EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1C. Bataillon, F. Bouchon, C. Chainais-Hillairet, C. Desgranges, E. Hoarau, F. Martin, S. Perrin, M. Tupin, J. Talandier.

    Corrosion modelling of iron based alloy in nuclear waste repository, in: Electrochim. Acta, 2010, vol. 55, no 15, pp. 4451–4467.
  • 2C. Bataillon, F. Bouchon, C. Chainais-Hillairet, J. Fuhrmann, E. Hoarau, R. Touzani.

    Numerical methods for the simulation of a corrosion model with moving oxide layer, in: J. Comput. Phys., 2012, vol. 231, no 18, pp. 6213–6231.

    http://dx.doi.org/10.1016/j.jcp.2012.06.005
  • 3M. Bessemoulin-Chatard, C. Chainais-Hillairet, M.-H. Vignal.

    Study of a fully implicit scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit, in: SIAM, J. Numer. Anal., 2014, vol. 52, no 4.

    http://epubs.siam.org/toc/sjnaam/52/4
  • 4C. Calgaro, E. Chane-Kane, E. Creusé, T. Goudon.

    L-stability of vertex-based MUSCL finite volume schemes on unstructured grids: simulation of incompressible flows with high density ratios, in: J. Comput. Phys., 2010, vol. 229, no 17, pp. 6027–6046.
  • 5C. Calgaro, E. Creusé, T. Goudon.

    An hybrid finite volume-finite element method for variable density incompressible flows, in: J. Comput. Phys., 2008, vol. 227, no 9, pp. 4671–4696.
  • 6C. Calgaro, E. Creusé, T. Goudon.

    Modeling and simulation of mixture flows: application to powder-snow avalanches, in: Comput. & Fluids, 2015, vol. 107, pp. 100–122.

    http://dx.doi.org/10.1016/j.compfluid.2014.10.008
  • 7C. Cancès, C. Guichard.

    Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations, in: Mathematics of Computation, 2016, vol. 85, no 298, pp. 549-580.

    https://hal.archives-ouvertes.fr/hal-00955091
  • 8C. Chainais-Hillairet.

    Entropy method and asymptotic behaviours of finite volume schemes, in: Finite volumes for complex applications. VII. Methods and theoretical aspects, Springer Proc. Math. Stat., Springer, Cham, 2014, vol. 77, pp. 17–35.
  • 9E. Creusé, S. Nicaise, G. Kunert.

    A posteriori error estimation for the Stokes problem: anisotropic and isotropic discretizations, in: Math. Models Methods Appl. Sci., 2004, vol. 14, no 9, pp. 1297–1341.

    http://dx.doi.org/10.1142/S0218202504003635
  • 10E. Creusé, S. Nicaise, Z. Tang, Y. Le Menach, N. Nemitz, F. Piriou.

    Residual-based a posteriori estimators for the 𝐀-φ magnetodynamic harmonic formulation of the Maxwell system, in: Math. Models Methods Appl. Sci., 2012, vol. 22, no 5, 1150028, 30 p.

    http://dx.doi.org/10.1142/S021820251150028X
Publications of the year

Articles in International Peer-Reviewed Journals

International Conferences with Proceedings

  • 31A. Ait Hammou Oulhaj.

    A finite volume scheme for a seawater intrusion model with cross-diffusion, in: FVCA8 2017 - International Conference on Finite Volumes for Complex Applications 8, Lille, France, June 2017, pp. 421-429. [ DOI : 10.1007/978-3-319-57397-7_35 ]

    https://hal.archives-ouvertes.fr/hal-01541229
  • 32C. Cancès, C. Chainais-Hillairet, S. Krell.

    A nonlinear Discrete Duality Finite Volume Scheme for convection-diffusion equations, in: FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, Lille, France, C. Cancès, P. Omnes (editors), Springer Proceedings in Mathematics & Statistics, Springer International Publishing, 2017, vol. 199, pp. 439-447.

    https://hal.archives-ouvertes.fr/hal-01468811
  • 33C. Cancès, D. Granjeon, N. Peton, Q. H. Tran, S. Wolf.

