Bibliography
Publications of the year
Doctoral Dissertations and Habilitation Theses
-
1A. Chekroun.
Contribution to the mathematical analysis of age and space structured partial differential equations describing a cell population dynamics model, Université Claude Bernard Lyon 1, March 2016.
https://hal.archives-ouvertes.fr/tel-01313670 -
2M. Jacquier.
Mathematical modeling of the hormonal regulation of food intake and body weight : applications to caloric restriction and leptin resistance, Université de Lyon, February 2016.
https://tel.archives-ouvertes.fr/tel-01273347 -
3L. Pujo-Menjouet.
Study of mathematical models arising from the biology of the cell cycle and the protein dynamics, Université Claude Bernard Lyon 1 - Institut Camille Jordan, December 2016, Habilitation à diriger des recherches.
https://hal.inria.fr/tel-01411371
Articles in International Peer-Reviewed Journals
-
4M. Adimy, Y. Bourfia, M. Lhassan Hbid, C. Marquet.
Age-structured model of hematopoiesis dynamics with growth factor-dependent coefficients, in: Electronic Journal of Differential Equations, June 2016, 140 p.
http://hal.upmc.fr/hal-01344118 -
5M. Adimy, A. Chekroun, T.-M. Touaoula.
Global asymptotic stability for an age-structured model of hematopoietic stem cell dynamics, in: Applicable Analysis, February 2016, pp. 1 - 12. [ DOI : 10.1080/00036811.2016.1139698 ]
https://hal.inria.fr/hal-01396691 -
6M. Banerjee, V. Vougalter, V. Volpert.
Doubly nonlocal reaction-diffusion equations and the emergence of species, in: Applied Mathematical Modelling, 2017, vol. 42, pp. 591–599. [ DOI : 10.1016/j.apm.2016.10.041 ]
https://hal.inria.fr/hal-01399589 -
7S. Bernard.
Moving the Boundaries of Granulopoiesis Modelling, in: Bulletin of Mathematical Biology, October 2016, vol. 78, no 12, pp. 2358 - 2363. [ DOI : 10.1007/s11538-016-0215-8 ]
https://hal.inria.fr/hal-01391393 -
8H. Berry, T. Lepoutre, Á. Mateos González.
Quantitative convergence towards a self similar profile in an age-structured renewal equation for subdiffusion, in: Acta Applicandae Mathematicae, 2016, no 145, pp. 15-45, in press.
https://hal.inria.fr/hal-01136667 -
9N. Bessonov, A. Sequeira, S. Simakov, Y. Vassilevski, V. Volpert.
Methods of Blood Flow Modelling, in: Mathematical Modelling of Natural Phenomena, 2016, vol. 11, pp. 1 - 25. [ DOI : 10.1051/mmnp/201611101 ]
https://hal.inria.fr/hal-01397437 -
10G. Bocharov, A. Bouchnita, J. Clairambault, V. Volpert.
Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods, in: Mathematical Modelling of Natural Phenomena, 2016.
https://hal.inria.fr/hal-01413795 -
11L. Bodgi, A. Canet, L. Pujo-Menjouet, A. Lesne, J.-M. Victor, N. Foray.
Mathematical models of radiation action on living cells: From the target theory to the modern approaches. A historical and critical review, in: Journal of Theoretical Biology, 2016, vol. 394, pp. 93 - 101. [ DOI : 10.1016/j.jtbi.2016.01.018 ]
https://hal.inria.fr/hal-01382777 -
12A. Bouchnita, N. Eymard, T. K. Moyo, M. J. Koury, V. Volpert.
Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis, in: American Journal of Hematology, 2016, vol. 91, no 4, pp. 371 - 378. [ DOI : 10.1002/ajh.24291 ]
https://hal.inria.fr/hal-01395624 -
13F. Crauste, J. Mafille, L. Boucinha, S. Djebali, O. Gandrillon, J. Marvel, C. Arpin.
Identification of nascent Memory CD8 T cells and modeling of their ontogeny, in: Cell Systems, November 2016, manuscript accepted.
https://hal.inria.fr/hal-01409637 -
14X. Gao, C. Arpin, J. Marvel, S. A. Prokopiou, O. Gandrillon, F. Crauste.
