Bibliography
Major publications by the team in recent years
-
1S. Giffard-Roisin, T. Jackson, L. Fovargue, J. Lee, H. Delingette, R. Razavi, N. Ayache, M. Sermesant.
Non-Invasive Personalisation of a Cardiac Electrophysiology Model from Body Surface Potential Mapping, in: IEEE Transactions on Biomedical Engineering, September 2017, vol. 64, no 9, pp. 2206 - 2218. [ DOI : 10.1109/TBME.2016.2629849 ] -
2B. Khanal, N. Ayache, X. Pennec.
Simulating Longitudinal Brain MRIs with known Volume Changes and Realistic Variations in Image Intensity, in: Frontiers in Neuroscience, February 2017, vol. 11, no Article 132, 18 p. [ DOI : 10.3389/fnins.2017.00132 ] -
3L. Le Folgoc, H. Delingette, A. Criminisi, N. Ayache.
Sparse Bayesian registration of medical images for self-tuning of parameters and spatially adaptive parametrization of displacements, in: Medical Image Analysis, February 2017, vol. 36, pp. 79 - 97. [ DOI : 10.1016/j.media.2016.09.008 ] -
4M. Lorenzi, X. Pennec.
Geodesics, Parallel Transport & One-parameter Subgroups for Diffeomorphic Image Registration, in: International Journal of Computer Vision, November 2013, vol. 105, no 2, pp. 111-127. [ DOI : 10.1007/s11263-012-0598-4 ] -
5M. Lê, H. Delingette, J. Kalpathy-Cramer, E. R. Gerstner, T. Batchelor, J. Unkelbach, N. Ayache.
MRI Based Bayesian Personalization of a Tumor Growth Model, in: IEEE Transactions on Medical Imaging, April 2016, vol. 35, no 10, pp. 2329-2339. [ DOI : 10.1109/TMI.2016.2561098 ]
Doctoral Dissertations and Habilitation Theses
-
6T. Demarcy.
Segmentation and study of anatomical variability of the cochlea from medical images, Université Côte d'Azur, July 2017.
https://tel.archives-ouvertes.fr/tel-01609910 -
7L. Devilliers.
Consistency of statistics in infinite dimensional quotient spaces, Université Côte d’Azur, November 2017.
https://hal.inria.fr/tel-01683607 -
8S. Giffard-Roisin.
Non-invasive Personalisation of Cardiac Electrophysiological Models from Surface Electrograms, Université côte d'azur, December 2017.
https://hal.inria.fr/tel-01658489 -
9R. Molléro.
Robust Personalisation of 3D Electromechanical Cardiac Models. Application to Heterogeneous and Longitudinal Clinical Databases, Université Nice Côte d'Azur, December 2017.
https://hal.inria.fr/tel-01656290 -
10M.-M. Rohé.
Reduced representation of segmentation and tracking in cardiac images for group-wise longitudinal analysis, Université Côte d'Azur, July 2017.
https://hal.inria.fr/tel-01575292
Articles in International Peer-Reviewed Journals
-
11J. L. Bruse, A. Khushnood, K. Mcleod, G. Biglino, M. Sermesant, X. Pennec, A. M. Taylor, T.-Y. Hsia, S. Schievano.
How successful is successful? Aortic arch shape after successful aortic coarctation repair correlates with left ventricular function, in: Journal of Thoracic and Cardiovascular Surgery, February 2017, vol. 153, no 2, pp. 418 - 427. [ DOI : 10.1016/j.jtcvs.2016.09.018 ]
https://hal.inria.fr/hal-01387297 -
12J. L. Bruse, M. A. Zuluaga, A. Khushnood, K. Mcleod, H. N. Ntsinjana, T.-Y. Hsia, M. Sermesant, X. Pennec, A. M. Taylor, S. Schievano.