    Numerical scheme for a stratigraphic model with erosion constraint and nonlinear gravity flux, in: FVCA 8 - 2017 - International Conference on Finite Volumes for Complex Applications VIII, Lille, France, Proceedings in Mathematics & Statistics, Springer, June 2017, vol. 200, pp. 327-335. [ DOI : 10.1007/978-3-319-57394-6_35 ]

    https://hal.archives-ouvertes.fr/hal-01639681
  • 34C. Chainais-Hillairet, B. Merlet, A. Zurek.

    Design and analysis of a finite volume scheme for a concrete carbonation model, in: FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, Lille, France, Springer Proceedings in Mathematics & Statistics, June 2017, vol. 199, pp. 285-292. [ DOI : 10.1007/978-3-319-57397-7_21 ]

    https://hal.archives-ouvertes.fr/hal-01645137

Conferences without Proceedings

  • 35M. Bessemoulin-Chatard, C. Chainais-Hillairet, A. Jüngel.

    Uniform L ∞ estimates for approximate solutions of the bipolar drift-diffusion system, in: FVCA 8, Lille, France, June 2017, https://arxiv.org/abs/1702.06300.

    https://hal.archives-ouvertes.fr/hal-01472643
  • 36C. Calgaro, M. Ezzoug.

    L-Stability of IMEX-BDF2 Finite Volume Scheme for Convection-Diffusion Equation, in: FVCA 2017: Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects, Lille, France, C. Cancès, P. Omnes (editors), Springer Proceedings in Mathematics & Statistics, Springer, June 2017, vol. 199, pp. 245-253. [ DOI : 10.1007/978-3-319-57397-7_17 ]

    https://hal.archives-ouvertes.fr/hal-01574893
  • 37C. Cancès, F. Nabet.

    Finite volume approximation of a degenerate immiscible two-phase flowmodel of Cahn-Hilliard type, in: FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, Lille, France, Springer Proceedings in Mathematics and Statistics, 2017, vol. 199, pp. 431-438.

    https://hal.archives-ouvertes.fr/hal-01468795
  • 38C. Chainais-Hillairet, B. Merlet, A. Vasseur.

    Positive Lower Bound for the Numerical Solution of a Convection-Diffusion Equation, in: FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, Lille, France, Springer, June 2017, pp. 331-339. [ DOI : 10.1007/978-3-319-57397-7_26 ]

    https://hal.archives-ouvertes.fr/hal-01596076
  • 39W. Melis, T. Rey, G. Samaey.

    Projective integration for nonlinear BGK kinetic equations, in: Finite Volumes for Complex Applications VIII, Lille, France, C. Cancès, P. Omnès (editors), Hyperbolic, Elliptic and Parabolic Problems, Springer International Publishing, June 2017, vol. 200, pp. 155-162, https://arxiv.org/abs/1702.00563 - Proceedings FVCA 8. [ DOI : 10.1007/978-3-319-57394-6 ]

    https://hal.archives-ouvertes.fr/hal-01451580

Scientific Books (or Scientific Book chapters)

  • 40C. Cancès, P. Omnes (editors)

    Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017, Springer Proceedings in Mathematics & Statistics, Springer, France, 2017, vol. 200.

    https://hal.archives-ouvertes.fr/hal-01639713
  • 41C. Cancès, P. Omnes (editors)

    Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects: FVCA 8, Lille, France, June 2017, Springer Proceedings in Mathematics & Statistics, Springer International Publishing, France, 2017, vol. 199.

    https://hal.archives-ouvertes.fr/hal-01639725

Other Publications

References in notes
  • 51R. Abgrall.

