Bibliography
Publications of the year
Doctoral Dissertations and Habilitation Theses
-
1M. P. DAOU.
Methodological development for model coupling with dimension heterogeneity. Validation on a realistic test-case, Université Grenoble Alpes, September 2016.
https://tel.archives-ouvertes.fr/tel-01380084 -
2L. Gilquin.
Monte Carlo and quasi-Monte Carlo sampling methods for the estimation of Sobol' indices. Application to a LUTI model, Université Grenoble Alpes, October 2016.
https://hal.inria.fr/tel-01403914
Articles in International Peer-Reviewed Journals
-
3A. Beljaars, E. Dutra, G. Balsamo, F. Lemarié.
On the numerical stability of surface-atmosphere coupling in weather and climate models, in: Geoscientific Model Development Discussions, 2016, pp. 1 - 19. [ DOI : 10.5194/gmd-2016-96 ]
https://hal.inria.fr/hal-01406623 -
4E. Blayo, D. Cherel, A. Rousseau.
Towards optimized Schwarz methods for the Navier-Stokes equations, in: Journal of Scientific Computing, 2016, vol. 66, pp. 275–295.
https://hal.inria.fr/hal-00982087 -
5E. Blayo, A. Rousseau.
About Interface Conditions for Coupling Hydrostatic and Nonhydrostatic Navier-Stokes Flows, in: Discrete and Continuous Dynamical Systems - Series S, 2016, vol. 9, pp. 1565–1574.
https://hal.inria.fr/hal-01185255 -
6P. Cattiaux, J. R. León, A. Pineda Centeno, C. Prieur.
An overlook on statistical inference issues for stochastic dampinghamiltonian systems under the fluctuation-dissipation condition, in: Statistics, 2016. [ DOI : 10.1080/02331888.2016.1259807 ]
https://hal.archives-ouvertes.fr/hal-01405427 -
7L. Debreu, E. Neveu, E. Simon, F.-X. Le Dimet, A. Vidard.
Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, in: Quarterly Journal of the Royal Meteorological Society, January 2016. [ DOI : 10.1002/qj.2676 ]
https://hal.inria.fr/hal-01246349 -
8G. Dollé, O. Duran, N. Feyeux, E. Frénod, M. Giacomini, C. Prud'Homme.
Mathematical modeling and numerical simulation of a bioreactor landfill using Feel++, in: ESAIM: Proceedings and Surveys, 2016.
https://hal.archives-ouvertes.fr/hal-01258643 -
9L. Gilquin, L. A. Jiménez Rugama, E. Arnaud, F. J. Hickernell, H. Monod, C. Prieur.
Iterative construction of replicated designs based on Sobol' sequences, in: Comptes Rendus Mathématique, December 2016. [ DOI : 10.1016/j.crma.2016.11.013 ]
https://hal.inria.fr/hal-01349444 -
10A. Janon, M. Nodet, C. Prieur.
Goal-oriented error estimation for the reduced basis method, with application to sensitivity analysis, in: Journal of Scientific Computing, 2016, vol. 68, no 1, pp. 21-41.
https://hal.archives-ouvertes.fr/hal-00721616 -
11A. Janon, M. Nodet, C. Prieur, C. Prieur.
Global sensitivity analysis for the boundary control of an open channel, in: Mathematics of Control, Signals, and Systems, 2016, vol. 28, no 1.
https://hal.archives-ouvertes.fr/hal-01065886 -
12A. Makris, C. Prieur, T. Vischel, G. Quantin, T. Lebel, R. Roca.
Stochastic Tracking of Mesoscale Convective Systems: Evaluation in the West AfricanSahel, in: Stochastic Environmental Research and Risk Assessment, 2016, vol. 30, no 2, pp. 681-691, To appear in Stochastic Environmental Research and Risk Assessment. [ DOI : 10.1007/s00477-015-1102-9 ]
https://hal.archives-ouvertes.fr/hal-01187153 -
13S. Nanty, C. Helbert, A. Marrel, N. Pérot, C. Prieur.