IL-2 sensitivity and exogenous IL-2 concentration gradient tune the productive contact duration of CD8+ T cell-APC: a multiscale modeling study, in: BMC Systems Biology, 2016, vol. 10, no 1, 77 p. [ DOI : 10.1186/s12918-016-0323-y ]
http://www.hal.inserm.fr/inserm-01354185 -
15F. Garaguel, N. Bessonov, J. Demongeot, D. Dhouailly, V. Volpert.
Wound Healing and Scale Modelling in Zebrafish, in: Acta Biotheoretica, 2016.
https://hal.inria.fr/hal-01395845 -
16M. Marion, V. Volpert.
Existence of pulses for a monotone reaction-diffusion system, in: Pure and Applied Functional Analysis, 2016.
https://hal.inria.fr/hal-01396839 -
17G. Panasenko, V. Volpert.
Homogenization of a one-dimensional diffusion - discrete absorption equation with feedback, in: Applicable Analysis, 2016, vol. 95, pp. 1507 - 1516. [ DOI : 10.1080/00036811.2016.1179288 ]
https://hal.inria.fr/hal-01397565 -
18L. Pujo-Menjouet.
Blood Cell Dynamics: Half of a Century of Modelling, in: Mathematical Modelling of Natural Phenomena, 2016, vol. 11, pp. 92 - 115. [ DOI : 10.1051/mmnp/201611106 ]
https://hal.inria.fr/hal-01382783 -
19A. Stéphanou, V. Volpert.
Hybrid Modelling in Biology: a Classification Review, in: Mathematical Modelling of Natural Phenomena, 2016, vol. 11, pp. 37 - 48. [ DOI : 10.1051/mmnp/201611103 ]
https://hal.inria.fr/hal-01397430 -
20L. M. Tine, C. Yang.
A hybrid finite volume method for advection equations and its applications in population dynamics, in: Numerical Methods for Partial Differential Equations, December 2016. [ DOI : 10.1002/num.22134 ]
https://hal.inria.fr/hal-01421825 -
21V. Vougalter, V. Volpert.
Existence of stationary solutions for some non-Fredholm integro-differential equations with superdiffusion, in: Journal of Pseudo-Differential Operators and Applications, 2016. [ DOI : 10.1007/s11868-016-0173-9 ]
https://hal.inria.fr/hal-01397555 -
22R. YVINEC, S. Bernard, E. Hingant, L. Pujo-Menjouet.
First passage times in homogeneous nucleation: Dependence on the total number of particles, in: Journal of Chemical Physics, 2016, vol. 144, no 3, pp. 1-17. [ DOI : 10.1063/1.4940033 ]
https://hal.archives-ouvertes.fr/hal-01353266
Scientific Books (or Scientific Book chapters)
-
23E. Sciences (editor)
Inverse problem for cell division rate in population dynamics, ITM Web of Conferences, May 2016, vol. Volume 4, no 01003, 10 p. [ DOI : 10.1051/itmconf/20150401003 ]
https://hal.inria.fr/hal-01253536
Other Publications
-
24M. Ahmed, V. Maume-Deschamps, P. Ribereau, C. Vial.
Spatial risk measure for Gaussian processes, December 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01421078 -
25I. S. Ciuperca, M. Dumont, A. Lakmeche, P. Mazzocco, L. Pujo-Menjouet, H. Rezaei, L. M. Tine.
Alzheimer's disease and prion: analysis of an in vitro mathematical model, September 2016, working paper or preprint.
https://hal.inria.fr/hal-01368862 -
26T. Lepoutre, A. Moussa.
Entropic structure and duality for multiple species cross-diffusion systems, September 2016, working paper or preprint.
https://hal.inria.fr/hal-01373172
-
27M. Adimy, S. Bernard, J. Clairambault, F. Crauste, S. Génieys, L. Pujo-Menjouet.
Modélisation de la dynamique de l'hématopoïèse normale et pathologique, in: Hématologie, 2008, vol. 14, no 5, pp. 339-350.
https://hal.inria.fr/hal-00750278 -
28M. Adimy, F. Crauste.
Global stability of a partial differential equation with distributed delay due to cellular replication, in: Nonlinear Analysis, 2003, vol. 54, no 8, pp. 1469-1491. -
29M. Adimy, F. Crauste, L. Pujo-Menjouet.
