Section: Application Domains
Promotion of Better Cryptography
We also promote the switch to algebraic curves as cryptographic primitives. Those offer nice speed and excellent security, while primitives based on elementary number theory (integer factorization, discrete logarithm in finite fields), which underpin e.g., RSA, are gradually forced to adopt unwieldy key sizes so as to comply with the desired security guarantees of modern cryptography. Our contributions to the ultimate goal of having algebraic curves eventually take over the cryptographic landscape lie in our fast arithmetic contributions, our contributions to the point counting problem, and more generally our expertise on the diverse surrounding mathematical objects, or on the special cases where the discrete logarithm problem is not hard enough and should be avoided.
We also promote cryptographically sound electronic voting, for which we develop the Belenios prototype software, (licensed under the AGPL). It depends on research made in collaboration with the PESTO team, and provides stronger guarantees than current state of the art.