Sampling, metamodelling and sensitivity analysis of numerical simulators with functional stochastic inputs, in: SIAM/ASA Journal on Uncertainty Quantification, 2016, vol. 4, no 1, pp. 636-659.
https://hal.archives-ouvertes.fr/hal-01187162 -
14S. Nanty, C. Helbert, A. Marrel, N. Pérot, C. Prieur.
Uncertainty quantification for functional dependent random variables, in: Computational Statistics, August 2016. [ DOI : 10.1007/s00180-016-0676-0 ]
https://hal.archives-ouvertes.fr/hal-01075840 -
15V. Oerder, F. Colas, V. Echevin, S. Masson, C. Hourdin, S. Jullien, G. Madec, F. Lemarié.
Mesoscale SST – Wind Stress coupling in the Peru–Chile Current System: Which mechanisms drive its seasonal variability?, in: Climate Dynamics, January 2016, pp. 1-49. [ DOI : 10.1007/s00382-015-2965-7 ]
https://hal.inria.fr/hal-01253181 -
16L. Renault, J. Molemaker, J. C. Mcwilliams, A. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, A. Hall.
Modulation of Wind-Work by Oceanic Current Interaction with the Atmosphere, in: Journal of Physical Oceanography, 2016. [ DOI : 10.1175/JPO-D-15-0232.1 ]
https://hal.inria.fr/hal-01295496 -
17M. Saujot, M. DE LAPPARENT, E. Arnaud, E. Prados.
Making Land Use - Transport models operational tools for planning: from a top-down to an end-user approach, in: Transport Policy, July 2016, vol. 49, pp. 20 - 29. [ DOI : 10.1016/j.tranpol.2016.03.005 ]
https://hal.inria.fr/hal-01402863 -
18V. Shutyaev, I. Gejadze, A. Vidard, F.-X. Le Dimet.
Optimal solution error quantification in variational data assimilation involving imperfect models, in: International Journal of numerical methods in fluids, July 2016. [ DOI : 10.1002/fld.4266 ]
https://hal.inria.fr/hal-01411666 -
19V. Shutyaev, A. Vidard, F.-X. Le Dimet, I. Gejadze.
On model error in variational data assimilation, in: Russian Journal of Numerical Analysis and Mathematical Modelling, January 2016, vol. 31, no 2, pp. 105-113. [ DOI : 10.1515/rnam-2016-0011 ]
https://hal.inria.fr/hal-01309018 -
20Y. Soufflet, P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, R. Benshila.
On effective resolution in ocean models, in: Ocean Modelling, February 2016, vol. 98, pp. 36–50. [ DOI : 10.1016/j.ocemod.2015.12.004 ]
https://hal.inria.fr/hal-01250231
International Conferences with Proceedings
-
21T. Capelle, P. Sturm, A. Vidard, B. Morton.
Optimisation-Based Calibration and Model Selection for the Tranus Land Use Module, in: 14th World Conference on Transport Research, Shanghai, China, Transportation Research Procedia, Elsevier, July 2016.
https://hal.inria.fr/hal-01396793 -
22V. Chabot, A. Vidard, M. Nodet.
Progressive assimilation of multiscale observations, in: ICCS 2016 - International Conference on Computational Science, Paris, France, November 2016.
https://hal.inria.fr/hal-01411753
Conferences without Proceedings
-
23É. Blayo, F. Lemarié, C. Pelletier.
Toward improved ocean-atmosphere coupling algorithms, in: SIAM Conference on Mathematics of Planet Earth, Philadelphia, United States, September 2016.
https://hal.inria.fr/hal-01413365 -
24E. Kazantsev, F. Lemarié, É. Blayo.
Lateral Boundary Conditions at the staircase-like boundary of ocean models, in: 6ème Colloque National d'Assimilation de données, Grenoble, France, November 2016.
https://hal.inria.fr/hal-01415345 -
25E. Kazantsev, F. Lemarié, É. Blayo.