Detecting clinically meaningful shape clusters in medical image data: metrics analysis for hierarchical clustering applied to healthy and pathological aortic arches, in: IEEE Transactions on Biomedical Engineering, February 2017, pp. 1 - 13. [ DOI : 10.1109/TBME.2017.2655364 ]
https://hal.inria.fr/hal-01421202 -
13T. Demarcy, C. Vandersteen, N. Guevara, C. Raffaelli, D. Gnansia, N. Ayache, H. Delingette.
Automated analysis of human cochlea shape variability from segmented μCT images, in: Computerized Medical Imaging and Graphics, 2017, vol. 59, no July 2017, pp. 1 - 12. [ DOI : 10.1016/j.compmedimag.2017.04.002 ]
https://hal.inria.fr/hal-01528489 -
14L. Devilliers, S. Allassonnière, A. Trouvé, X. Pennec.
Inconsistency of template estimation by minimizing of the variance/pre-variance in the quotient space, in: Entropy, June 2017, vol. 19, no 6, 28 p, https://arxiv.org/abs/1706.10125. [ DOI : 10.3390/e19060288 ]
https://hal.inria.fr/hal-01543616 -
15L. Devilliers, S. Allassonnière, A. Trouvé, X. Pennec.
Template estimation in computational anatomy: Fréchet means in top and quotient spaces are not consistent, in: SIAM Journal on Imaging Sciences, August 2017, vol. 10, no 3, pp. 1139-1169, https://arxiv.org/abs/1608.03703. [ DOI : 10.1137/16M1083931 ]
https://hal.archives-ouvertes.fr/hal-01352707 -
16N. Duchateau, M. Sermesant, H. Delingette, N. Ayache.
Model-based generation of large databases of cardiac images: synthesis of pathological cine MR sequences from real healthy cases, in: IEEE Transactions on Medical Imaging, 2017, In press. [ DOI : 10.1109/TMI.2017.2714343 ]
https://hal.inria.fr/hal-01533788 -
17S. Giffard-Roisin, T. Jackson, L. Fovargue, J. Lee, H. Delingette, R. Razavi, N. Ayache, M. Sermesant.
Non-Invasive Personalisation of a Cardiac Electrophysiology Model from Body Surface Potential Mapping, in: IEEE Transactions on Biomedical Engineering, September 2017, vol. 64, no 9, pp. 2206 - 2218, Selected for the TBME highlights, sept. 2017https://tbme.embs.org/2017/08/24/non-invasive-personalisation-cardiac-electrophysiology-model-body-surface-potential-mapping/. [ DOI : 10.1109/TBME.2016.2629849 ]
https://hal.inria.fr/hal-01397393 -
18P. Gori, O. Colliot, L. Marrakchi-Kacem, Y. Worbe, C. Poupon, A. Hartmann, N. Ayache, S. Durrleman.
A Bayesian Framework for Joint Morphometry of Surface and Curve meshes in Multi-Object Complexes, in: Medical Image Analysis, January 2017, vol. 35, pp. 458-474. [ DOI : 10.1016/j.media.2016.08.011 ]
https://hal.inria.fr/hal-01359423 -
19B. Khanal, N. Ayache, X. Pennec.
Simulating Longitudinal Brain MRIs with known Volume Changes and Realistic Variations in Image Intensity, in: Frontiers in Neuroscience, February 2017, vol. 11, no Article 132, 18 p. [ DOI : 10.3389/fnins.2017.00132 ]
https://hal.inria.fr/hal-01348959 -
20L. Le Folgoc, H. Delingette, A. Criminisi, N. Ayache.
Sparse Bayesian registration of medical images for self-tuning of parameters and spatially adaptive parametrization of displacements, in: Medical Image Analysis, February 2017, vol. 36, pp. 79 - 97. [ DOI : 10.1016/j.media.2016.09.008 ]
https://hal.inria.fr/hal-01149544 -
21M. Lorenzi, M. Filippone, G. Frisoni, D. C. Alexander, S. Ourselin.
Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer's disease, in: NeuroImage, October 2017.
https://hal.archives-ouvertes.fr/hal-01617750 -
22N. Miolane, S. Holmes, X. Pennec.
