EN FR
EN FR
Overall Objectives
New Software and Platforms
New Results
Bibliography
Overall Objectives
New Software and Platforms
New Results
Bibliography


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

  • 2P. Buslaev, V. I. Gordeliy, S. Grudinin, I. Y. Gushchin.

    Principal component analysis of lipid molecule conformational changes in molecular dynamics simulations, in: Journal of Chemical Theory and Computation, January 2016. [ DOI : 10.1021/acs.jctc.5b01106 ]

    https://hal.inria.fr/hal-01258167
  • 3L. Debreu, E. Neveu, E. Simon, F.-X. Le Dimet, A. Vidard.

    Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, in: Quarterly Journal of the Royal Meteorological Society, September 2015. [ DOI : 10.1002/qj.2676 ]

    https://hal.inria.fr/hal-01246349
  • 4S. Grudinin, P. Popov, E. Neveu, G. Cheremovskiy.

    Predicting Binding Poses and Affinities in the CSAR 2013―2014 Docking Exercises Using the Knowledge-Based Convex-PL Potential, in: Journal of Chemical Information and Modeling, 2015. [ DOI : 10.1021/acs.jcim.5b00339 ]

    https://hal.inria.fr/hal-01258022
  • 5P. Popov, S. Grudinin.

    Knowledge of Native Protein–Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates, in: Journal of Chemical Information and Modeling, September 2015, vol. 55, no 10, pp. 2242–2255. [ DOI : 10.1021/acs.jcim.5b00372 ]

    https://hal.inria.fr/hal-01229886
  • 6D. W. Ritchie, S. Grudinin.

    Spherical polar Fourier assembly of protein complexes with arbitrary point group symmetry, in: Journal of Applied Crystallography, February 2016, vol. 49, no 1, pp. 158-167. [ DOI : 10.1107/S1600576715022931 ]

    https://hal.inria.fr/hal-01261402

Other Publications

References in notes
  • 8B. Ahmadi, M. Kassiriha, K. Khodabakhshi, E. R. Mafi.

    Effect of nano layered silicates on automotive polyurethane refinish clear coat, in: Progress in Organic Coatings, 2007, vol. 60, no 2, pp. 99 - 104. [ DOI : 10.1016/j.porgcoat.2007.07.008 ]

    http://www.sciencedirect.com/science/article/pii/S0300944007001464
  • 9F. H. Allen.

    The Cambridge Structural Database: a quarter of a million crystal structures and rising, in: Acta Crystallographica Section B, Jun 2002, vol. 58, no 3 Part 1, pp. 380–388.

    http://dx.doi.org/10.1107/S0108768102003890
  • 10F. Ample, S. Ami, C. Joachim, F. Thiemann, G. Rapenne.

    A Morse manipulator molecule for the modulation of metallic shockley surface states, in: Chemical Physics Letters, 2007, vol. 434, pp. 280-285. [ DOI : 10.1016/j.cplett.2006.12.021 ]

    http://www.sciencedirect.com/science/article/pii/S0009261406018148
  • 11F. Ample, C. Joachim.

    A semi-empirical study of polyacene molecules adsorbed on a Cu(1 1 0) surface, in: Surface Science, 2006, vol. 600, no 16, pp. 3243 - 3251. [ DOI : 10.1016/j.susc.2006.06.015 ]

    http://www.sciencedirect.com/science/article/pii/S003960280600700X
  • 12A. Arkhipov, P. Freddolino, K. Imada, K. Namba, K. Schulten.

    Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum, in: Biophysical Journal, 2006, vol. 91, pp. 4589-4597.
  • 13A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver, I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann, M. Pippig, D. Potts, G. Sutmann.

    Comparison of scalable fast methods for long-range interactions, in: Phys. Rev. E, December 2013, vol. 88, no 6, 063308. [ DOI : 10.1103/PhysRevE.88.063308 ]
  • 14S. Artemova, S. Grudinin, S. Redon.

