Bibliography
Publications of the year
Doctoral Dissertations and Habilitation Theses
-
1R. Horsin.
On long time behavior of certain Vlasov equations: Mathematics and Numerics, Université de Rennes 1, December 2017.
https://tel.archives-ouvertes.fr/tel-01670352
Articles in International Peer-Reviewed Journals
-
2N. Arrizabalaga, L. Le Treust, N. Raymond.
On the MIT Bag Model in the Non-relativistic Limit, in: Communications in Mathematical Physics, 2017, vol. 354, no 2, pp. 641-669. [ DOI : 10.1007/s00220-017-2916-8 ]
https://hal.archives-ouvertes.fr/hal-01343717 -
3V. Banica, E. Faou, E. Miot.
Collision of almost parallel vortex filaments, in: Communications on Pure and Applied Mathematics, 2017, vol. 70, no 2, pp. 378-405. [ DOI : 10.1002/cpa.21637 ]
https://hal.archives-ouvertes.fr/hal-01170929 -
4W. Bao, L. Le Treust, F. Méhats.
Dimension reduction for dipolar Bose-Einstein condensates in the strong interaction regime, in: Kinetic and Related Models , September 2017, vol. 10, no 3, pp. 553-571, https://arxiv.org/abs/1501.02177. [ DOI : 10.3934/krm.2017022 ]
https://hal.archives-ouvertes.fr/hal-01101793 -
5F. Casas, N. Crouseilles, E. Faou, M. Mehrenberger.
High-order Hamiltonian splitting for Vlasov-Poisson equations, in: Numerische Mathematik, 2017, vol. 135, no 3, pp. 769-801, https://arxiv.org/abs/1510.01841. [ DOI : 10.1007/s00211-016-0816-z ]
https://hal.inria.fr/hal-01206164 -
6F. Castella, P. Chartier, J. Sauzeau.
A formal series approach to the center manifold theorem, in: Foundations of Computational Mathematics, 2017, forthcoming. [ DOI : 10.1007/s10208-017-9371-y ]
https://hal.inria.fr/hal-01279715 -
7P. Chartier, M. Lemou, F. Méhats.
Highly-oscillatory evolution equations with multiple frequencies: averaging and numerics, in: Numerische Mathematik, December 2017, vol. 136, no 4, pp. 907-939. [ DOI : 10.1007/s00211-016-0864-4 ]
https://hal.inria.fr/hal-01281950 -
8P. Chartier, F. Méhats, M. Thalhammer, Y. Zhang.
Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type, in: ESAIM: Mathematical Modelling and Numerical Analysis, September 2017, vol. 51, no 5, pp. 1859 - 1882. [ DOI : 10.1051/m2an/2017010 ]
https://hal.archives-ouvertes.fr/hal-01636323 -
9M. Chaussade-Beaudouin, M. Dauge, E. Faou, Z. Yosibash.
Free Vibrations of Axisymmetric Shells: Parabolic and Elliptic cases, in: Asymptotic Analysis, 2017, vol. 104, no 2, pp. 1-47, https://arxiv.org/abs/1602.00850. [ DOI : 10.3233/ASY-171426 ]
https://hal.archives-ouvertes.fr/hal-01264125 -
10N. Crouseilles, G. Dimarco, M. Lemou.
Asymptotic preserving and time diminishing schemes for rarefied gas dynamic, in: Kinetic and Related Models , 2017, vol. 10, pp. 643-668.
https://hal.inria.fr/hal-01392412 -
11N. Crouseilles, S. A. Hirstoaga, X. Zhao.
Multiscale Particle-in-Cell methods and comparisons for the long-time two-dimensional Vlasov-Poisson equation with strong magnetic field, in: Computer Physics Communications, October 2017, vol. 222, pp. 136-151.
https://hal.archives-ouvertes.fr/hal-01496854 -
12N. Crouseilles, S. Jin, M. Lemou.
Nonlinear Geometric Optics method based multi-scale numerical schemes for highly-oscillatory transport equations, in: Mathematical Models and Methods in Applied Sciences, 2017, vol. 27, no 11, pp. 2031-2070. [ DOI : 10.1142/S0218202517500385 ]
https://hal.archives-ouvertes.fr/hal-01323721 -
13N. Crouseilles, M. Lemou, F. Méhats, X. Zhao.
Uniformly accurate forward semi-Lagrangian methods for highly oscillatory Vlasov-Poisson equations, in: Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2017, vol. 15, no 2, pp. 723-744. [ DOI : 10.1137/16M1059497 ]
https://hal.inria.fr/hal-01286947 -
14G. Da Prato, A. Debussche.
An integral inequality for the invariant measure of a stochastic reaction–diffusion equation, in: Journal of Evolution Equations, 2017, vol. 17, no 1, pp. 197-214, https://arxiv.org/abs/1511.07133. [ DOI : 10.1007/s00028-016-0349-z ]
https://hal.archives-ouvertes.fr/hal-01235038 -
15S. Fournais, L. Le Treust, N. Raymond, J. Van Schaftingen.
Semiclassical Sobolev constants for the electro-magnetic Robin Laplacian, in: Journal of the Mathematical Society of Japan, 2017, vol. 69, no 4, pp. 1667-1714, https://arxiv.org/abs/1603.02810. [ DOI : 10.2969/jmsj/06941667 ]
https://hal.archives-ouvertes.fr/hal-01285311 -
16R. L. Frank, F. Méhats, C. Sparber.
Averaging of nonlinear Schrödinger equations with strong magnetic confinement, in: Communications in Mathematical Sciences, 2017, vol. 15, no 7, pp. 1933-1945, https://arxiv.org/abs/1611.01574 - 12 pages. [ DOI : 10.4310/CMS.2017.v15.n7.a7 ]
https://hal.archives-ouvertes.fr/hal-01397325 -
17M. Lemou, A. M. Luz, F. Méhats.
