Section: Overall Objectives
Objectives
The MONC project-team aims at developing new mathematical models involving partial differential equations and statistical methods based on precise biological and medical knowledge in order to build numerical tools informed by on available quantitative data about cancer. The goal is ultimately to be able to help clinicians and/or biologists to better understand, predict or control tumor growth and possibly evaluate the therapeutic response, in a clinical context or for pre-clinical studies. We develop patient-specific approaches (mainly based on medical imaging) as well as population-type approaches in order to take advantage of large available databases. We claim that we can have a clinical impact that can change the way of handling certain pathologies.
In vivo modeling of tumors is limited by the amount of information obtainable. However, in the last few years, there have been dramatic increases in the scope and quality of patient-specific data from non-invasive imaging methods, so that several potentially valuable measurements are now available to quantitatively measure tumor growth, assess tumor status as well as anatomical or functional details. Using different methods such as CT scan, magnetic resonance imaging (MRI), or positron emission tomography (PET), it is now possible to evaluate and define tumor status at different levels: physiological, molecular and cellular.
In the meantime, the understanding of the biological mechanisms of tumor growth, including the influence of the micro-environment, has dramatically increased and the medical doctors now dispose of a wide spectrum of therapies (surgery, mini-invasive techniques, radiotherapies, chemotherapies, targeted therapies...).
Our project aims at supporting the decision process of oncologists in the definition of therapeutic protocols via quantitative methods. The idea is to build phenomenological mathematical models based on data obtained from medical imaging like CT scans, MRIs and PET scans. We therefore want to provide medical doctors patient-specific tumor growth models, which are able to evaluate – on the basis of previously collected data and within the limits of phenomenological models – the time dynamics of the pathology at subsequent times and the response to therapies. Our goal is to provide some numerical tools built to help answering the crucial questions for a clinician:
In addition, we also intend to incorporate real-time model information for improving the precision and effectiveness of non invasive or micro-invasive tumor ablation techniques like acoustic hyperthermia, electroporation, radio-frequency, cryo-ablation and of course radiotherapies.
There is therefore a critical need of integrating biological knowledge into mathematical models based on clinical or experimental data in order to perform patient specific simulations. The main purpose of our project is to create new mathematical models and news paradigms for data assimilation that are adapted to the biological nature of the disease and to the amount of multi-modal data.