    A comparison of neighbor search algorithms for large rigid molecules, in: Journal of Computational Chemistry, 2011, vol. 32, no 13, pp. 2865–2877.

    http://dx.doi.org/10.1002/jcc.21868
  • 15S. Artemova, S. Redon.

    Adaptively Restrained Particle Simulations, in: Phys. Rev. Lett., Nov 2012, vol. 109.

    http://link.aps.org/doi/10.1103/PhysRevLett.109.190201
  • 16H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne.

    The protein data bank, in: Nucleic acids research, 2000, vol. 28, no 1, pp. 235–242.
  • 17H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne.

    The Protein Data Bank, in: Nucleic Acids Research, 2000, vol. 28, no 1, pp. 235-242. [ DOI : 10.1093/nar/28.1.235 ]

    http://nar.oxfordjournals.org/content/28/1/235.abstract
  • 18X. Blanc, C. Le Bris, F. Legoll.

    Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2005, vol. 39, no 04, pp. 797-826.

    http://dx.doi.org/10.1051/m2an:2005035
  • 19M. Bosson, S. Grudinin, X. Bouju, S. Redon.

    Interactive physically-based structural modeling of hydrocarbon systems, in: Journal of Computational Physics, 2012, vol. 231, no 6, pp. 2581 - 2598. [ DOI : 10.1016/j.jcp.2011.12.006 ]

    http://www.sciencedirect.com/science/article/pii/S0021999111007042
  • 20D. W. Brenner.

    Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, in: Phys. Rev. B, Nov 1990, vol. 42, pp. 9458–9471.

    http://link.aps.org/doi/10.1103/PhysRevB.42.9458
  • 21T. Cagin, G. Wang, R. Martin, G. Zamanakos, N. Vaidehi, D. T. Mainz, W. A. Goddard III.

    Multiscale modeling and simulation methods with applications to dendritic polymers, in: Computational and Theoretical Polymer Science, 2001, vol. 11, no 5, pp. 345 - 356. [ DOI : 10.1016/S1089-3156(01)00026-5 ]

    http://www.sciencedirect.com/science/article/pii/S1089315601000265
  • 22E. Cances, F. Castella, P. Chartier, E. Faou, C. L. Bris, F. Legoll, G. Turinici.

    Long-time averaging for integrable Hamiltonian dynamics, in: Numerische Mathematik, 2005, vol. 100, pp. 211-232, 10.1007/s00211-005-0599-0.

    http://dx.doi.org/10.1007/s00211-005-0599-0
  • 23Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, R. Watkins.

    Applications and implications of nanotechnologies for the food sector, in: Food Additives & Contaminants: Part A, 2008, vol. 25, no 3, pp. 241-258.

    http://www.tandfonline.com/doi/abs/10.1080/02652030701744538
  • 24X. Chen, S. S. Mao.

    Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, in: ChemInform, 2007, vol. 38, no 41.

    http://dx.doi.org/10.1002/chin.200741216
  • 25G.-Y. Chuang, D. Kozakov, R. Brenke, S. R. Comeau, S. Vajda.

    DARS (Decoys As the Reference State) potentials for protein-protein docking, in: Biophysical journal, 2008, vol. 95, no 9, pp. 4217–4227.
  • 26S. R. Comeau, C. J. Camacho.

    Predicting oligomeric assemblies: N-mers a primer, in: Journal of structural biology, 2005, vol. 150, no 3, pp. 233–244.
  • 27S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popovic, F. Players.

    Predicting protein structures with a multiplayer online game, in: Nature, 2010, vol. 466, pp. 756-760.
  • 28M. Curreli, A. H. Nadershahi, G. Shahi.

    Emergence of nanomedical devices for the diagnosis and treatment of cancer: the journey from basic science to commercialization, in: International Journal of Technology Transfer and Commercialisation, 2008, vol. 7, no 4, pp. 290-307.
  • 29E. Darve.

    The Fast Multipole Method: Numerical Implementation, in: Journal of Computational Physics, 2000.
  • 30M. Deserno, C. Holm.

