EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1R. Alicandro, M. Cicalese, A. Gloria.

    Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, in: Arch. Ration. Mech. Anal., 2011, vol. 200, no 3, pp. 881–943.
  • 2A. Gloria.

    Numerical homogenization: survey, new results, and perspectives, in: Esaim. Proc., 2012, vol. 37, Mathematical and numerical approaches for multiscale problem.
  • 3A. Gloria, F. Otto.

    An optimal variance estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Probab., 2011, vol. 39, no 3, pp. 779–856.
  • 4A. Gloria, F. Otto.

    An optimal error estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Appl. Probab., 2012, vol. 22, no 1, pp. 1–28.
  • 5A. Gloria, M. Penrose.

    Random parking, Euclidean functionals, and rubber elasticity, in: Comm. Math. Physics, 2013, vol. 321, no 1, pp. 1–31.
Publications of the year

Articles in International Peer-Reviewed Journals

  • 6S. N. Armstrong, A. Gloria, T. Kuusi.

    Bounded correctors in almost periodic homogenization, in: Archive for Rational Mechanics and Analysis, 2016, vol. 222, no 1, pp. 393–426. [ DOI : 10.1007/s00205-016-1004-0 ]

    https://hal.inria.fr/hal-01230991
  • 7O. Blondel, P. Gonçalves, M. Simon.

    Convergence to the Stochastic Burgers Equation from a degenerate microscopic dynamics, in: Electronic Journal of Probability, December 2016, vol. 21, no 69, 25 p. [ DOI : 10.1214/16-EJP15 ]

    https://hal.archives-ouvertes.fr/hal-01295541
  • 8D. Bonheure, J.-B. Casteras, B. Noris.

    Layered solutions with unbounded mass for the Keller–Segel equation, in: Journal of Fixed Point Theory and Applications, 2016. [ DOI : 10.1007/s11784-016-0364-2 ]

    https://hal.archives-ouvertes.fr/hal-01398930
  • 9D. Bonheure, S. Cingolani, M. Nys.

    Nonlinear Schrödinger equation: concentration on circles driven by an external magnetic field, in: Calculus of Variations and Partial Differential Equations, 2016, vol. 55. [ DOI : 10.1007/s00526-016-1013-8 ]

    https://hal.archives-ouvertes.fr/hal-01182834
  • 10D. Bonheure, P. D 'avenia, A. Pomponio.

    On the electrostatic Born-Infeld equation with extended charges, in: Communications in Mathematical Physics, 2016. [ DOI : 10.1007/s00220-016-2586-y ]

    https://hal.archives-ouvertes.fr/hal-01182830
  • 11D. Bonheure, M. Grossi, B. Noris, S. Terracini.

    Multi-layer radial solutions for a supercritical Neumann problem, in: Journal of Differential Equations, 2016, vol. 261. [ DOI : 10.1016/j.jde.2016.03.016 ]

    https://hal.archives-ouvertes.fr/hal-01182832
  • 12D. Bonheure, C. Grumiau, C. Troestler.

    Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions, in: Nonlinear Analysis: Theory, Methods and Applications, 2016, vol. 147, pp. 236-273. [ DOI : 10.1016/j.na.2016.09.010 ]

    https://hal.archives-ouvertes.fr/hal-01408548
  • 13D. Bonheure, F. Hamel.

    One-dimensional symmetry and Liouville type results for the fourth order Allen-Cahn equation in RN, in: Chinese Annals of Mathematics - Series B, 2016, 25 p.

    https://hal.archives-ouvertes.fr/hal-01182688
  • 14D. Bonheure, F. Juraj, S. Alberto.

    Qualitative properties of solutions to mixed-diffusion bistable equations, in: Calculus of Variations and Partial Differential Equations, May 2016, vol. 55. [ DOI : 10.1007/s00526-016-0987-6 ]

    https://hal.archives-ouvertes.fr/hal-01203710
  • 15D. Bonheure, J. D. Rossi, N. Saintier.