Template Shape Estimation: Correcting an Asymptotic Bias, in: SIAM Journal on Imaging Sciences, 2017, vol. 10, no 2, pp. 808 - 844, https://arxiv.org/abs/1610.01502. [ DOI : 10.1137/16M1084493 ]
https://hal.archives-ouvertes.fr/hal-01350508 -
23P. Moceri, N. Duchateau, D. Baudouy, E.-D. Schouver, S. Leroy, F. Squara, E. Ferrari, M. Sermesant.
Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension, in: European Heart Journal - Cardiovascular Imaging, 2017, In press. [ DOI : 10.1093/ehjci/jex163 ]
https://hal.inria.fr/hal-01533793 -
24R. Molléro, X. Pennec, H. Delingette, A. Garny, N. Ayache, M. Sermesant.
Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models, in: Biomechanics and Modeling in Mechanobiology, September 2017, pp. 1-16. [ DOI : 10.1007/s10237-017-0960-0 ]
https://hal.inria.fr/hal-01656008 -
25X. Pennec.
Barycentric Subspace Analysis on Manifolds, in: Annals of Statistics, 2017, https://arxiv.org/abs/1607.02833v2, forthcoming.
https://hal.archives-ouvertes.fr/hal-01343881 -
26N. Rodriguez-Florez, J. L. Bruse, A. Borghi, H. Vercruysse, J. Ong, G. James, X. Pennec, D. J. Dunaway, O. Jeelani, S. Schievano.
Statistical shape modelling to aid surgical planning: associations between surgical parameters and head shapes following spring-assisted cranioplasty, in: International Journal of Computer Assisted Radiology and Surgery, May 2017, pp. 1-11. [ DOI : 10.1007/s11548-017-1614-5 ]
https://hal.inria.fr/hal-01540631 -
27M.-M. Rohé, M. Sermesant, X. Pennec.
Low-Dimensional Representation of Cardiac Motion Using Barycentric Subspaces: a New Group-Wise Paradigm for Estimation, Analysis, and Reconstruction, in: Medical Image Analysis, April 2018, vol. 45, pp. 1-12. [ DOI : 10.1016/j.media.2017.12.008 ]
https://hal.inria.fr/hal-01677685 -
28S. Sanchez-Martinez, N. Duchateau, T. Erdei, A. Fraser, B. Bijnens, G. Piella.
Characterization of myocardial motion patterns by unsupervised multiple kernel learning, in: Medical Image Analysis, 2017, vol. 35, pp. 70–82. [ DOI : 10.1016/j.media.2016.06.007 ]
https://hal.inria.fr/hal-01331550 -
29W. Schulze, Z. Chen, J. Relan, D. Potyagaylo, M. W. Krueger, R. Karim, M. Sohal, A. Shetty, Y. Ma, N. Ayache, M. Sermesant, H. Delingette, J. Bostock, R. Razavi, K. S. Rhode, C. A. Rinaldi.
ECG imaging of ventricular tachycardia: evaluation against simultaneous non-contact mapping and CMR-derived grey zone, in: Medical and Biological Engineering and Computing, June 2017, vol. 55, no 6, pp. 979 - 990. [ DOI : 10.1007/s11517-016-1566-x ]
https://hal.inria.fr/hal-01598299 -
30D. Soto-Iglesias, N. Duchateau, C. Butakoff, D. Andreu, J. Fernández-Armenta, B. Bijnens, A. Berruezo, M. Sitges, O. Camara.