    A review of residual distribution schemes for hyperbolic and parabolic problems: the July 2010 state of the art, in: Commun. Comput. Phys., 2012, vol. 11, no 4, pp. 1043–1080.

    http://dx.doi.org/10.4208/cicp.270710.130711s
  • 52R. Abgrall, G. Baurin, A. Krust, D. de Santis, M. Ricchiuto.

    Numerical approximation of parabolic problems by residual distribution schemes, in: Internat. J. Numer. Methods Fluids, 2013, vol. 71, no 9, pp. 1191–1206.

    http://dx.doi.org/10.1002/fld.3710
  • 53R. Abgrall, A. Larat, M. Ricchiuto.

    Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes, in: J. Comput. Phys., 2011, vol. 230, no 11, pp. 4103–4136.

    http://dx.doi.org/10.1016/j.jcp.2010.07.035
  • 54R. Abgrall, A. Larat, M. Ricchiuto, C. Tavé.

    A simple construction of very high order non-oscillatory compact schemes on unstructured meshes, in: Comput. & Fluids, 2009, vol. 38, no 7, pp. 1314–1323.

    http://dx.doi.org/10.1016/j.compfluid.2008.01.031
  • 55T. Aiki, A. Muntean.

    Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structure, in: Adv. Math. Sci. Appl., 2009, vol. 19, pp. 109-129.
  • 56T. Aiki, A. Muntean.

    A free-boundary problem for concrete carbonation: front nucleation and rigorous justification of the t-law of propagation, in: Interfaces Free Bound., 2013, vol. 15, no 2, pp. 167–180.

    http://dx.doi.org/10.4171/IFB/299
  • 57B. Amaziane, A. Bergam, M. El Ossmani, Z. Mghazli.

    A posteriori estimators for vertex centred finite volume discretization of a convection-diffusion-reaction equation arising in flow in porous media, in: Internat. J. Numer. Methods Fluids, 2009, vol. 59, no 3, pp. 259–284.

    http://dx.doi.org/10.1002/fld.1456
  • 58M. Avila, J. Principe, R. Codina.

    A finite element dynamical nonlinear subscale approximation for the low Mach number flow equations, in: J. Comput. Phys., 2011, vol. 230, no 22, pp. 7988–8009. [ DOI : 10.1016/j.jcp.2011.06.032 ]
  • 59I. Babuška, W. C. Rheinboldt.

    Error estimates for adaptive finite element computations, in: SIAM J. Numer. Anal., 1978, vol. 15, no 4, pp. 736–754.
  • 60J. Bear, Y. Bachmat.

    Introduction to modeling of transport phenomena in porous media, Springer, 1990, vol. 4.
  • 61J. Bear.

    Dynamic of Fluids in Porous Media, American Elsevier, New York, 1972.
  • 62A. Beccantini, E. Studer, S. Gounand, J.-P. Magnaud, T. Kloczko, C. Corre, S. Kudriakov.

    Numerical simulations of a transient injection flow at low Mach number regime, in: Internat. J. Numer. Methods Engrg., 2008, vol. 76, no 5, pp. 662–696. [ DOI : 10.1002/nme.2331 ]
  • 63S. Berrone, V. Garbero, M. Marro.

    Numerical simulation of low-Reynolds number flows past rectangular cylinders based on adaptive finite element and finite volume methods, in: Comput. & Fluids, 2011, vol. 40, pp. 92–112.

    http://dx.doi.org/10.1016/j.compfluid.2010.08.014
  • 64D. Bresch, E. H. Essoufi, M. Sy.

    Effect of density dependent viscosities on multiphasic incompressible fluid models, in: J. Math. Fluid Mech., 2007, vol. 9, no 3, pp. 377–397.
  • 65D. Bresch, P. Noble, J.-P. Vila.

    Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and various applications, 2017, To appear in ESAIM Proc..
  • 66C. Cancès, T. O. Gallouët, L. Monsaingeon.