    How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines, in: J. Chem. Phys., 1998, vol. 109, pp. 7678 – 7693.
  • 31M. Deserno, C. Holm.

    How to mesh up Ewald sums. II. An accurate error estimate for the Particle-Particle-Particle-Mesh algorithm, in: J. Chem. Phys., 1998, vol. 109, pp. 7694 – 7701.
  • 32H. Dietz, S. M. Douglas, W. M. Shih.

    Folding DNA into Twisted and Curved Nanoscale Shapes, in: Science, 2009, vol. 325, no 5941, pp. 725-730. [ DOI : 10.1126/science.1174251 ]

    http://www.sciencemag.org/content/325/5941/725.abstract
  • 33S. J. Fleishman, T. A. Whitehead, D. C. Ekiert, C. Dreyfus, J. E. Corn, E.-M. Strauch, I. A. Wilson, D. Baker.

    Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin, in: Science, 2011, vol. 332, no 6031, pp. 816-821. [ DOI : 10.1126/science.1202617 ]

    http://www.sciencemag.org/content/332/6031/816.abstract
  • 34G. Fox-Rabinovich, B. Beake, K. Yamamoto, M. Aguirre, S. Veldhuis, G. Dosbaeva, A. Elfizy, A. Biksa, L. Shuster.

    Structure, properties and wear performance of nano-multilayered TiAlCrSiYN/TiAlCrN coatings during machining of Ni-based aerospace superalloys, in: Surface and Coatings Technology, 2010, vol. 204, pp. 3698 - 3706. [ DOI : 10.1016/j.surfcoat.2010.04.050 ]

    http://www.sciencedirect.com/science/article/pii/S0257897210003178
  • 35M. Goldberg, R. Langer, X. Jia.

    Nanostructured materials for applications in drug delivery and tissue engineering, in: Journal of Biomaterials Science, Polymer Edition, 2007, vol. 18, no 3, pp. 241-268. [ DOI : doi:10.1163/156856207779996931 ]

    http://www.ingentaconnect.com/content/vsp/bsp/2007/00000018/00000003/art00001
  • 36H. Hassanieh, P. Indyk, D. Katabi, E. Price.

    Simple and Practical Algorithm for Sparse Fourier Transform, in: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '12, SIAM, 2012, pp. 1183–1194.

    http://dl.acm.org/citation.cfm?id=2095116.2095209
  • 37J.-H. He.

    An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering, in: International Journal of Modern Physics B, 2008, vol. 22, no 21, pp. 3487-3578.
  • 38S. Helveg.

    Structure and Dynamics of Nanocatalysts, in: Microscopy and Microanalysis, 2010, vol. 16, no Supplement S2, pp. 1712-1713.

    http://dx.doi.org/10.1017/S1431927610055005
  • 39A. Heyden, D. G. Truhlar.

    Conservative Algorithm for an Adaptive Change of Resolution in Mixed Atomistic/Coarse-Grained Multiscale Simulations, in: Journal of Chemical Theory and Computation, 2008, vol. 4, no 2, pp. 217-221.

    http://pubs.acs.org/doi/abs/10.1021/ct700269m
  • 40J. H. Holland.

    Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence., U Michigan Press, 1975.
  • 41V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling.

    Comparison of multiple Amber force fields and development of improved protein backbone parameters, in: Proteins: Structure, Function, and Bioinformatics, 2006, vol. 65, no 3, pp. 712–725.

    http://dx.doi.org/10.1002/prot.21123
  • 42H. Hwang, T. Vreven, J. Janin, Z. Weng.

    Protein–protein docking benchmark version 4.0, in: Proteins: Structure, Function, and Bioinformatics, 2010, vol. 78, no 15, pp. 3111–3114.
  • 43J. Janin, K. Henrick, J. Moult, L. T. Eyck, M. J. Sternberg, S. Vajda, I. Vakser, S. J. Wodak.