    The limit as p→∞ in the eigenvalue problem for a system of p-Laplacians, in: Annali di Matematica Pura ed Applicata, 2016, vol. 195, no 5, pp. 1771–1785. [ DOI : 10.1007/s10231-015-0547-2 ]

    https://hal.archives-ouvertes.fr/hal-01408551
  • 16J.-B. Casteras, E. Heinonen, I. Holopainen.

    Solvability of Minimal Graph Equation Under Pointwise Pinching Condition for Sectional Curvatures, in: The Journal of Geometric Analysis, 2016. [ DOI : 10.1007/s12220-016-9712-0 ]

    https://hal.archives-ouvertes.fr/hal-01398918
  • 17J.-B. Casteras, J. B. Ripoll.

    On asymptotic plateau’s problem for CMC hypersurfaces on rank 1 symmetric spaces of noncompact type, in: Asian Journal of Mathematics, 2016, vol. 20, no 4, pp. 695 - 708. [ DOI : 10.4310/AJM.2016.v20.n4.a5 ]

    https://hal.archives-ouvertes.fr/hal-01398916
  • 18C. Chainais-Hillairet, T. Gallouët.

    Study of a pseudo-stationary state for a corrosion model: existence and numerical approximation, in: Nonlinear Analysis: Real World Applications, 2016.

    https://hal.inria.fr/hal-01147621
  • 19M. Conforti, A. Mussot, A. Kudlinski, S. Rota Nodari, G. Dujardin, S. De Bièvre, A. Armaroli, S. Trillo.

    Heteroclinic Structure of Parametric Resonance in the Nonlinear Schrödinger Equation, in: Physical Review Letters, June 2016, vol. 117, no 1. [ DOI : 10.1103/PhysRevLett.117.013901 ]

    https://hal.archives-ouvertes.fr/hal-01333882
  • 20S. De Bièvre, A. Vavasseur, T. Goudon.

    Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov–Poisson system, in: SIAM Journal on Mathematical Analysis, 2016, vol. 48, no 6, pp. 3984–4020.

    https://hal.archives-ouvertes.fr/hal-01286519
  • 21M. Duerinckx.

    Mean-field limits for some Riesz interaction gradient flows, in: SIAM Journal on Mathematical Analysis, 2016, vol. 48, no 3, pp. 2269-2300.

    https://hal.archives-ouvertes.fr/hal-01252661
  • 22M. Duerinckx, A. Gloria.

    Analyticity of homogenized coefficients under Bernoulli perturbations and the Clausius-Mossotti formulas, in: Archive for Rational Mechanics and Analysis, 2016, vol. 220, no 1, pp. 297–361. [ DOI : 10.1007/s00205-015-0933-3 ]

    https://hal.inria.fr/hal-01138797
  • 23M. Duerinckx, A. Gloria.

    Stochastic homogenization of nonconvex unbounded integral functionals with convex growth, in: Archive for Rational Mechanics and Analysis, 2016, vol. 221, no 3, pp. 1511–1584. [ DOI : 10.1007/s00205-016-0992-0 ]

    https://hal.inria.fr/hal-01192752
  • 24G. A. Francfort, A. Gloria.

    Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity, in: Comptes Rendus Mathématique, 2016, vol. 354, pp. 1139 - 1144. [ DOI : 10.1016/j.crma.2016.09.014 ]

    https://hal.inria.fr/hal-01398518
  • 25A. Gloria, Z. Habibi.

    Reduction of the resonance error in numerical homogenisation II: correctors and extrapolation, in: Foundations of Computational Mathematics, 2016, vol. 16, no 1, pp. 217–296. [ DOI : 10.1007/s10208-015-9246-z ]

    https://hal.inria.fr/hal-00933234
  • 26A. Gloria, D. Marahrens.

    Annealed estimates on the Green functions and uncertainty quantification, in: Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 2016, vol. 33, no 6, pp. 1153–1197, 43 pages. [ DOI : 10.1016/j.anihpc.2015.04.001 ]

    https://hal.archives-ouvertes.fr/hal-01093386
  • 27A. Gloria, J. Nolen.