On the stability of a maturity structured model of cellular proliferation, in: Discrete Contin. Dyn. Syst. Ser. A, 2005, vol. 12, no 3, pp. 501-522. -
30R. Apostu, M. C. Mackey.
Understanding cyclical thrombocytopenia: A mathematical modelling approach, in: Journal of Theoretical Biology, 2008, vol. 251, no 2, pp. 297-316. -
31J. Belair, M. C. Mackey, J. Mahaffy.
Age-structured and two-delay models for erythropoiesis, in: Mathematical Biosciences, 1995, vol. 128, no 1-2, pp. 317-346. -
32S. Bernard, J. Belair, M. C. Mackey.
Oscillations in cyclical neutropenia: new evidence based on mathematical modelling, in: J. Theor. Biol., 2003, vol. 223, no 3, pp. 283-298. -
33N. Bessonov, L. Pujo-Menjouet, V. Volpert.
Cell modelling of hematopoiesis, in: Math. Model. Nat. Phenomena, 2006, vol. 1, no 2, pp. 81-103. -
34X. Chen, E. S. Daus, A. Jüngel.
Global existence analysis of cross-diffusion population systems for multiple species, in: ArXiv e-prints, August 2016. -
35F. Crauste, E. Terry, I. L. Mercier, J. Mafille, S. Djebali, T. Andrieu, B. Mercier, G. Kaneko, C. Arpin, J. Marvel, O. Gandrillon.
Predicting pathogen-specific {CD8} T cell immune responses from a modeling approach, in: Journal of Theoretical Biology, 2015, vol. 374, pp. 66 - 82. [ DOI : 10.1016/j.jtbi.2015.03.033 ]
http://www.sciencedirect.com/science/article/pii/S0022519315001484 -
36A. Ducrot, V. Volpert.
On a model of leukemia development with a spatial cell distribution, in: Math. Model. Nat. Phenomena, 2007, vol. 2, no 3, pp. 101-120. -
37I. Glauche, K. Horn, M. Horn, L. Thielecke, M. A. Essers, A. Trumpp, I. Roeder.
Therapy of chronic myeloid leukaemia can benefit from the activation of stem cells: simulation studies of different treatment combinations, in: British Journal of Cancer, apr 2012, vol. 106, no 11, pp. 1742–1752.
http://dx.doi.org/10.1038/bjc.2012.142 -
38C. Haurie, D. Dale, M. C. Mackey.
Cyclical Neutropenia and Other Periodic Hematological Disorders: A Review of Mechanisms and Mathematical Models, in: Blood, 1998, vol. 92, no 8, pp. 2629-2640. -
39M. C. Mackey.
Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, in: Blood, 1978, vol. 51, no 5, pp. 941-956. -
40M. C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu.
Periodic Oscillations of Blood Cell Populations in Chronic Myelogenous Leukemia, in: SIAM Journal on Mathematical Analysis, 2006, vol. 38, no 1, pp. 166-187. -
41F. Michor, T. Hughes, Y. Iwasa, S. Branford, N. Shah, C. Sawyers.
Dynamics of chronic myeloid leukaemia, in: Nature, 2005, vol. 435, no 7046, pp. 1267-1270. -
42B. Perthame.
Transport Equations in Biology, Birkhauser Basel, 2006. -
43S. A. Prokopiou, L. Barbarroux, S. Bernard, J. Mafille, Y. Leverrier, C. Arpin, J. Marvel, O. Gandrillon, F. Crauste.
Multiscale Modeling of the Early CD8 T-Cell Immune Response in Lymph Nodes: An Integrative Study, in: Computation, 2014, vol. 2, no 4, 159 p. [ DOI : 10.3390/computation2040159 ]
http://www.mdpi.com/2079-3197/2/4/159 -
44C. Rubiolo, D. Piazzolla, K. Meissl, H. Beug, J. Huber, A. Kolbus.
A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation, in: Blood, 2006, vol. 108, no 1, pp. 152-159. -
45E. Terry, J. Marvel, C. Arpin, O. Gandrillon, F. Crauste.
Mathematical model of the primary CD8 T cell immune response: stability analysis of a nonlinear age-structured system, in: Journal of Mathematical Biology, 2012, vol. 65, no 2, pp. 263–291.
http://dx.doi.org/10.1007/s00285-011-0459-8 -
46G. Webb.
Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, 1985.