Nonlinear stability criteria for the HMF Model, in: Archive for Rational Mechanics and Analysis, 2017, vol. 224, no 2, pp. 353-380, https://arxiv.org/abs/1509.08637. [ DOI : 10.1007/s00205-017-1077-4 ]
https://hal.archives-ouvertes.fr/hal-01207626 -
18M. Lemou, F. Méhats, X. Zhao.
Uniformly accurate numerical schemes for the nonlinear dirac equation in the nonrelativistic limit regime, in: Communications in Mathematical Sciences, 2017, vol. 15, no 4, pp. 1107-1128. [ DOI : 10.4310/CMS.2017.v15.n4.a9 ]
https://hal.archives-ouvertes.fr/hal-01313976 -
19F. Méhats, O. Pinaud.
The quantum Liouville-BGK equation and the moment problem, in: Journal of Differential Equations, 2017, vol. 263, no 7, pp. 3737-3787, https://arxiv.org/abs/1512.01504. [ DOI : 10.1016/j.jde.2017.05.004 ]
https://hal.archives-ouvertes.fr/hal-01255137 -
20F. Méhats, N. Raymond.
Strong confinement limit for the nonlinear Schrödinger equation constrained on a curve, in: Annales Henri Poincaré, 2017, vol. 18, no 1, pp. 281-306. [ DOI : 10.1007/s00023-016-0511-8 ]
https://hal.archives-ouvertes.fr/hal-01090045 -
21T. Wang, X. Zhao, J. Jiang.
Unconditional and optimal -error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions, in: Advances in Computational Mathematics, 2017. [ DOI : 10.1007/s10444-017-9557-5 ]
https://hal.archives-ouvertes.fr/hal-01576947 -
22X. Zhao.
A combination of multiscale time integrator and two-scale formulation for the nonlinear Schrödinger equation with wave operator, in: Journal of Computational and Applied Mathematics, 2017, vol. 326, pp. 320 - 336. [ DOI : 10.1016/j.cam.2017.06.006 ]
https://hal.archives-ouvertes.fr/hal-01576629 -
23X. Zhao.
Uniformly accurate multiscale time integrators for second order oscillatory differential equations with large initial data, in: BIT Numerical Mathematics, 2017, vol. 57, no 3, pp. 649 - 683. [ DOI : 10.1007/s10543-017-0646-0 ]
https://hal.archives-ouvertes.fr/hal-01591333
Scientific Books (or Scientific Book chapters)
-
24M. Chaussade-Beaudouin, M. Dauge, E. Faou, Z. Yosibash.
High frequency oscillations of first eigenmodes in axisymmetric shells as the thickness tends to zero, in: Operator Theory Advances and Application, Recent Trends in Operator Theory and Partial Differential Equations - The Roland Duduchava Anniversary Volume, Birkhäuser/Springer, 2017, vol. 258, pp. 89-110, https://arxiv.org/abs/1603.01459. [ DOI : 10.1007/978-3-319-47079-5_5 ]
https://hal.archives-ouvertes.fr/hal-01278861
Other Publications
-
25J. Bernier.
Optimality and resonances in a class of compact finite difference schemes of high order, October 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01612326 -
26C.-E. Bréhier, A. Debussche.
Kolmogorov Equations and Weak Order Analysis for SPDES with Nonlinear Diffusion Coefficient, 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01481966 -
27S. Cerrai, A. Debussche.
Large deviations for the dynamic model, May 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01518465 -
28P. Chartier, M. Lemou, F. Méhats, G. Vilmart.
A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01666472 -
29A. Crestetto, N. Crouseilles, M. Lemou.
A particle micro-macro decomposition based numerical scheme for collisional kinetic equations in the diffusion scaling, January 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01439288 -
30N. Crouseilles, L. Einkemmer, M. Prugger.
An exponential integrator for the drift-kinetic model, 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01538450 -
31N. Crouseilles, S. Jin, M. Lemou, L. Liu.
Nonlinear Geometric Optics Based Multiscale Stochastic Galerkin Methods for Highly Oscillatory Transport Equations with Random Inputs *, April 2017, working paper or preprint.
https://hal.inria.fr/hal-01501825 -
32A. De Bouard, A. Debussche, R. Fukuizumi.
Long time behavior of Gross-Pitaevskii equation at positive temperature, 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01579123 -
33A. Debussche, J. Martin.
Solution to the stochastic Schrödinger equation on the full space, 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01579115 -
34A. Debussche, M. J. Nguepedja Nankep.
A Law of Large Numbers in the Supremum Norm for a Multiscale Stochastic Spatial Gene Network, November 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01636039 -
35A. Debussche, J. Vovelle.
Approximation - diffusion in stochastically forced kinetic equations, July 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01567138 -
36M. Fontaine, M. Lemou, F. Méhats.
Stable Ground States for the HMF Poisson Model, September 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01582008
-
37E. Hairer.
Geometric integration of ordinary differential equations on manifolds, in: BIT, 2001, vol. 41, pp. 996–1007. -
38E. Hairer, C. Lubich, G. Wanner.
Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics 31, Springer, Berlin, 2006. -
39E. Hairer, G. Wanner.
Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics 14, 2, Springer-Verlag, Berlin, 1996. -
40C. Lubich.
A variational splitting integrator for quantum molecular dynamics, in: Appl. Numer. Math., 2004, vol. 48, pp. 355–368. -
41C. Lubich.
On variational approximations in quantum molecular dynamics, in: Mathematics of Computation, 2009. -
42J. M. Sanz-Serna, M. P. Calvo.
Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.