    A quantitative central limit theorem for the effective conductance on the discrete torus, in: Communications on Pure and Applied Mathematics, 2016, vol. 69, no 12, pp. 2304–2348. [ DOI : 10.1002/cpa.21614 ]

    https://hal.archives-ouvertes.fr/hal-01093352
  • 28M. Simon, P. Goncalves, T. Franco.

    Crossover to the stochastic Burgers equation for the WASEP with a slow bond, in: Communications in Mathematical Physics, 2016. [ DOI : 10.1007/s00220-016-2607-x ]

    https://hal.inria.fr/hal-01355447
  • 29M. Simon, P. Gonçalves, M. Jara.

    Second order Boltzmann-Gibbs principle for polynomial functions and applications, in: Journal of Statistical Physics, December 2016. [ DOI : 10.1007/s10955-016-1686-6 ]

    https://hal.inria.fr/hal-01381009

Other Publications

References in notes
  • 43G. Agrawal.

    Nonlinear fiber optics, Academic Press, 2006.
  • 44B. Aguer, S. De Bièvre, P. Lafitte, P. E. Parris.

    Classical motion in force fields with short range correlations, in: J. Stat. Phys., 2010, vol. 138, no 4-5, pp. 780 – 814.
  • 45A. Anantharaman, C. Le Bris.

    A numerical approach related to defect-type theories for some weakly random problems in homogenization, in: Multiscale Model. Simul., 2011, vol. 9, no 2, pp. 513–544.

    http://dx.doi.org/10.1137/10079639X
  • 46A. Anantharaman, C. Le Bris.

    Elements of mathematical foundations for numerical approaches for weakly random homogenization problems, in: Commun. Comput. Phys., 2012, vol. 11, no 4, pp. 1103–1143.

    http://dx.doi.org/10.4208/cicp.030610.010411s
  • 47T. Arbogast.

    Numerical subgrid upscaling of two-phase flow in porous media, in: Numerical treatment of multiphase flows in porous media (Beijing, 1999), Berlin, Lecture Notes in Phys., Springer, 2000, vol. 552, pp. 35–49.
  • 48S. N. Armstrong, Z. Shen.

    Lipschitz estimates in almost-periodic homogenization, in: Commun. Pure Appl. Mathematics, September 2015.
  • 49S. N. Armstrong, C. K. Smart.

    Quantitative stochastic homogenization of convex integral functionals, in: Ann. Scientifiques de l'ENS, 2015.
  • 50J. M. Ball.

    Some open problems in elasticity, in: Geometry, mechanics, and dynamics, New York, Springer, 2002, pp. 3–59.
  • 51G. Basile, C. Bernardin, S. Olla.

    Thermal conductivity for a momentum conservative model, in: Comm. Math. Phys., 2009, vol. 287, no 1, pp. 67–98.

    http://dx.doi.org/10.1007/s00220-008-0662-7
  • 52C. Bernardin, P. Gonçalves, M. Jara.

    3/4-fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise, in: Arch. Ration. Mech. Anal., 2016, vol. 220, no 2, pp. 505–542.

    http://dx.doi.org/10.1007/s00205-015-0936-0
  • 53C. Bernardin, P. Gonçalves, M. Jara, M. Sasada, M. Simon.

    From normal diffusion to superdiffusion of energy in the evanescent flip noise limit, in: J. Stat. Phys., 2015, vol. 159, no 6, pp. 1327–1368.

    http://dx.doi.org/10.1007/s10955-015-1235-8
  • 54D. Bonheure, J.-B. Casteras, R. Nascimento.

    Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation, in: Preprint, 2016.
  • 55A. Braides.

    Homogenization of some almost periodic functionals, in: Rend. Accad. Naz. Sci. XL, 1985, vol. 103, pp. 261–281.
  • 56G. Dal Maso, L. Modica.

    Nonlinear stochastic homogenization and ergodic theory, in: J. Reine Angew. Math., 1986, vol. 368, pp. 28–42.
  • 57S. De Bièvre, C. Mejia-Monasterio, E. P. Parris.

    Preprint, 2016.
  • 58S. De Bièvre, P. Parris.