Quantitative analysis of electro-anatomical maps: application to an experimental model of LBBB/CRT, in: IEEE Journal of Translational Engineering in Health and Medicine, 2017, In press. [ DOI : 10.1109/JTEHM.2016.2634006 ]
https://hal.inria.fr/hal-01398828 -
31A. A. Suinesiaputra, P. A. Ablin, X. A. Albà, M. Alessandrini, J. A. Allen, W. Bai, S. Çimen, P. Claes, B. R. Cowan, J. D'Hooge, N. Duchateau, J. Ehrhardt, A. F. Frangi, A. A. Gooya, V. Grau, K. Lekadir, A. A. Lu, A. A. Mukhopadhyay, I. Oksuz, N. Parajuli, X. Pennec, M. Pereañez, C. Pinto, P. Piras, M.-M. Rohé, D. R. Rueckert, D. Säring, M. Sermesant, K. Siddiqi, M. Tabassian, L. Teresi, S. A. Tsaftaris, M. Wilms, A. A. Young, X. Zhang, P. Medrano-Gracia.
Statistical shape modeling of the left ventricle: myocardial infarct classification challenge, in: IEEE Journal of Biomedical and Health Informatics, 2017, 13 p, In press. [ DOI : 10.1109/JBHI.2017.2652449 ]
https://hal.inria.fr/hal-01533805 -
32Y. Zhou, S. Giffard-Roisin, M. De Craene, S. Camarasu-Pop, J. D'Hooge, M. Alessandrini, D. Friboulet, M. Sermesant, O. Bernard.
A Framework for the Generation of Realistic Synthetic Cardiac Ultrasound and Magnetic Resonance Imaging Sequences from the same Virtual Patients, in: IEEE Transactions on Medical Imaging, 2017. [ DOI : 10.1109/TMI.2017.2708159 ]
https://hal.inria.fr/hal-01533366
Invited Conferences
-
33R. Molléro, J. Hauser, X. Pennec, M. Datar, H. Delingette, A. Jones, N. Ayache, T. Heimann, M. Sermesant.
Longitudinal Parameter Estimation in 3D Electromechanical Models: Application to Cardiovascular Changes in Digestion, in: FIMH 2017 - 9th international conference on Functional Imaging and Modeling of the Heart, Toronto, Canada, Functional Imaging and Modelling of the Heart, Springer International Publishing, June 2017, pp. 432-440. [ DOI : 10.1007/978-3-319-59448-4_41 ]
https://hal.inria.fr/hal-01522598
International Conferences with Proceedings
-
34N. Cedilnik, J. Duchateau, R. Dubois, P. Jaïs, H. Cochet, M. Sermesant.
VT Scan: Towards an Efficient Pipeline from Computed Tomography Images to Ventricular Tachycardia Ablation, in: Functional Imaging and Modelling of the Heart, Toronto, Canada, Functional Imaging and Modelling of the Heart, Springer International Publishing, June 2017, pp. 271-279. [ DOI : 10.1007/978-3-319-59448-4_26 ]
https://hal.inria.fr/hal-01498672 -
35L. Devilliers, X. Pennec, S. Allassonnière.
Inconsistency of Template Estimation with the Fréchet mean in Quotient Space, in: Information Processing in Medical Imaging 2017, Boone, United States, Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings, Martin Styner and Marc Niethammer and Dinggang Shen and Stephen Aylward and Ipek Oguz and Hongtu Zhu, June 2017, 12 p, https://arxiv.org/abs/1703.01232. [ DOI : 10.1007/978-3-319-59050-9_2 ]
https://hal.inria.fr/hal-01481074 -
36R. Doste, D. Soto-Iglesias, G. Bernardino, R. Sebastian, S. Giffard-Roisin, R. Cabrera-Lozoya, M. Sermesant, A. Berruezo, D. Sánchez-Quintana, O. Camara.
A Rule-Based Method to Model Myocardial Fiber Orientation for Simulating Ventricular Outflow Tract Arrhythmias, in: Functional imaging and modelling of the heart 2017, Toronto, Canada, Lecture Notes in Computer Science, June 2017, vol. 10263. [ DOI : 10.1007/978-3-319-59448-4_33 ]
https://hal.inria.fr/hal-01533389 -
38S. Jia, C. Camaioni, M.-M. Rohé, P. Jaïs, X. Pennec, H. Cochet, M. Sermesant.
