Section: Highlights of the Year
Highlights of the Year
Major Results
Approaching the Coverability Problem Continuously
The coverability problem for Petri nets plays a central role in the verification of concurrent shared-memory programs. However, its high EXPSPACE-complete complexity poses a challenge when encountered in real-world instances. In [39] , we develop a new approach to this problem which is primarily based on applying forward coverability in continuous Petri nets as a pruning criterion inside a backward coverability framework. A cornerstone of our approach is the efficient encoding of a recently developed polynomial-time algorithm for reachability in continuous Petri nets into SMT. We demonstrate the effectiveness of our approach on standard benchmarks from the literature, which shows that our approach decides significantly more instances than any existing tool and is in addition often much faster, in particular on large instances.
An Automata-Theoretic Approach to the Verification of Distributed Algorithms
In [21] we introduce an automata-theoretic method for the verification of distributed algorithms running on ring networks. In a distributed algorithm, an arbitrary number of processes cooperate to achieve a common goal (e.g., elect a leader). Processes have unique identifiers (pids) from an infinite, totally ordered domain. An algorithm proceeds in synchronous rounds, each round allowing a process to perform a bounded sequence of actions such as send or receive a pid, store it in some register, and compare register contents w.r.t. the associated total order. An algorithm is supposed to be correct independently of the number of processes. To specify correctness properties, we introduce a logic that can reason about processes and pids. Referring to leader election, it may say that, at the end of an execution, each process stores the maximum pid in some dedicated register. Since the verification of distributed algorithms is undecidable, we propose an underapproximation technique, which bounds the number of rounds. This is an appealing approach, as the number of rounds needed by a distributed algorithm to conclude is often exponentially smaller than the number of processes. We provide an automata-theoretic solution, reducing model checking to emptiness for alternating two-way automata on words. Overall, we show that round-bounded verification of distributed algorithms over rings is PSPACE-complete.
Unfolding-Based Process Discovery
In [33] we presents a novel technique for process discovery. In contrast to the current trend, which only considers an event log for discovering a process model, we assume two additional inputs: an independence relation on the set of logged activities, and a collection of negative traces. After deriving an intermediate net unfolding from them, we perform a controlled folding giving rise to a Petri net which contains both the input log and all independence-equivalent traces arising from it. Remarkably, the derived Petri net cannot execute any trace from the negative collection. The entire chain of transformations is fully automated. A tool has been developed and experimental results are provided.