    CAPRI: a critical assessment of predicted interactions, in: Proteins: Structure, Function, and Bioinformatics, 2003, vol. 52, no 1, pp. 2–9.
  • 44C. Joachim, H. Tang, F. Moresco, G. Rapenne, G. Meyer.

    The design of a nanoscale molecular barrow, in: Nanotechnology, 2002, vol. 13, no 3, 330 p.

    http://stacks.iop.org/0957-4484/13/i=3/a=318
  • 45L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten.

    NAMD2: Greater Scalability for Parallel Molecular Dynamics, in: Journal of Computational Physics, 1999, vol. 151, no 1, pp. 283 - 312. [ DOI : 10.1006/jcph.1999.6201 ]

    http://www.sciencedirect.com/science/article/pii/S0021999199962010
  • 46J. Kennedy.

    Particle swarm optimization, in: Encyclopedia of machine learning, Springer, 2011, pp. 760–766.
  • 47J. Kolafa, J. W. Perram.

    Cutoff errors in the Ewald summation formulae for point charge systems, in: Mol. Simul., 1992, vol. 9, no 5, pp. 351–368.

    https://dx.doi.org/10.1080%2F08927029208049126
  • 48D. Kozakov, R. Brenke, S. R. Comeau, S. Vajda.

    PIPER: an FFT-based protein docking program with pairwise potentials, in: Proteins: Structure, Function, and Bioinformatics, 2006, vol. 65, no 2, pp. 392–406.
  • 49D. Kozakov, K. H. Clodfelter, S. Vajda, C. J. Camacho.

    Optimal clustering for detecting near-native conformations in protein docking, in: Biophysical journal, 2005, vol. 89, no 2, pp. 867–875.
  • 50Z. Li, H. A. Scheraga.

    Monte Carlo-minimization approach to the multiple-minima problem in protein folding, in: Proceedings of the National Academy of Sciences, 1987, vol. 84, no 19, pp. 6611-6615.

    http://www.pnas.org/content/84/19/6611.abstract
  • 51L. Lo, Y. Li, K. Yeung, C. Yuen.

    Indicating the development stage of nanotechnology in the textile and clothing industry, in: International Journal of Nanotechnology, 2007, vol. 4, no 6, pp. 667-679.
  • 52W. Lu, C. M. Lieber.

    Nanoelectronics from the bottom up, in: Nature materials, 2007, vol. 6, no 11, pp. 841-850.
  • 53A. May, M. Zacharias.

    Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein–protein docking, in: Proteins: Structure, Function, and Bioinformatics, 2008, vol. 70, no 3, pp. 794–809.
  • 54I. H. Moal, P. A. Bates.

    SwarmDock and the use of normal modes in protein-protein docking, in: International journal of molecular sciences, 2010, vol. 11, no 10, pp. 3623–3648.
  • 55S. O. Nielsen, P. B. Moore, B. Ensing.

    Adaptive Multiscale Molecular Dynamics of Macromolecular Fluids, in: Phys. Rev. Lett., Dec 2010, vol. 105, 237802.

    http://link.aps.org/doi/10.1103/PhysRevLett.105.237802
  • 56A. Nikitin, X. Li, Z. Zhang, H. Ogasawara, H. Dai, A. Nilsson.

    Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C-H Bonds, in: Nano Letters, 2008, vol. 8, no 1, pp. 162-167, PMID: 18088150.

    http://pubs.acs.org/doi/abs/10.1021/nl072325k
  • 57P. Popov, S. Grudinin.

    Rapid determination of RMSDs corresponding to macromolecular rigid body motions, in: Journal of computational chemistry, 2014, vol. 35, no 12, pp. 950–956.
  • 58P. Popov, S. Grudinin.

    Knowledge of Native Protein–Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates, in: Journal of chemical information and modeling, 2015, vol. 55, no 10, pp. 2242–2255.
  • 59P. Popov, D. W. Ritchie, S. Grudinin.