PACO : Vers une meilleure paramétrisation de la côte et des conditions limites dans les modèles d'océan, in: Journées Scientifiques LEFE/GMMC 2016, Toulon, France, Groupe Mission Mercator/Coriolis, June 2016.
https://hal.inria.fr/hal-01416932 -
26F. Lemarié, L. Debreu.
A compact high-order coupled time and space discretization to represent vertical transport in oceanic models, in: Joint Numerical Sea Modelling Group Conference, Oslo, Norway, May 2016.
https://hal.inria.fr/hal-01406629 -
27F. Lemarié.
Feasibility of a high-order semi-implicit vertical advection scheme in oceanic models, in: AGU Ocean Sciences Meeting, New Orleans, United States, February 2016.
https://hal.inria.fr/hal-01406633 -
28R. Pellerej, A. Vidard, F. Lemarié.
Toward variational data assimilation for coupled models: first experiments on a diffusion problem, in: CARI 2016, Tunis, Tunisia, October 2016.
https://hal.archives-ouvertes.fr/hal-01337743 -
29A. Vidard, R. Pellerej, F. Lemarié.
Improving coupled model solution mathematical consistency through data assimilation, in: International workshop on coupled data assimilation, Toulouse, France, October 2016.
https://hal.inria.fr/hal-01411978
Scientific Books (or Scientific Book chapters)
-
30M. Asch, M. Bocquet, M. Nodet.
Data assimilation: methods, algorithms, and applications, Fundamentals of Algorithms, SIAM, 2016, xviii + 306 p.
https://hal.inria.fr/hal-01402885 -
31M. Nodet, A. Vidard.
Variational methods, in: Handbook of Uncertainty Quantification, Springer International Publishing, 2016. [ DOI : 10.1007/978-3-319-11259-6_32-1 ]
https://hal.inria.fr/hal-01251720
Internal Reports
-
32A. Janon, M. Nodet, C. Prieur, C. Prieur.
Goal-oriented error estimation for fast approximations of nonlinear problems, GIPSA-lab, 2016, Rapport interne de GIPSA-lab.
https://hal.archives-ouvertes.fr/hal-01290887
Other Publications
-
33V. Chabot, M. Nodet, A. Vidard.
Taking into account correlated observation errors by progressive assimilation of multiscale information, December 2016, American Geophysical Union Fall Meeting, Poster.
https://hal.inria.fr/hal-01402906 -
34N. Feyeux, M. Nodet, A. Vidard.
Optimal Transport for Data Assimilation, July 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01342193 -
35N. Feyeux, M. Nodet, A. Vidard.
Optimal Transportation for Data Assimilation, July 2016, 5th International Symposium for Data Assimilation (ISDA 2016), Poster.
https://hal.archives-ouvertes.fr/hal-01349637 -
36L. Gilquin, E. Arnaud, C. Prieur, H. Monod.
Recursive estimation procedure of Sobol' indices based on replicated designs, January 2016, working paper or preprint.
https://hal.inria.fr/hal-01291769 -
37L. Gilquin, T. Capelle, E. Arnaud, C. Prieur.
Sensitivity Analysis and Optimisation of a Land Use and Transport Integrated Model, March 2016, working paper or preprint.
https://hal.inria.fr/hal-01291774 -
38M. Gross, H. Wan, P. J. Rasch, P. M. Caldwell, D. L. Williamson, D. Klocke, C. Jablonowski, D. R. Thatcher, N. Wood, M. Cullen, B. Beare, M. Willett, F. Lemarié, E. Blayo, S. Malardel, P. Termonia, A. Gassmann, P. H. Lauritzen, H. Johansen, C. M. Zarzycki, K. Sakaguchi, R. Leung.
Recent progress and review of Physics Dynamics Coupling in geophysical models, May 2016, working paper or preprint.
https://hal.inria.fr/hal-01323768 -
39L. A. Jiménez Rugama, L. Gilquin.