    The gradient flow structure for incompressible immiscible two-phase flows in porous media, in: C. R. Math. Acad. Sci. Paris, 2015, vol. 353, no 11, pp. 985–989.

    http://dx.doi.org/10.1016/j.crma.2015.09.021
  • 67C. Cancès, I. S. Pop, M. Vohralík.

    An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, in: Math. Comp., 2014, vol. 83, no 285, pp. 153–188.

    http://dx.doi.org/10.1090/S0025-5718-2013-02723-8
  • 68J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani, A. Unterreiter.

    Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, in: Monatsh. Math., 2001, vol. 133, no 1, pp. 1–82.

    http://dx.doi.org/10.1007/s006050170032
  • 69C. Chainais-Hillairet, A. Jüngel, S. Schuchnigg.

    Entropy-dissipative discretization of nonlinear diffusion equations and discrete Beckner inequalities, in: Modelisation Mathématique et Analyse Numérique, 2016, vol. 50, no 1, pp. 135-162.

    https://hal.archives-ouvertes.fr/hal-00924282
  • 70E. Creusé, S. Nicaise, Z. Tang, Y. Le Menach, N. Nemitz, F. Piriou.

    Residual-based a posteriori estimators for the 𝐓/Ω magnetodynamic harmonic formulation of the Maxwell system, in: Int. J. Numer. Anal. Model., 2013, vol. 10, no 2, pp. 411–429.
  • 71E. Creusé, S. Nicaise, E. Verhille.

    Robust equilibrated a posteriori error estimators for the Reissner-Mindlin system, in: Calcolo, 2011, vol. 48, no 4, pp. 307–335.

    http://dx.doi.org/10.1007/s10092-011-0042-0
  • 72D. A. Di Pietro, M. Vohralík.

    A Review of Recent Advances in Discretization Methods, a Posteriori Error Analysis, and Adaptive Algorithms for Numerical Modeling in Geosciences, in: Oil & Gas Science and Technology-Rev. IFP, June 2014, pp. 1-29, (online first).
  • 73V. Dolejší, A. Ern, M. Vohralík.

    A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems, in: SIAM J. Numer. Anal., 2013, vol. 51, no 2, pp. 773–793.

    http://dx.doi.org/10.1137/110859282
  • 74D. Donatelli, E. Feireisl, P. Marcati.

    Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, in: Comm. Partial Differential Equations, 2015, vol. 40, pp. 1314-1335.
  • 75J. Droniou.

    Finite volume schemes for diffusion equations: introduction to and review of modern methods, in: Math. Models Methods Appl. Sci., 2014, vol. 24, no 8, pp. 1575-1620.
  • 76W. E, P. Palffy-Muhoray.

    Phase separation in incompressible systems, in: Phys. Rev. E, Apr 1997, vol. 55, pp. R3844–R3846.

    https://link.aps.org/doi/10.1103/PhysRevE.55.R3844
  • 77C. M. Elliott, H. Garcke.

    On the Cahn-Hilliard equation with degenerate mobility, in: SIAM J. Math. Anal., 1996, vol. 27, no 2, pp. 404–423.

    http://dx.doi.org/10.1137/S0036141094267662
  • 78E. Emmrich.

    Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations, in: Comput. Methods Appl. Math., 2009, vol. 9, no 1, pp. 37–62.
  • 79R. Eymard, C. Guichard, R. Herbin.

    Small-stencil 3D schemes for diffusive flows in porous media, in: ESAIM Math. Model. Numer. Anal., 2012, vol. 46, no 2, pp. 265–290.

    http://dx.doi.org/10.1051/m2an/2011040
  • 80J. Giesselmann, C. Lattanzio, A.-E. Tzavaras.

    Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, in: Arch. Rational Mech. Analysis, 2017, vol. 223, pp. 1427-1484.
  • 81V. Gravemeier, W. A. Wall.

    Residual-based variational multiscale methods for laminar, transitional and turbulent variable-density flow at low Mach number, in: Internat. J. Numer. Methods Fluids, 2011, vol. 65, no 10, pp. 1260–1278. [ DOI : 10.1002/fld.2242 ]
  • 82L. Greengard, J.-Y. Lee.