Prediction of Post-Ablation Outcome in Atrial Fibrillation Using Shape Parameterization and Partial Least Squares Regression, in: FIMH 2017 - International Conference on Functional Imaging and Modeling of the Heart, Toronto, Canada, Lecture Notes in Computer Science, June 2017, vol. 10263, pp. 314 - 321. [ DOI : 10.1007/978-3-319-59448-4_30 ]
https://hal.inria.fr/hal-01574831 -
39J. Krebs, T. Mansi, H. Delingette, L. Zhang, F. C. Ghesu, S. Miao, A. Maier, N. Ayache, R. Liao, A. Kamen.
Robust non-rigid registration through agent-based action learning, in: Medical Image Computing and Computer Assisted Interventions (MICCAI), Quebec, Canada, Medical Image Computing and Computer Assisted Intervention − MICCAI 2017, Springer International Publishing, September 2017, pp. 344-352. [ DOI : 10.1007/978-3-319-66182-7_40 ]
https://hal.inria.fr/hal-01569447 -
40E. Lluch, R. Doste, S. Giffard-Roisin, A. This, M. Sermesant, O. Camara, M. De Craene, H. G. Morales.
Smoothed Particle Hydrodynamics for Electrophysiological Modeling: An Alternative to Finite Element Methods, in: Functional imaging and modelling of the heart 2017, Toronto, Canada, Functional imaging and modelling of the heart 2017 Proceedings, Springer International Publishing, June 2017, vol. 141, pp. 333-343. [ DOI : 10.1007/978-3-319-59448-4_32 ]
https://hal.inria.fr/hal-01533371 -
41K. Mcleod, M. Sermesant, X. Pennec.
Improving Understanding of Long-Term Cardiac Functional Remodelling via Cross-Sectional Analysis of Polyaffine Motion Parameters, in: FIMH 2017 - 9th International Conference on Functional Imaging and Modeling of the Heart, Toronto, Canada, Lecture Notes in Computer Science, Springer, June 2017, vol. 10263, pp. 51 - 59. [ DOI : 10.1007/978-3-319-59448-4_6 ]
https://hal.inria.fr/hal-01574837 -
42R. Molléro, H. Delingette, M. Datar, T. Heimann, J. Hauser, D. Panesar, A. Jones, A. Taylor, M. Kelm, T. Kuehne, M. Chinali, G. Rinelli, N. Ayache, X. Pennec, M. Sermesant.
Longitudinal Analysis using Personalised 3D Cardiac Models with Population-Based Priors: Application to Paediatric Cardiomyopathies, in: Medical Image Computing and Computer Assisted Intervention (MICCAI), Québec City, Canada, Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017, Springer International Publishing, September 2017, pp. 350-358. [ DOI : 10.1007/978-3-319-66185-8_40 ]
https://hal.inria.fr/hal-01569735 -
43X. Pennec.
Sample-limited L p Barycentric Subspace Analysis on Constant Curvature Spaces, in: Geometric Sciences of Information (GSI 2017), Paris, France, Geometric Science of Information, Springer International Publishing, November 2017, pp. 20-28. [ DOI : 10.1007/978-3-319-68445-1_3 ]
https://hal.inria.fr/hal-01574895 -
44M.-M. Rohé, M. Datar, T. Heimann, M. Sermesant, X. Pennec.
SVF-Net: Learning Deformable Image Registration Using Shape Matching, in: MICCAI 2017 - the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, Québec, Canada, Medical Image Computing and Computer Assisted Intervention − MICCAI 2017, Springer International Publishing, September 2017, pp. 266-274. [ DOI : 10.1007/978-3-319-66182-7_31 ]
https://hal.inria.fr/hal-01557417 -
45M.-M. Rohé, M. Sermesant, X. Pennec.
Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net, in: Statistical Atlases and Computational Modeling of the Heart (STACOM) workshop, Québec, Canada, September 2017.
https://hal.inria.fr/hal-01575297
Scientific Books (or Scientific Book chapters)
-
46S. Marchesseau, S. Chatelin, H. Delingette.