Reliable error estimation for Sobol' indices, January 2017, working paper or preprint.
https://hal.inria.fr/hal-01358067 -
40E. Kazantsev.
Parameterizing subgrid scale eddy effects in a shallow water model, December 2016, working paper or preprint. [ DOI : 10.1002/fld ]
https://hal.inria.fr/hal-01413010 -
41L. Li, F.-X. Le Dimet, J. Ma, A. Vidard.
A level-set based image assimilation method: applications for predicting the movement of oil spills, November 2016, Submitted to IEEE Transactions on Geoscience and Remote Sensing.
https://hal.inria.fr/hal-01411878 -
42A. B. Owen, C. Prieur.
On Shapley value for measuring importance of dependent inputs, October 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01379188 -
43R. Pellerej, A. Vidard, F. Lemarié.
Toward variational data assimilation for coupled models: first experiments on a diffusion problem, July 2016, ISDA 2016, Poster.
https://hal.archives-ouvertes.fr/hal-01412165
-
44F. Caron, P. Del Moral, A. Doucet, M. Pace.
Particle approximation of the intensity measures of a spatial branching point process arising in multitarget tracking, in: SIAM J. Control Optim., 2011, vol. 49, no 4, pp. 1766–1792.
http://dx.doi.org/10.1137/100788987 -
45P. Cattiaux, J. R. Leon, C. Prieur.
Estimation for Stochastic Damping Hamiltonian Systems under Partial Observation. I. Invariant density., in: Stochastic Processes and their Applications, March 2014, vol. 124, no 3, pp. 1236-1260. [ DOI : 10.1016/j.spa.2013.10.008 ]
https://hal.archives-ouvertes.fr/hal-00739136 -
46P. Cattiaux, J. R. Leon, C. Prieur.
Estimation for Stochastic Damping Hamiltonian Systems under Partial Observation. II Drift term., in: ALEA (Latin American Journal of Probability and Statistics), 2014, vol. 11, no 1, pp. 359-384.
https://hal.archives-ouvertes.fr/hal-00877054 -
47P. Cattiaux, J. R. Leon, C. Prieur.
Recursive Estimation for Stochastic Damping Hamiltonian Systems, in: Journal of Nonparametric Statistics, 2015, vol. 27, no 3, pp. 401-424.
https://hal.archives-ouvertes.fr/hal-01071252 -
48M. Champion, G. Chastaing, S. Gadat, C. Prieur.
L2 Boosting on generalized Hoeffding decomposition for dependent variables. Application to Sensitivity Analysis, 2013, 48 pages, 7 Figures. -
49G. Chastaing.
Generalized Sobol sensitivity indices for dependent variables, Université de Grenoble, September 2013.
https://tel.archives-ouvertes.fr/tel-00930229 -
50G. Chastaing, F. Gamboa, C. Prieur.
Generalized Hoeffding-Sobol Decomposition for Dependent Variables - Application to Sensitivity Analysis, in: Electronic Journal of Statistics, December 2012, vol. 6, pp. 2420-2448. [ DOI : 10.1214/12-EJS749 ]
http://hal.archives-ouvertes.fr/hal-00649404 -
51G. Chastaing, C. Prieur, F. Gamboa.
Generalized Sobol sensitivity indices for dependent variables: numerical methods, March 2013.
http://hal.inria.fr/hal-00801628 -
52A. Cousin, E. Di Bernardino.
On multivariate extensions of Value-at-Risk, in: J. Multivariate Anal., 2013, vol. 119, pp. 32–46.
http://dx.doi.org/10.1016/j.jmva.2013.03.016 -
53C. De Michele, G. Salvadori, R. Vezzoli, S. Pecora.
Multivariate assessment of droughts: Frequency analysis and dynamic return period, in: Water Resources Research, 2013, vol. 49, no 10, pp. 6985–6994. -
54E. Di Bernardino, T. Laloë, V. Maume-Deschamps, C. Prieur.
Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory, in: ESAIM: Probability and Statistics, February 2013, vol. 17, pp. 236-256. [ DOI : 10.1051/ps/2011161 ]
https://hal.archives-ouvertes.fr/hal-00580624 -
55E. Di Bernardino, V. Maume-Deschamps, C. Prieur.
Estimating Bivariate Tail: a copula based approach, in: Journal of Multivariate Analysis, August 2013, vol. 119, pp. 81-100. [ DOI : 10.1016/j.jmva.2013.03.020 ]
https://hal.archives-ouvertes.fr/hal-00475386 -
56E. Di Bernardino, C. Prieur.
Estimation of Multivariate Conditional Tail Expectation using Kendall's Process, in: Journal of Nonparametric Statistics, March 2014, vol. 26, no 2, pp. 241-267. [ DOI : 10.1080/10485252.2014.889137 ]
https://hal.archives-ouvertes.fr/hal-00740340 -
57F. Gamboa, A. Janon, T. Klein, A. Lagnoux-Renaudie, C. Prieur.
Statistical inference for Sobol pick freeze Monte Carlo method, in: Statistics, 2016, vol. 50, no 4, pp. 881-902.
https://hal.inria.fr/hal-00804668 -
58L. Gilquin, C. Prieur, E. Arnaud.
Replication procedure for grouped Sobol' indices estimation in dependent uncertainty spaces, in: Information and Inference, August 2015, vol. 4, no 4, pp. 354-379. [ DOI : 10.1093/imaiai/iav010 ]
https://hal.inria.fr/hal-01045034 -
59W. Hoeffding.
A class of statistics with asymptotically normal distribution, in: Ann. Math. Statistics, 1948, vol. 19, pp. 293–325. -
60A. Janon, T. Klein, A. Lagnoux-Renaudie, M. Nodet, C. Prieur.
Asymptotic normality and efficiency of two Sobol index estimators, in: ESAIM: Probability and Statistics, October 2014, vol. 18, pp. 342-364. [ DOI : 10.1051/ps/2013040 ]
https://hal.inria.fr/hal-00665048 -
61A. Janon, M. Nodet, C. Prieur.
Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values, in: ESAIM: Mathematical Modelling and Numerical Analysis, March 2013, vol. 47, no 2, pp. 317-348. [ DOI : 10.1051/m2an/2012029 ]
http://hal.inria.fr/inria-00524727 -
62A. Janon, M. Nodet, C. Prieur.
Uncertainties assessment in global sensitivity indices estimation from metamodels, in: International Journal for Uncertainty Quantification, 2014, vol. 4, no 1, pp. 21-36. [ DOI : 10.1615/Int.J.UncertaintyQuantification.2012004291 ]
https://hal.inria.fr/inria-00567977 -
63F. Lemarié, E. Blayo, L. Debreu.
Analysis of ocean-atmosphere coupling algorithms : consistency and stability, in: Procedia Computer Science, 2015, vol. 51, pp. 2066–2075. [ DOI : 10.1016/j.procs.2015.05.473 ]
https://hal.inria.fr/hal-01174132 -
64F. Lemarié, L. Debreu, E. Blayo.
Optimal control of the convergence rate of Global-in-time Schwarz algorithms, in: Domain Decomposition Methods in Science and Engineering XX, R. Bank, M. Holst, O. Widlund, J. Xu (editors), volume 91 of Lecture Notes in Computational Science and Engineering, Springer-Verlag Berlin Heidelberg, 2013, pp. 599-606. [ DOI : 10.1007/978-3-642-35275-1_71 ]
https://hal.archives-ouvertes.fr/hal-00661979 -
65F. Lemarié, L. Debreu, E. Blayo.
Toward an Optimized Global-in-Time Schwarz Algorithm for Diffusion Equations with Discontinuous and Spatially Variable Coefficients, Part 1: The Constant Coefficients Case, in: Electronic Transactions on Numerical Analysis, 2013, vol. 40, pp. 148-169.
https://hal.archives-ouvertes.fr/hal-00661977 -
66F. Lemarié, L. Debreu, E. Blayo.
