Bibliography
Major publications by the team in recent years
-
1R. Alicandro, M. Cicalese, A. Gloria.
Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, in: Arch. Ration. Mech. Anal., 2011, vol. 200, no 3, pp. 881–943. -
2A. Gloria.
Reduction of the resonance error - Part 1: Approximation of homogenized coefficients, in: Math. Models Methods Appl. Sci., 2011, vol. 21, no 8, pp. 1601–1630. -
3A. Gloria.
Numerical homogenization: survey, new results, and perspectives, in: Esaim. Proc., 2012, vol. 37, Mathematical and numerical approaches for multiscale problem. -
4A. Gloria, F. Otto.
An optimal variance estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Probab., 2011, vol. 39, no 3, pp. 779–856. -
5A. Gloria, F. Otto.
An optimal error estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Appl. Probab., 2012, vol. 22, no 1, pp. 1–28. -
6A. Gloria, M. Penrose.
Random parking, Euclidean functionals, and rubber elasticity, in: Comm. Math. Physics, 2013, vol. 321, no 1, pp. 1–31.
Doctoral Dissertations and Habilitation Theses
-
7E. Soret.
Stochastic acceleration in an inelastic Lorentz gaz, Université Lille 1, June 2015.
https://tel.archives-ouvertes.fr/tel-01236109
Articles in International Peer-Reviewed Journals
-
8D. Bonheure, E. Moreira dos Santos, M. Ramos, H. Tavares.
Existence and symmetry of least energy nodal solutions for Hamiltonian elliptic systems, in: Journal de Mathématiques Pures et Appliquées, 2015, vol. 104, no 6, pp. 1075–1107. [ DOI : 10.1016/j.matpur.2015.07.005 ]
https://hal.archives-ouvertes.fr/hal-01182582 -
9C. Cancès, T. Gallouët, L. Monsaingeon.
The gradient flow structure for incompressible immiscible two-phase flows in porous media, in: Comptes rendus de l'académie des sciences, Mathématiques, 2015, vol. 353, pp. 985-989.
https://hal.archives-ouvertes.fr/hal-01122770 -
10M. De Buhan, A. Gloria, P. Le Tallec, M. Vidrascu.
Reconstruction of a constitutive law for rubber from in silico experiments using Ogden's laws, in: International Journal of Solids and Structures, 2015, 16 p. [ DOI : 10.1016/j.ijsolstr.2015.02.026 ]
https://hal.inria.fr/hal-00933240 -
11G. Dujardin, P. Lafitte.
Asymptotic behavior of splitting schemes involving time-subcycling techniques, in: IMA Journal of Numerical Analysis, October 2015.
https://hal.archives-ouvertes.fr/hal-00751217 -
12A. Gloria, M. Duerinckx.
Analyticity of homogenized coefficients under Bernoulli perturbations and the Clausius-Mossotti formulas, in: Archive for Rational Mechanics and Analysis, 2015, 39 p.
https://hal.inria.fr/hal-01138797 -
13A. Gloria, Z. Habibi.
Reduction of the resonance error in numerical homogenisation II: correctors and extrapolation, in: Foundations of Computational Mathematics, 2015, 67 p. [ DOI : 10.1007/s10208-015-9246-z ]
https://hal.inria.fr/hal-00933234 -
14A. Gloria, D. Marahrens.
Annealed estimates on the Green functions and uncertainty quantification, in: Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 2015, 43 p, 43 pages.
https://hal.archives-ouvertes.fr/hal-01093386 -
15A. Gloria, S. Neukamm, F. Otto.
Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, in: Inventiones Mathematicae, 2015, 61 p. [ DOI : 10.1007/s00222-014-0518-z ]
https://hal.archives-ouvertes.fr/hal-01093405 -
16A. Gloria, J. Nolen.
A quantitative central limit theorem for the effective conductance on the discrete torus, in: Communications on Pure and Applied Mathematics, 2015, 38 p.
https://hal.archives-ouvertes.fr/hal-01093352 -
17A. Gloria, F. Otto.
Quantitative results on the corrector equation in stochastic homogenization, in: Journal of the European Mathematical Society, 2015, 57 p, 57 pages, 1 figure.
https://hal.archives-ouvertes.fr/hal-01093381 -
18S. R. Nodari, M. Conforti, G. Dujardin, A. Kudlinski, A. Mussot, S. Trillo, S. De Bièvre.
Modulational instability in dispersion-kicked optical fibers, in: Physical Review A, July 2015, vol. 92, no 1. [ DOI : 10.1103/PhysRevA.92.013810 ]
https://hal.inria.fr/hal-01250315 -
19E. Soret, S. De Bièvre.
Stochastic acceleration in a random time-dependent potential, in: Stochastic Processes and their Applications, July 2015, vol. 125, pp. 2752–2785.
https://hal.archives-ouvertes.fr/hal-01061294 -
20G. Thiofack, S. Coulibaly, M. Taki, S. De Bievre, G. Dujardin.