Non linear Biomechanical Model of the Liver: Hyperelastic Constitutive Laws for Finite Element Modeling, in: Biomechanics of Living Organs, Y. Payan, J. Ohayon (editors), Elsevier, June 2017, 602 p.
https://hal.inria.fr/hal-01536406
Scientific Popularization
-
47N. Miolane.
Les maths de l’espace-temps qui décrivent et dépassent le cerveau, in: Interstices, February 2017.
https://hal.inria.fr/hal-01503822
Patents
-
48H. Cochet, P. Jaïs, M. Sermesant.
Méthode de segmentation d’une image tridimensionnelle pour la génération d’un modèle de paroi du myocarde pour la détection d’au moins une zone de circulation électrique singulière, May 2017, no FR1754107.
https://hal.inria.fr/hal-01576064
Other Publications
-
49N. Miolane, S. Holmes, X. Pennec.
Topologically constrained template estimation via Morse-Smale complexes controls its statistical consistency, December 2017, working paper or preprint.
https://hal.inria.fr/hal-01655366 -
50A. Schmutz, J. Jacques, C. Bouveyron, L. Cheze, P. Martin.
Clustering multivariate functional data in group-specific functional subspaces, November 2017, working paper or preprint.
https://hal.inria.fr/hal-01652467
-
51N. Ayache, J. Duncan (editors)
Medical Image Analysis, Elsevier. -
52M. Gazzaniga (editor)
The Cognitive Neurosciences, MIT Press, 1995. - 53International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, Rotterdam, 2010.
-
54T. Jiang, N. Navab, J. P. Pluim, M. A. Viergever (editors)
Medical Image Computing and Computer-Assisted Intervention (MICCAI'10), Part I, Lecture Notes in Computer Science, Springer, Beijing, China, September 2010, vol. 6361. -
55T. Jiang, N. Navab, J. P. Pluim, M. A. Viergever (editors)
Medical Image Computing and Computer-Assisted Intervention (MICCAI'10), Part II, Lecture Notes in Computer Science, Springer, Beijing, China, September 2010, vol. 6362. -
56R. H. Taylor, S. Lavallée, G. S. Burdea, R. Mösges (editors)
Computer-Integrated Surgery: Technology and Clinical Applications, MIT Press, 1995. -
57W. Vannier, M. A. Viergever (editors)
Transactions on Medical Imaging, IEEE. -
58S. Webb (editor)
The Physics of Medical Imaging, Institute of Physics Publishing, 1988. - 59The international journal of Medical Robotics + Computer Assisted Surgery, Wiley.
-
60R. Acharya, R. Wasserman, J. Stevens, C. Hinojosa.
Biomedical Imaging modalities: a tutorial, in: Computerized Medical Imaging and Graphics, 1995, vol. 19, no 1, pp. 3–25. -
61M. J. Ackerman.
The Visible Human Project, in: Proceedings of the IEEE : Special Issue on Surgery Simulation, March 1998, vol. 86, no 3, pp. 504–511. -
62L. Axel, A. Montillo, D. Kim.
Tagged magnetic resonance imaging of the heart: a survey, in: Medical Image Analysis, 2005, vol. 9, no 4, pp. 376–393. -
63N. Ayache.
L'analyse automatique des images médicales, état de l'art et perspectives, in: Annales de l'Institut Pasteur, avril–juin 1998, vol. 9, no 1, pp. 13–21, numéro spécial sur les progrès récents de l'imagerie médicale. -
64N. Ayache, O. Clatz, H. Delingette, G. Malandain, X. Pennec, M. Sermesant.
Asclepios: a Research Project-Team at Inria for the Analysis and Simulation of Biomedical Images, in: From semantics to computer science: essays in honor of Gilles Kahn, Y. Bertot, G. Huet, J.-J. Lévy, G. Plotkin (editors), Cambridge University Press, 2009.
http://www.inria.fr/sophia/asclepios/Publications/Nicholas.Ayache/Colloquium-Gilles-Kahn-NA-2007-v5.pdf -
65M. Belik, T. Usyk, A. McCulloch.