    DockTrina: Docking triangular protein trimers, in: Proteins: Structure, Function, and Bioinformatics, 2014, vol. 82, no 1, pp. 34–44.
  • 60M. Praprotnik, L. Delle Site, K. Kremer.

    Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids, in: Phys. Rev. E, Jun 2006, vol. 73, 066701.

    http://link.aps.org/doi/10.1103/PhysRevE.73.066701
  • 61M. Praprotnik, S. Matysiak, L. D. Site, K. Kremer, C. Clementi.

    Adaptive resolution simulation of liquid water, in: Journal of Physics: Condensed Matter, 2007, vol. 19, no 29, 292201.

    http://stacks.iop.org/0953-8984/19/i=29/a=292201
  • 62M. Praprotnik, L. D. Site, K. Kremer.

    A macromolecule in a solvent: Adaptive resolution molecular dynamics simulation, in: The Journal of Chemical Physics, 2007, vol. 126, no 13, 134902. [ DOI : 10.1063/1.2714540 ]

    http://link.aip.org/link/?JCP/126/134902/1
  • 63M. Praprotnik, L. D. Site, K. Kremer.

    Multiscale Simulation of Soft Matter: From Scale Bridging to Adaptive Resolution, in: Annual Review of Physical Chemistry, 2008, vol. 59, no 1, pp. 545-571.

    http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.59.032607.093707
  • 64P. Procacci, T. Darden, M. Marchi.

    A Very Fast Molecular Dynamics Method To Simulate Biomolecular Systems with Realistic Electrostatic Interactions, in: The Journal of Physical Chemistry, 1996, vol. 100, no 24, pp. 10464-10468.

    http://pubs.acs.org/doi/abs/10.1021/jp960295w
  • 65X. Qian, T. Schlick.

    Efficient multiple-time-step integrators with distance-based force splitting for particle-mesh-Ewald molecular dynamics simulations, in: Journal of Chemical Physics, 2002, vol. 116, pp. 5971-5983.
  • 66D. W. Ritchie, G. J. Kemp.

    Protein docking using spherical polar Fourier correlations, in: Proteins: Structure, Function, and Bioinformatics, 2000, vol. 39, no 2, pp. 178–194.

    http://dx.doi.org/10.1002/(SICI)1097-0134(20000501)39:2<178::AID-PROT8>3.0.CO;2-6
  • 67D. W. Ritchie, D. Kozakov, S. Vajda.

    Accelerating and focusing protein–protein docking correlations using multi-dimensional rotational FFT generating functions, in: Bioinformatics, 2008, vol. 24, no 17, pp. 1865–1873.
  • 68M. C. Roco.

    The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years, in: Journal of Nanoparticle Research, 2010.
  • 69B. Rooks.

    A shorter product development time with digital mock-up, in: Assembly Automation, 1998, vol. 18, no 1, pp. 34-38. [ DOI : doi:10.1108/01445159810201405 ]

    http://www.ingentaconnect.com/content/mcb/033/1998/00000018/00000001/art00004
  • 70R. Rossi, M. Isorce, S. Morin, J. Flocard, K. Arumugam, S. Crouzy, M. Vivaudou, S. Redon.

    Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design, in: Bioinformatics, 2007, vol. 23, no 13. [ DOI : 10.1093/bioinformatics/btm191 ]

    http://bioinformatics.oxfordjournals.org/content/23/13/i408.abstract
  • 71R. E. Rudd.

    Coarse-Grained Molecular Dynamics for Computer Modeling of Nanomechanical Systems, in: International Journal for Numerical Methods in Engineering, 2004.
  • 72A. Shih, P. Freddolino, A. Arkhipov, K. Schulten.

    Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations, in: Journal of Structural Biology, 2007, vol. 157, pp. 579-592.
  • 73Y. Shirai, A. J. Osgood, Y. Zhao, Y. Yao, L. Saudan, H. Yang, C. Yu-Hung, L. B. Alemany, T. Sasaki, J.-F. Morin, J. M. Guerrero, K. F. Kelly, J. M. Tour.