Peregrine comb: multiple compression points for Peregrine rogue waves in periodically modulated nonlinear Schrödinger equations, in: Physical Review A, October 2015, vol. 92, no 4.
https://hal.archives-ouvertes.fr/hal-01202842
Scientific Books (or Scientific Book chapters)
-
21D. Bonheure, R. Nascimento.
Waveguide solutions for a nonlinear Schrödinger equation with mixed dispersion, in: Contributions to Nonlinear Elliptic Equations and Systems, Progress in Nonlinear Differential Equations and Their Applications, Springer, 2015, vol. 86. [ DOI : 10.1007/978-3-319-19902-3_4 ]
https://hal.archives-ouvertes.fr/hal-01182833 -
22S. De Bievre, F. Genoud, S. R. Nodari.
Orbital stability: analysis meets geometry, in: Nonlinear Optical and Atomic Systems, Lecture Notes in Mathematics, 2015, vol. 2146, pp. 147-273. [ DOI : 10.1007/978-3-319-19015-0_3 ]
https://hal.archives-ouvertes.fr/hal-01028168
Other Publications
-
23S. N. Armstrong, A. Gloria, T. Kuusi.
Bounded correctors in almost periodic homogenization, September 2015, working paper or preprint.
https://hal.inria.fr/hal-01230991 -
24A. Benoit.
Geometric optics expansions for hyperbolic corner problems II : huge amplification phenomenon, December 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01242899 -
25C. Besse, G. Dujardin, I. Lacroix-Violet.
High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates, July 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01170888 -
26D. Bonheure, S. Cingolani, M. Nys.
Nonlinear Schrödinger equation: concentration on circles driven by an external magnetic field, September 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01182834 -
27D. Bonheure, P. D 'avenia, A. Pomponio.
On the electrostatic Born-Infeld equation with extended charges, August 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01182830 -
28D. Bonheure, M. Grossi, B. Noris, S. Terracini.
Multi-layer radial solutions for a supercritical Neumann problem, August 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01182832 -
29D. Bonheure, F. Hamel.
One-dimensional symmetry and Liouville type results for the fourth order Allen-Cahn equation in R , August 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01182688 -
30D. Bonheure, F. Juraj, S. Alberto.
Qualitative properties of solutions to mixed-diffusion bistable equations, September 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01203710 -
31C. Chainais-Hillairet, T. Gallouët.
Study of a pseudo-stationary state for a corrosion model: existence and numerical approximation, May 2015, working paper or preprint.
https://hal.inria.fr/hal-01147621 -
32S. De Bièvre, J. Faupin, B. Schubnel.
Spectral analysis of a model for quantum friction, December 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01246914 -
33M. Duerinckx.
Mean-field limits for some Riesz interaction gradient flows, January 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01252661 -
34M. Duerinckx, A. Gloria.
Stochastic homogenization of nonconvex unbounded integral functionals with convex growth, July 2015, working paper or preprint.
https://hal.inria.fr/hal-01192752 -
35A. Gloria, F. Otto.
The corrector in stochastic homogenization: Near-optimal rates with optimal stochastic integrability, October 2015, working paper or preprint.
https://hal.inria.fr/hal-01230985
-
36G. Agrawal.
Nonlinear fiber optics, Academic Press, 2006. -
37B. Aguer, S. De Bièvre, P. Lafitte, P. E. Parris.
Classical motion in force fields with short range correlations, in: J. Stat. Phys., 2010, vol. 138, no 4-5, pp. 780 – 814. -
38A. Anantharaman, C. Le Bris.
A numerical approach related to defect-type theories for some weakly random problems in homogenization, in: Multiscale Model. Simul., 2011, vol. 9, no 2, pp. 513–544.
http://dx.doi.org/10.1137/10079639X -
39A. Anantharaman, C. Le Bris.
Elements of mathematical foundations for numerical approaches for weakly random homogenization problems, in: Commun. Comput. Phys., 2012, vol. 11, no 4, pp. 1103–1143.
http://dx.doi.org/10.4208/cicp.030610.010411s -
40T. Arbogast.
Numerical subgrid upscaling of two-phase flow in porous media, in: Numerical treatment of multiphase flows in porous media (Beijing, 1999), Berlin, Lecture Notes in Phys., Springer, 2000, vol. 552, pp. 35–49. -
41S. N. Armstrong, Z. Shen.
Lipschitz estimates in almost-periodic homogenization, in: Commun. Pure Appl. Mathematics, September 2015. -
42S. N. Armstrong, C. K. Smart.
Quantitative stochastic homogenization of convex integral functionals, in: Ann. Scientifiques de l'ENS, 2015. -
43M. Avellaneda, F.-H. Lin.