Computational Methods for Cardiac Electrophysiology, in: Computational Models for the Human Body, N. Ayache (editor), Elsevier, 2004, pp. 129–187. -
66H. Delingette, X. Pennec, L. Soler, J. Marescaux, N. Ayache.
Computational Models for Image Guided, Robot-Assisted and Simulated Medical Interventions, in: Proceedings of the IEEE, September 2006, vol. 94, no 9, pp. 1678- 1688.
http://www.inria.fr/sophia/asclepios/Publications/Herve.Delingette/IEEE-proceedings-Robotics.pdf -
67I. L. Dryden, K. V. Mardia.
Statistical Shape Analysis, John Wiley and Sons, 1998. -
68J. Duncan, N. Ayache.
Medical Image Analysis: Progress over two decades and the challenges ahead, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, vol. 22, no 1, pp. 85–106. -
69N. C. Fox, J. M. Schott.
Imaging cerebral atrophy: normal ageing to Alzheimer's disease, in: Lancet, 2004, vol. 363, no 9406. -
70A. Frangi, W. J. Niessen, M. A. Viergever.
Three-dimensional modeling for functional analysis of cardiac images: a review, in: IEEE Trans Med Imaging, January 2001, vol. 20, no 1, pp. 2-25. -
71P. C. Franzone, L. Guerri, M. Pennachio, B. Taccardi.
Spread of excitation in 3-D models of the anisotropic cardiac tissue, in: Mathematical Biosciences, 1988, vol. 151, pp. 51–98. -
72E. Haug, H.-Y. Choi, S. Robin, M. Beaugonin.
Human Models for crash and impact Simulation, in: Computational Models for the Human Body, N. Ayache (editor), Elsevier, 2004, pp. 231–452. -
73P. Hunter, T. Borg.
Integration from proteins to organs: the Physiome project, in: Nature Reviews - Molecular Cell Biology, 2003, vol. 4, pp. 237–243. -
74P. Hunter.
Computational Physiology and the Physiome Project, 2004. -
75D. Metaxas, J. Kayes, F. Primanio.
A 3-D virtual environment for modeling mechanical cardiopulmonary interactions, in: Medical Image Analysis, 1997, vol. 3, no 1, pp. 1–26. -
76M. I. Miller.
Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms, in: NeuroImage, 2004, vol. 23, no Supplement 1, S19 p, Special Issue : Mathematics in Brain Imaging. -
77D. Noble.
Modeling the Heart, from genes to cells to the whole organ, in: Science, 2002, vol. 295, pp. 1678–1682. -
78A. Quarteroni, L. Formaggia.
Mathematical Modeling and Numerical Simulation of the Cardiovascular System, in: Computational Models for the Human Body, N. Ayache (editor), Elsevier, 2004, pp. 3–128. -
79P. M. Thompson, K. Hayashi, E. Sowell, N. Gogtay, J. Giedd, J. Rapoport, G. de Zubicaray, A. Janke, S. Rose, J. Semple, D. Doddrell, Y. Wang, T. van Erp, T. Cannon, A. W. Toga.
Mapping Cortical Change in Alzheimer's Disease, Brain Development, and Schizophrenia, in: NeuroImage, 2004, vol. 23, no supplement 1, pp. S2-18, Special Issue : Mathematics in Brain Imaging. -
80P. M. Thompson, M. I. Miller, J. T. Ratnanather, R. A. Poldrack, T. E. Nichols.
Guest Editorial, in: NeuroImage, 2004, vol. 23, no Supplement 1, pp. S1-18, Special Issue : Mathematics in Brain Imaging. -
81D. W. Thompson.
On Growth and Form, Cambridge University Press, 1917. -
82K. Van Leemput, F. Maes, D. Vandermeulen, P. Suetens.
A unifying framework for partial volume segmentation of brain MR images, in: IEEE Trans Med Imaging, January 2003, vol. 22, no 1, pp. 105-119.