    Surface-Rolling Molecules, in: Journal of the American Chemical Society, 2006, vol. 128, no 14, pp. 4854-4864, PMID: 16594722.

    http://pubs.acs.org/doi/abs/10.1021/ja058514r
  • 74H. V. Sorensen, C. S. Burrus.

    Efficient computation of the DFT with only a subset of input or output points, in: IEEE Transactions on Signal Processing, 1993, vol. 41, no 3, pp. 1184–1200.

    http://dx.doi.org/10.1109/78.205723
  • 75E. G. Stein, L. M. Rice, A. T. Brünger.

    Torsion-Angle Molecular Dynamics as a New Efficient Tool for NMR Structure Calculation, in: Journal of Magnetic Resonance, 1997, vol. 124, no 1, pp. 154 - 164. [ DOI : 10.1006/jmre.1996.1027 ]

    http://www.sciencedirect.com/science/article/pii/S1090780796910277
  • 76R. Storn, K. Price.

    Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, ICSI Berkeley, 1995, vol. 3.
  • 77X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, H. Dai.

    Nano-graphene oxide for cellular imaging and drug delivery, in: Nano Research, 2008, vol. 1, pp. 203-212, 10.1007/s12274-008-8021-8.

    http://dx.doi.org/10.1007/s12274-008-8021-8
  • 78G. Sutmann.

    Molecular Dynamics - Vision and Reality, in: Computational Nanoscience: Do It Yourself!, Jülich, J. Grotendorst, S. Blügel, D. Marx (editors), NIC Series, John von Neumann Institute for Computing, February 2006, vol. 31, pp. 159 – 194, Lecture Notes.
  • 79D. Tomalia, L. Reyna, S. Svenson.

    Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging, in: Biochemical Society Transactions, 2007, vol. 35, pp. 61-67.
  • 80N. Vaidehi, W. A. Goddard.

    Domain Motions in Phosphoglycerate Kinase using Hierarchical NEIMO Molecular Dynamics Simulations, in: The Journal of Physical Chemistry A, 2000, vol. 104, no 11, pp. 2375-2383.

    http://pubs.acs.org/doi/abs/10.1021/jp991985d
  • 81V. Venkatraman, D. W. Ritchie.

    Flexible protein docking refinement using pose-dependent normal mode analysis, in: Proteins: Structure, Function, and Bioinformatics, 2012, vol. 80, no 9, pp. 2262–2274.
  • 82T. Vettorel, A. Y. Grosberg, K. Kremer.

    Statistics of polymer rings in the melt: a numerical simulation study, in: Physical Biology, 2009, vol. 6, no 2, 025013 p.

    http://stacks.iop.org/1478-3975/6/i=2/a=025013
  • 83W. Yang.

    Direct calculation of electron density in density-functional theory, in: Phys. Rev. Lett., Mar 1991, vol. 66, pp. 1438–1441.

    http://link.aps.org/doi/10.1103/PhysRevLett.66.1438
  • 84W. Yang.

    Electron density as the basic variable: a divide-and-conquer approach to the ab initio computation of large molecules, in: Journal of Molecular Structure: THEOCHEM, 1992, vol. 255, no 0, pp. 461 - 479. [ DOI : 10.1016/0166-1280(92)85024-F ]

    http://www.sciencedirect.com/science/article/pii/016612809285024F
  • 85S. W. de Leeuw, J. W. Perram, E. R. Smith.

    Simulation of Electrostatic Systems in Periodic Boundary Conditions. I. Lattice Sums and Dielectric Constants, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1980, vol. 373, no 1752, pp. 27–56. [ DOI : 10.1098/rspa.1980.0135 ]

    http://rspa.royalsocietypublishing.org/content/373/1752/27
  • 86A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard.

    ReaxFF: A Reactive Force Field for Hydrocarbons, in: The Journal of Physical Chemistry A, 2001, vol. 105, no 41, pp. 9396-9409.

    http://pubs.acs.org/doi/abs/10.1021/jp004368u