Macroscopic modeling of urban flood by a porosity approach, Université catholique de Louvain, Belgium, 2012.
  • 59J. Yan, C. Shu.

    Local discontinuous Galerkin methods for partial differential equations with higher order derivatives, in: Journal of Scientific Computing, 2002.
  • 60M. Zijlema, G. Stelling, P. Smit.

    SWASH : an operational public domain code for simulating wave fields and rapidly varying flows in coastal waters, in: Coastal Engineering, 2011, vol. 58, pp. 992–1012.