Compactness methods in the theory of homogenization, in: Comm. Pure and Applied Math., 1987, vol. 40, no 6, pp. 803–847.
http://dx.doi.org/10.1002/cpa.3160400607 -
44J. M. Ball.
Some open problems in elasticity, in: Geometry, mechanics, and dynamics, New York, Springer, 2002, pp. 3–59. -
45A. Benoit.
Geometric optics expansions for hyperbolic corner problems, selfinteraction phenomenon., Preprint https://hal.archives-ouvertes.fr/hal-01196341/document . -
46A. Braides.
Homogenization of some almost periodic functionals, in: Rend. Accad. Naz. Sci. XL, 1985, vol. 103, pp. 261–281. -
47G. Dal Maso, L. Modica.
Nonlinear stochastic homogenization and ergodic theory, in: J. Reine Angew. Math., 1986, vol. 368, pp. 28–42. -
48S. De Bièvre, F. Genoud, S. Rota Nodari.
Orbital Stability: Analysis Meets Geometry, in: Nonlinear Optical and Atomic Systems, C. Besse, J.-C. Garreau (editors), Lecture Notes in Mathematics, Springer International Publishing, 2015, vol. 2146, pp. 147-273. -
49S. De Bièvre, C. Mejia-Monasterio, E. P. Parris.
Preprint, 2016. -
50S. De Bièvre, P. Parris.
Equilibration, generalized equipartition and diffusion in dynamical Lorentz gases, in: J. Stat. Phys., 2011, vol. 142, pp. 356–385. -
51S. De Bièvre, G. Forni.
Transport properties of kicked and quasiperiodic Hamiltonians, in: J. Statist. Phys., 2010, vol. 90, no 5-6, pp. 1201–1223. -
52M. Disertori, W. Kirsch, A. Klein, F. Klopp, V. Rivasseau.
Random Schrödinger operators, Panoramas et Synthèses, Société Mathématique de France, Paris, 2008, no 25. -
53M. Duerinckx.
Mean-field limits for some Riesz interaction gradient flows, January 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01252661 -
54Y. Efendiev, T. Hou.
Multiscale finite element methods, Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009, vol. 4, Theory and applications. -
55P. Flory.
Statistical mechanics of chain molecules, Interscience Publishers, New York, 1969. -
56J.-C. Garreau, B. Vermersch.
Spectral description of the dynamics of ultracold interacting bosons in disordered lattices, in: New. J. Phys., 2013, vol. 15, 045030. -
57A. Gloria, P. Le Tallec, M. Vidrascu.
Foundation, analysis, and numerical investigation of a variational network-based model for rubber, in: Continuum Mech. Thermodyn.. -
58A. Gloria, S. Neukamm, F. Otto.
A regularity theory for random elliptic operators and homogenization, September 2014, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01093368 -
59T. Hou, X. Wu.
A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, in: J. Comput. Phys., 1997, vol. 134, pp. 169–189. -
60S. M. Kozlov.
Averaging of differential operators with almost periodic rapidly oscillating coefficients, in: Mat. Sb. (N.S.), 1978, vol. 107(149), no 2, pp. 199–217, 317. -
61S. Kozlov.
The averaging of random operators, in: Mat. Sb. (N.S.), 1979, vol. 109(151), no 2, pp. 188–202, 327. -
62F. Legoll, W. Minvielle.
A control variate approach based on a defect-type theory for variance reduction in stochastic homogenization, in: Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2015, vol. 13, no 2, pp. 519-550.
https://hal.archives-ouvertes.fr/hal-01053459 -
63S. Müller.
Homogenization of nonconvex integral functionals and cellular elastic materials, in: Arch. Rat. Mech. Anal., 1987, vol. 99, pp. 189–212. -
64A. Naddaf, T. Spencer.
Estimates on the variance of some homogenization problems, Preprint, 1998. -
65G. Papanicolaou, S. Varadhan.
Boundary value problems with rapidly oscillating random coefficients, in: Random fields, Vol. I, II (Esztergom, 1979), Amsterdam, Colloq. Math. Soc. János Bolyai, North-Holland, 1981, vol. 27, pp. 835–873. -
66S. Serfaty.
Mean Field Limits of the Gross-Pitaevskii and Parabolic Ginzburg-Landau Equations, in: ArXiv e-prints, July 2015. -
67E. Soret, S. D. Bièvre.
Stochastic acceleration in a random time-dependent potential, in: Stochastic Processes and their Applications, 2015, vol. 125, no 7, pp. 2752 – 2785. -
68C. Sulem, P.-L. Sulem.
The nonlinear Schrödinger equation, Springer-Verlag, New-York, 1999. -
69L. Treloar.
The Physics of Rubber Elasticity, Oxford at the Clarendon Press, Oxford, 1949. -
70E. Weinan.
Principles of multiscale modeling, Cambridge University Press, Cambridge, 2011, xviii+466 p.