    Equilibration, generalized equipartition and diffusion in dynamical Lorentz gases, in: J. Stat. Phys., 2011, vol. 142, pp. 356–385.
  • 59S. De Bièvre, J. Faupin, B. Schubnel.

    Spectral analysis of a model for quantum friction, December 2015, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01246914
  • 60S. De Bièvre, G. Forni.

    Transport properties of kicked and quasiperiodic Hamiltonians, in: J. Statist. Phys., 2010, vol. 90, no 5-6, pp. 1201–1223.
  • 61M. Disertori, W. Kirsch, A. Klein, F. Klopp, V. Rivasseau.

    Random Schrödinger operators, Panoramas et Synthèses, Société Mathématique de France, Paris, 2008, no 25.
  • 62Y. Efendiev, T. Hou.

    Multiscale finite element methods, Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009, vol. 4, Theory and applications.
  • 63P. Flory.

    Statistical mechanics of chain molecules, Interscience Publishers, New York, 1969.
  • 64J.-C. Garreau, B. Vermersch.

    Spectral description of the dynamics of ultracold interacting bosons in disordered lattices, in: New. J. Phys., 2013, vol. 15, 045030.
  • 65A. Gloria, P. Le Tallec, M. Vidrascu.

    Foundation, analysis, and numerical investigation of a variational network-based model for rubber, in: Continuum Mech. Thermodyn..
  • 66P. Gonçalves, M. Jara.

    Nonlinear fluctuations of weakly asymmetric interacting particle systems, in: Arch. Ration. Mech. Anal., 2014, vol. 212, no 2, pp. 597–644.

    http://dx.doi.org/10.1007/s00205-013-0693-x
  • 67D. Horoshko, S. De Bièvre, M. I. Kolobov, G. Patera.

    Entanglement of quantum circular states of light, in: Phys.Rev.A, June 2016. [ DOI : 10.1103/PhysRevA.93.062323 ]

    https://hal.inria.fr/hal-01408553
  • 68T. Hou, X. Wu.

    A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, in: J. Comput. Phys., 1997, vol. 134, pp. 169–189.
  • 69M. Jara, T. Komorowski, S. Olla.

    Limit theorems for additive functionals of a Markov chain, in: Ann. Appl. Probab., 2009, vol. 19, no 6, pp. 2270–2300.

    http://dx.doi.org/10.1214/09-AAP610
  • 70S. M. Kozlov.

    Averaging of differential operators with almost periodic rapidly oscillating coefficients, in: Mat. Sb. (N.S.), 1978, vol. 107(149), no 2, pp. 199–217, 317.
  • 71S. Kozlov.

    The averaging of random operators, in: Mat. Sb. (N.S.), 1979, vol. 109(151), no 2, pp. 188–202, 327.
  • 72F. Legoll, W. Minvielle.

    A control variate approach based on a defect-type theory for variance reduction in stochastic homogenization, in: Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2015, vol. 13, no 2, pp. 519-550.

    https://hal.archives-ouvertes.fr/hal-01053459
  • 73S. Müller.

    Homogenization of nonconvex integral functionals and cellular elastic materials, in: Arch. Rat. Mech. Anal., 1987, vol. 99, pp. 189–212.
  • 74A. Naddaf, T. Spencer.

    Estimates on the variance of some homogenization problems, Preprint, 1998.
  • 75G. Papanicolaou, S. Varadhan.

    Boundary value problems with rapidly oscillating random coefficients, in: Random fields, Vol. I, II (Esztergom, 1979), Amsterdam, Colloq. Math. Soc. János Bolyai, North-Holland, 1981, vol. 27, pp. 835–873.
  • 76C. Sulem, P.-L. Sulem.

    The nonlinear Schrödinger equation, Springer-Verlag, New-York, 1999.
  • 77L. Treloar.

    The Physics of Rubber Elasticity, Oxford at the Clarendon Press, Oxford, 1949.
  • 78E. Weinan.

    Principles of multiscale modeling, Cambridge University Press, Cambridge, 2011, xviii+466 p.