Toward an Optimized Global-in-Time Schwarz Algorithm for Diffusion Equations with Discontinuous and Spatially Variable Coefficients, Part 2: the Variable Coefficients Case, in: Electronic Transactions on Numerical Analysis, 2013, vol. 40, pp. 170-186.
https://hal.archives-ouvertes.fr/hal-00661978 -
67F. Lemarié.
Numerical modification of atmospheric models to include the feedback of oceanic currents on air-sea fluxes in ocean-atmosphere coupled models, Inria Grenoble - Rhône-Alpes ; Laboratoire Jean Kuntzmann ; Universite de Grenoble I - Joseph Fourier ; Inria, August 2015, no RT-0464.
https://hal.inria.fr/hal-01184711 -
68F. Lemarié, P. Marchesiello, L. Debreu, E. Blayo.
Sensitivity of Ocean-Atmosphere Coupled Models to the Coupling Method : Example of Tropical Cyclone Erica, Inria Grenoble ; Inria, December 2014, no RR-8651, 32 p.
https://hal.inria.fr/hal-00872496 -
69A. Makris, C. Prieur.
Bayesian Multiple Hypothesis Tracking of Merging and Splitting Targets, in: IEEE Transactions on Geoscience and Remote Sensing, 2014, vol. 52, no 12, pp. 7684-7694. [ DOI : 10.1109/TGRS.2014.2316600 ]
https://hal.inria.fr/hal-00919018 -
70A. Owen.
Variance components and generalized sobol' indices, 2012.
http://arxiv.org/abs/1205.1774 -
71A. B. Owen.
Sobol' indices and Shapley value, in: Journal on Uncertainty Quantification, 2014, vol. 2, pp. 245–251. -
72A. Saltelli.
Making best use of model evaluations to compute sensitivity indices, in: Computer Physics Communications, 2002, vol. 145, no 2, pp. 280 - 297. [ DOI : 10.1016/S0010-4655(02)00280-1 ]
http://www.sciencedirect.com/science/article/pii/S0010465502002801 -
73G. Salvadori, C. De Michele, F. Durante.
On the return period and design in a multivariate framework, in: Hydrology and Earth System Sciences, 2011, vol. 15, no 11, pp. 3293–3305. -
74I. M. Sobol.
Sensitivity estimates for nonlinear mathematical models, in: Math. Modeling Comput. Experiment, 1993, vol. 1, no 4, pp. 407–414 (1995). -
75E. Song, B. L. Nelson, J. Staum.
Shapley Effects for Global Sensitivity Analysis: Theory and Computation, Northwestern University, 2015. -
76I. Souopgui, H. E. Ngodock, A. Vidard, F.-X. Le Dimet.
Incremental projection approach of regularization for inverse problems, in: Applied Mathematics & Optimization, September 2015, 22 p. [ DOI : 10.1007/s00245-015-9315-3 ]
https://hal.inria.fr/hal-01205235 -
77I. Souopgui.
Assimilation d'images pour les fluides géophysiques, Université Joseph-Fourier - Grenoble I, Oct 2010. -
78C. B. Storlie, T. C. M. Lee, J. Hannig, D. Nychka.
Tracking of multiple merging and splitting targets: a statistical perspective, in: Statist. Sinica, 2009, vol. 19, no 1, pp. 1–31. -
79P. Tencaliec, A.-C. Favre, C. Prieur, T. Mathevet.
Reconstruction of missing daily streamflow data using dynamic regression models, in: Water Resources Research, December 2015, vol. 51, no 12, pp. 9447–9463. [ DOI : 10.1002/2015WR017399 ]
https://hal.inria.fr/hal-01245238 -
80J.-Y. Tissot, C. Prieur.
A randomized Orthogonal Array-based procedure for the estimation of first- and second-order Sobol' indices, in: Journal of Statistical Computation and Simulation, 2014, pp. 1-24. [ DOI : 10.1080/00949655.2014.971799 ]
https://hal.archives-ouvertes.fr/hal-00743964