    Accelerating the nonuniform fast Fourier transform, in: SIAM Rev., 2004, vol. 46, no 3, pp. 443–454.

    http://dx.doi.org/10.1137/S003614450343200X
  • 83F. Guillén-González, J. V. Gutiérrez-Santacreu.

    Conditional stability and convergence of a fully discrete scheme for three-dimensional Navier-Stokes equations with mass diffusion, in: SIAM J. Numer. Anal., 2008, vol. 46, no 5, pp. 2276–2308.

    http://dx.doi.org/10.1137/07067951X
  • 84M. E. Hubbard, M. Ricchiuto.

    Discontinuous upwind residual distribution: a route to unconditional positivity and high order accuracy, in: Comput. & Fluids, 2011, vol. 46, pp. 263–269.

    http://dx.doi.org/10.1016/j.compfluid.2010.12.023
  • 85S. Jin.

    Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, in: SIAM, J. Sci. Comput., 1999, vol. 21, pp. 441-454.
  • 86R. Jordan, D. Kinderlehrer, F. Otto.

    The variational formulation of the Fokker-Planck equation, in: SIAM J. Math. Anal., 1998, vol. 29, no 1, pp. 1–17.
  • 87A. V. Kazhikhov, S. Smagulov.

    The correctness of boundary value problems in a diffusion model in an inhomogeneous fluid, in: Sov. Phys. Dokl., 1977, vol. 22, pp. 249–250.
  • 88C. Liu, N. J. Walkington.

    Convergence of numerical approximations of the incompressible Navier-Stokes equations with variable density and viscosity, in: SIAM J. Numer. Anal., 2007, vol. 45, no 3, pp. 1287–1304 (electronic).

    http://dx.doi.org/10.1137/050629008
  • 89F. Otto, W. E.

    Thermodynamically driven incompressible fluid mixtures, in: J. Chem. Phys., 1997, vol. 107, no 23, pp. 10177-10184.

    https://doi.org/10.1063/1.474153
  • 90F. Otto.

    The geometry of dissipative evolution equations: the porous medium equation, in: Comm. Partial Differential Equations, 2001, vol. 26, no 1-2, pp. 101–174.
  • 91M. Ricchiuto, R. Abgrall.

    Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case, in: J. Comput. Phys., 2010, vol. 229, no 16, pp. 5653–5691.

    http://dx.doi.org/10.1016/j.jcp.2010.04.002
  • 92D. Ruppel, E. Sackmann.

    On defects in different phases of two-dimensional lipid bilayers, in: J. Phys. France, 1983, vol. 44, no 9, pp. 1025-1034.

    http://dx.doi.org/10.1051/jphys:019830044090102500
  • 93F. Santambrogio.

    Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling, Progress in Nonlinear Differential Equations and Their Applications 87, 1, Birkhäuser Basel, 2015.

    http://gen.lib.rus.ec/book/index.php?md5=24B4AA557102EC12148F101DF2C91937
  • 94C. Villani.

    Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, vol. 338, xxii+973 p, Old and new.

    http://dx.doi.org/10.1007/978-3-540-71050-9
  • 95M. Vohralík.

    Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, in: Numer. Math., 2008, vol. 111, no 1, pp. 121–158.

    http://dx.doi.org/10.1007/s00211-008-0168-4
  • 96J. de Frutos, B. García-Archilla, J. Novo.

    A posteriori error estimations for mixed finite-element approximations to the Navier-Stokes equations, in: J. Comput. Appl. Math., 2011, vol. 236, no 6, pp. 1103–1122.

    http://dx.doi.org/10.1016/j.cam.2011.07.033
  • 97P. G. de Gennes.

    Dynamics of fluctuations and spinodal decomposition in polymer blends, in: J. Chem. Phys., 1980, vol. 72, pp. 4756-4763.